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Impact of medical technologies 
may be predicted using constructed 
graph bibliometrics
Lawrence Jiang 1*, Ashir Raza 1, Abdel‑Badih El Ariss 2, David Chen 3, Nicole Danaher‑Garcia 4, 
Jarone Lee 2,5 & Shuhan He 2,4,5,6

Scientific research is driven by allocation of funding to different research projects based in part 
on the predicted scientific impact of the work. Data-driven algorithms can inform decision-
making of scarce funding resources by identifying likely high-impact studies using bibliometrics. 
Compared to standardized citation-based metrics alone, we utilize a machine learning pipeline 
that analyzes high-dimensional relationships among a range of bibliometric features to improve 
the accuracy of predicting high-impact research. Random forest classification models were trained 
using 28 bibliometric features calculated from a dataset of 1,485,958 publications in medicine to 
retrospectively predict whether a publication would become high-impact. For each random forest 
model, the balanced accuracy score was above 0.95 and the area under the receiver operating 
characteristic curve was above 0.99. The high performance of high impact research prediction using 
our proposed models show that machine learning technologies are promising algorithms that can 
support funding decision-making for medical research.

Scientific research is a driving force of innovation designed to expand the frontiers of human knowledge and 
improve economic and social progress. However, research policy and exploration of promising research direc-
tions are shaped in part by the decisions of funding bodies, such as governments and universities, as well as 
for-profit and nonprofit private entities, to fund these research studies1,2. Determining which proposed research 
projects are funded based on impact remains a dynamic process that involves a combination of peer review and 
quantitative research metrics2,3. The funding decision process requires transparency in the way public research 
funds are allocated based on peer review and metrics. Transparency is needed to ensure reproducibility through 
increased use of publicly available data for responsible decision-making4,5.

Standardized citation metrics of research articles in a scientific field and scientist profiles may be used in 
part to inform the decision-making to fund new scientific projects6–8. Using the number of citations alone as the 
sole quality indicator of research is limited due to its narrow scope that only measures the uptake of the work by 
other researchers9,10. Moreover, citations are lagging indicators of research impact that vary widely by journal 
and scientific field11. The limitations of relying solely on standardized citation metrics in the funding decision 
process can have a significant impact on the prospective development of science. Funding bodies may overlook 
potentially impactful research projects that are not immediately recognized by the scientific community. Addi-
tionally, researchers may prioritize producing work that is more likely to be cited, rather than pursuing research 
that is more innovative or impactful, which can slow scientific progress12.

Recent research to extract signals from network science-enabled knowledge graphs has been used to quantify 
domain knowledge in health and life sciences13, materials science14, and drug discovery15. Recent work by Weis 
and Jacobson16 demonstrated the promising performance of leveraging knowledge graph dynamics and machine 
learning algorithms to a biomedical-focused dataset to identify innovative research of likely future importance. 
Additionally, machine learning algorithms have been used to identify seminal research of likely future sig-
nificance in drug discovery. To evaluate the performance and reproducability of using machine learning-based 
classification of high-impact research studies, we designed supervised random forest models trained on graph 
bibliometrics to predict high-impact research studies.
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Methods
We collected metadata on 1,485,958 publications with non-null author, title, and ISSN data from 40 high-impact 
medical journals, listed in Table 1, between 1980 and 202017. Data was collected from the APIs of Lens Lab and 
Elsevier. Since the data was collected in 2021, 2020 was the last year with complete data at the time. Articles 
without sufficient data on the date they were published were removed. A schematic on the search process of 
publications included in this study is shown in Fig. 1.

We used Neo4j database and Weis and Jacobson methodology to create nodes and edges for each publica-
tion, author, and institution16. From the processed database, we generated the same 28 bibliometrics shown in 
Table 1 of the Weis and Jacobson methodology for each article in our training dataset. The bibliometrics are also 
available as Table 2 of this article. These constructed graph bibliometrics serve as input features for the proposed 

Table 1.   Journals in dataset.

The New England Journal of Medicine The Lancet

JAMA—the Journal of the American Medical Association The BMJ—the British Medical Journal

Annals of Internal Medicine JAMA Internal Medicine

PLOS Medicine Lancet Oncology

World Psychiatry Lancet Neurology

Journal of Clinical Oncology European Heart Journal

JACC—Journal of the American College of Cardiology Lancet Infectious Diseases

Lancet Diabetes and Endocrinology Circulation

Lancet Respiratory Medicine Gastroenterology

Gut JAMA Oncology

European Urology JAMA Psychiatry

American Journal of Psychiatry Circulation Research

Hepatology American Journal of Respiratory and Critical Care Medicine

Blood Journal of Allergy and Clinical Immunology

Annals of the Rheumatic Diseases JNCI—Journal of the National Cancer Institute

Journal of Hepatology Intensive Care Medicine

Diabetes Care Annals of Oncology

Leukaemia Lancet Psychiatry

European Respiratory Journal Brain

JAMA Pediatrics JAMA Neurology

Figure 1.   Eligibility of publications. On the date the data were pulled, there were 1,485,958 publications in the 
40 journals between 1980 and 2020. Of those, we did not have sufficient information on the date of publication 
for 72,273 articles. In calculating time-rescaled PageRank, 21,000 randomly selected publications were placed 
outside the sliding window.
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machine learning based classifier of high-impact publications. A diagram of the general workflow of the data 
pre-processing pipeline is shown in Fig. 2.

We calculated the Node2vec, a vector representation for nodes based on random walks, for each author node 
using Neo4j’s built-in function. We labeled publications in the top 5% of one feature, time-rescaled PageRank, as 
high-impact. As a node centrality metric that accounts for temporal bias, time-rescaled PageRank allows for dis-
tinction of high-impact articles controlling for their publication dates28. To calculate the time-rescaled PageRank 
metric, we used a sliding average and standard deviation in a sliding window to rescale each publication tempo-
rally. In the setup of the sliding window, we placed 21,000 randomly selected publications outside the window.

Using the Python package scikit-learn 1.1.2, we trained random forest supervised classification models with 
different amounts of post-publication data. We applied imbalanced-learn’s synthetic minority oversampling 
(SMOTE) function to the data using default parameters to account for the imbalanced nature of high and low-
impact publications. In total, we trained ten different supervised random forst models. Six models were trained to 
predict high-impact publications five years after publication and four models were trained to predict high-impact 
publications using post-publication data from the year of publication. We used a hyperparameter grid search with 
a tenfold cross-validation procedure to identify the optimal hyperparameter values based on guidance from Van 
Rijn and Hutter for max features, min samples leaf, and split criterion36. After applying SMOTE, we split the data 
into training and testing sets with a test size proportion of 0.25. Then, we evaluated models on the test set with 
balanced accuracy (BA) and area under the receiver operating characteristic curve (ROC AUC). We addition-
ally evaluated variable importance with a mean decrease in impurity test on the 0-year data, 5-year label model.

Results
We evaluated random forest models on the test split with BA and ROC AUC scores. Overall, the ROC AUC and 
BA scores for each model was above 0.99 and 0.95 respectively (Table 3).

Table 2.   Input features. Adapted from Ref.16.

Variable Description

Citations per paper Mean number of citations per paper for papers the author has published

Δ Citations per paper Change in the mean number of citations per paper for the author over the preceding 2 years

Citations per year Average number of citations per year for papers the author has published

Maximum citations Maximum number of citations a paper has received out of all the papers the author has currently 
published

Rank citations per year Rank of the author among all other authors in terms of mean citations per year

Total citations Number of citations author has received

Δ Total citations Change in the total number of citations for the author over the preceding 2 years

Total papers Total number of papers published by the author

Δ Total papers Change in the total number of papers over the preceding 2 years

Citations Citations collected in the current year

Adopters Number of unique citing authors in the current year

Author age Number of years since the year of publication of the author’s first paper

h-index Author’s h-index

Δ h-index Change in the author’s h-index over the past 2 years

Recent coauthors Number of coauthors the author has had in the current and immediately preceding year

Δ Mean journal citations per paper Two-year change in the mean number of citations per paper of the journals the author has 
published in

Mean journal citations per paper Mean number of citations per paper for the journals the author has published in

Δ Mean journal h-index Two-year change in the mean h-index for the journals the author has published in

Mean journal h-index Mean h-index for the journals the author has published in

Mean journal maximum citations Mean of the maximum number of citations any paper published in a journal has received for each 
journal the author has published in

Mean journal rank citations per paper Rank of journal in which the author has published, as determined by the mean number of cita-
tions per paper

Mean Δ journal total papers Change in the mean of the total number of papers published in journals the author has published 
in

Total journals Total number of journals published in by the author

Mean journal total papers Mean of the total number of papers published in journals the author has published in

Learned network embedding Unsupervised embedding of local network structure calculated via application of the node2vec 
algorithm on the citation graph

Time-rescaled node centrality Time-balanced network centrality calculated using the full citation network

Unweighted PageRank PageRank score of author, calculated on the unweighted coauthorship network

Weighted PageRank PageRank score of author, calculated on the weighted coauthorship network
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Figure 3 showed that the models generally had higher BA and ROC AUC scores relative to the number of 
post-publication years. We note that there was a drop in ROC AUC in the 3-year post-publication/5-year label 
model, suggesting lower performance of the model at the three-year mark.

Figure 4 showed that the proportions of false classifications for each model were low. For models with a label 
five years post publication, the lowest proportion of false positives and false negatives were 0.0332 and 0.012, 
respectively, for the zero-year model. However, as more data were made available to models, the proportion of 
false classifications decreased.

The results of our mean decrease in impurity test are detailed in Table 4. The most important variable was 
rescaled PageRank. This is to be expected as it is the variable used to decide the label. However, its importance 
is still relatively small at 0.166. The importance of the next four variables sums up to a similar value: 0.158. 
Notably, these four variables–citations per year, author h-index, maximum citations, and total papers published, 
are not network variables, but are instead common metrics used to discern the potential impact of a publica-
tion. Weighted PageRank and unweighted PageRank, two other network variables, are less important, but still 
significant, at 0.012 and 0.011 respectively.

Figure 2.   Workflow schematic.

Table 3.   Outcomes.

Post-publication years Label year Total True positives True negatives False positives False negatives Balanced accuracy
Receiver operator 
characteristic

0 5 516,072 252,452 240,696 17,149 5775 0.955564 0.991447

1 5 516,072 254,183 245,824 12,021 4044 0.968859 0.995998

2 5 516,072 255,667 249,337 8508 2560 0.978545 0.997989

3 5 516,072 256,540 252,953 4892 1687 0.987247 0.99173

4 5 516,072 257,257 255,434 2411 970 0.993447 0.999731

5 5 516,072 258,227 257,840 5 0 0.99999 1.0

1 1 617,046 302,923 297,771 10,808 5544 0.973501 0.997095

2 2 594,279 293,639 291,028 6308 3304 0.983829 0.998922

3 3 569,569 282,885 281,004 3921 1759 0.990029 0.999659

4 4 543,605 270,620 270,425 1580 980 0.995292 0.999899
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Discussion
The pursuit of scientific research is intricately tied to the progress of human society, and it is shaped by decisions 
made by various funding bodies, such as governmental organizations, universities, and both for-profit and non-
profit private entities, who provide financial support for these research studies1,2. The National Institutes of Health 
(NIH), for instance, allocated a budget of 33.34 billion dollars towards scientific research in 202218, highlighting 
the significant investment made in this area. To ensure the effective utilization of public funds, it is crucial to allo-
cate resources in a way that maximizes favorable outcomes. An analysis done by Fang and Casadevall19, observed 
that biomedical research fund allocation in the United States is inadequate for prioritizing which applications 
to fund. The present evaluation methodology for impact implicitly relies on quantitative metrics, including the 
number of publications, citations, and the impact factor of the journals in which researchers publish, as well 
as related measures such as the h-index. For example, prior work has observed a positive correlation between 
bibliometrics and NIH funding20,21. Furthermore, another study found that NIH-funded researchers had higher 
h-indices and citation rates than non-funded researchers, and that these differences were more pronounced in 
certain fields, such as immunology and neuroscience22. These articles shed light on some of the potential biases 
associated with the current bibliometric measures.

There is also growing concern about the potential misuse and abuse of bibliometric measures. In some 
instances, researchers may engage in self-citation, which artificially inflates their citation counts, or they may 
publish multiple papers on the same topic to boost their h-index. Thus, relying solely on conventional citation 
metrics may introduce biases that impede our progress in identifying and pursuing impactful research areas7,23,24. 
In fact, the use of time-rescaled measures of node centrality is an important consideration in knowledge graph 
analysis for objective decision-making. Its use has already shown promising results in various fields.

Figure 3.   Performance metrics by models. Graphs of BA and ROC AUC for trained models. In (a), the 
data have a label 5 years after publication. In (b), the data have a label the same year as the amount of post-
publication data made available to the model. (a) Corresponds to the models in rows 1–6 of Table 3. (b) 
Corresponds to the models in rows 6–10 of Table 3.
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According to a study by Kumar et al., the centrality of nodes in a social network can vary over time, making 
it necessary to use time-rescaled measures of centrality to accurately assess the importance of nodes25. A study 
by Jiang et al. used time-rescaled measures of centrality to analyze the evolution of the Chinese stock market 
network, identifying key nodes and potential sources of systemic risk26. In the context of scientific research, a 
study by Li et al. demonstrated the effectiveness of using time-rescaled measures of centrality to track the evolu-
tion of a knowledge graph in the field of neuroscience, identifying the emergence of new research topics and 
potential areas for collaboration27.

Figure 4.   Classification proportions by models. Graphs of classification proportions for trained models with a 
label five years after publication. Both figures correspond to the models in rows 1–6 of Table 3.

Table 4.   Variable importance. The eight most important variables on the 0-year data, 5-year label model, in 
descending order.

Variable Importance value

Rescaled PageRank 0.166

Citations per year 0.049

Author h-index 0.043

Maximum citations 0.042

Total papers 0.024

Citations 0.024

Citations per paper 0.021

Δ Total citations 0.018
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As such we demonstrate the impact of the network framework in predicting high-impact publications. Com-
pared to the models used in Weis and Jacobson, our models showed more favorable performance results when 
predicting high-impact clinical medicine studies compared to biotechnology studies16. In our one- and two-year 
models for a label year five years post publication, the balanced accuracies are approximately 0.969 and 0.979. 
On the dataset used in Weis and Jacobson, these numbers were 0.77 and 0.87 respectively.

We observed that the ROC AUC score of each model was greater than 0.99, which indicates that the models 
have a high level of accuracy in distinguishing between high-impact and low-impact publications (Table 3). 
The BA scores, which were greater than 0.95, indicate that the models performed well in identifying high- and 
low-impact cases. Figures 3 and 4 demonstrated that the ROC AUC and BA scores increased with an increase in 
the amount of data used in the models, except for the three-year post-publication model that predicted impact 
five years after publication. This is expected since the larger the dataset, the more information was available for 
the model to learn from; however, the exception observed can be explained by several possible factors including 
data availability, model design, sample bias, random variation, or noise.

The need for implementation of a time-rescaled measure of node centrality arises from the fact that networks 
are dynamic and constantly evolving. Using a static measure of node centrality that does not take into account 
the temporal aspect of the network may not accurately reflect the node’s current importance or influence. For 
instance, a node that was highly central in the network in the past may have lost its importance due to changes 
in the network, and a node that was less central in the past may have become more important due to new con-
nections or changes in behavior. By using a time-rescaled measure of node centrality, we can better capture the 
temporal dynamics of the network and get a more accurate representation of each node’s current importance 
or influence28,29.

In addition, by representing papers as nodes and their citations as edges, the use of node2vec can learn 
embeddings that capture the relationships between papers based on their citation patterns. These embeddings 
can be used to identify clusters of related papers or to detect influential papers that have had a significant impact 
on the field. By using node2vec to learn embeddings that capture structural and contextual features of nodes in 
the network, and combining this with time-rescaled measures that reflect the frequency and recency of node 
involvement in network activity, it is possible to obtain a more nuanced and dynamic understanding of node 
importance. This approach can help to address some of the limitations of each method when used in isolation, 
such as the limited interpretability of node2vec embeddings and the sensitivity of time-rescaled measures to 
hyperparameters and time window size30.

The nature of data is often nonlinear, and the implementation of machine learning has led to the discovery 
of more meaningful outcomes than previously achievable. Machine learning-assisted prediction models have 
become increasingly prevalent in various scientific fields, particularly in this area of study, and are expected to 
have a significant impact on decision-making processes. The framework used in this study serves to confirm the 
reproducibility of the model presented by Weis and Jacobson.

Nonetheless, some limitations arise when using this framework, such as the requirement for historical data, 
which may not always be available or accessible. In addition, constructing a comprehensive and accurate knowl-
edge graph can be difficult or impossible in some fields, which may limit the applicability of the approach31. 
Another limitation is that the approach may not capture all factors that contribute to impactful research, such as 
novelty, content, or relevance to current research trends. The knowledge graph structure alone may not always 
be sufficient to predict the impact of a given paper or research area32. Moreover the approach is designed to 
identify impactful research at the level of individual papers, authors, or research subjects, and may not be directly 
applicable to other levels of analysis such as journals, conferences, or research communities. Its effectiveness 
in other contexts may therefore be limited33. The model assumes that the knowledge graph is a self-contained 
representation of the research domain, but impactful research may be influenced by external factors such as 
funding or policy decisions, which may not be reflected in the knowledge graph34. The model may be less effective 
in domains with complex knowledge graphs or high levels of noise, as it may be difficult to distinguish between 
significant and insignificant changes in the graph35. Future research endeavors should prioritize the prospec-
tive validation of our results over time and emphasize the application of our findings specifically to individual 
research communities or domains.

In the context of defining high-impact papers using a network feature, it is noteworthy to mention that these 
network features are integral components of the models. This might suggest a potential redundancy, where 
network features could be perceived as predicting themselves. Nonetheless, forecasting the future state of a 
network feature, such as the time-rescaled PageRank, is not merely contingent on its current state. Analogously, 
predicting a child’s future height requires considerations beyond their present height, encompassing factors like 
nutritional intake and environmental exposures. Thus, the models are enhanced by the incorporation of both 
network and non-network features. As indicated by Weis and Jacobson, the precise utilization of each variable by 
the models remains elusive, but insights can be gleaned from the mean decrease in impurity test. It is evident that 
while time-rescaled PageRank holds significant importance, the subsequent four salient factors are non-network 
features, cumulatively equating to a comparable importance as the time-rescaled PageRank. This underscores 
the indispensable nature of both feature types, suggesting that their combined influence fosters a more refined 
model than either feature type in isolation.

While the efficacy of time-rescaled measures of node centrality has been established, the dynamic intrica-
cies of knowledge graphs necessitate further refinement. The methodologies employed in model construction 
may not always be optimal. For example, the aggregation of features rooted in author metadata was achieved by 
averaging said metadata for each publication. A more nuanced aggregation approach, taking into account the 
author’s position in the list, might offer a richer data capture. Moreover, although defining high-impact papers 
using a feature type present in the model is defensible, a redefined criterion might be more fitting.



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2419  | https://doi.org/10.1038/s41598-024-52233-x

www.nature.com/scientificreports/

Beyond prediction of high-impact studies from bibliometrics, future research is needed to explore the poten-
tial to predict high-impact grants that can fund one or more studies. Prospective testing of our study’s methodol-
ogy applied to research grants can evaluate the extent to which predictive models trained on graph bibliometrics 
can inform decision-making of funding allocation for multiple studies.

The ramifications of employing time-rescaled measures of node centrality in decision-making warrant thor-
ough assessment. Subsequent studies should delve into the influence of these measures on the precision and 
efficacy of decision-making, especially in the realm of funding opportunities, and proffer guidelines for their 
judicious application. Additionally, there is a compelling need for pioneering methods to augment the accuracy 
of time-rescaled centrality computations. Comparative analyses between these innovative techniques and estab-
lished ones will be instrumental in discerning their efficacy and relevance.

Data availability
The dataset was generated by gathering publication data from Lens Lab, available at https://​www.​lens.​org/. Addi-
tional data on publication dates were gathered from Elsevier, available at https://​dev.​elsev​ier.​com/.

Code availability
Open-source Jupyter notebooks for model training and evaluation, as well as graph construction and metric 
extraction, can be found at https://​github.​com/​ldj20/​med-​predi​ctions.
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