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Controlling viscous fingering 
instabilities of complex fluids
Alban Pouplard  & Peichun Amy Tsai *

Despite their aesthetic elegance, wavy or fingering patterns emerge when a fluid of low viscosity 
pushes another immiscible fluid of high viscosity in a porous medium, producing an incomplete sweep 
and hampering several crucial technologies. Some examples include chromatography, printing, 
coating flows, oil-well cementing, as well as large-scale technologies of groundwater and enhanced 
oil recovery. Controlling such fingering instabilities is notoriously challenging and unresolved for 
complex fluids of varying viscosity because the fluids’ mobility contrast is often predetermined and 
yet the predominant drive in determining a stable, flat or unstable, wavy interface. Here we show, 
experimentally and theoretically, how to suppress or control the primary viscous fingering patterns of 
a common type of complex fluids (of shear-thinning with a low yield stress) using a radially tapered cell 
of linearly varying gap thickness, h(r). Experimentally, we displace a complex viscous (PAA) solution 
with gas under a constant flow rate (Q), varied between 0.02 and 2 slpm (standard liter per minute), 
in a radially converging cell with a constant gap-thickness gradient, α = dh/dr < 0 . A stable, uniform 
interface emerges at low Q and in a steeper cell (i.e., greater |α| ) for the complex fluids, whereas 
unstable fingering pattern at high Q and smaller |α| . Our theoretical predictions with a simplified linear 
stability analysis show an agreeable stability criterion with experimental data, quantitatively offering 
strategies to control complex fluid-fluid patterns and displacements in microfluidics and porous 
media.

The process of one fluid pushing another is ubiquitous while involving fascinating and complex patterns stem-
ming from flow instabilities. During immiscible displacement of more-viscous fluid pushed by another less-
viscous one in a porous media, the mobility contrast results in the tunneling of the displacing fluid and hence 
fingering patterns, hindering a full swipe of the displaced fluid. As the utmost detrimental, limiting factor in 
enhanced oil recovery processes, this so-called viscous fingering or Saffman–Taylor  instability1–5 has been exten-
sively studied since the 1980s. In particular, a convenient paradigm of Hele−Shaw cells consisting of two parallel 
plates spaced with a constant gap thickness yielding a homogeneous permeability is often used to understand the 
effects of inertia, gravity, and rotation. Recent studies using simple fluids of constant viscosity have considered 
centrifugally driven viscous fingering via  rotation6 and found that the inertia tends to increase the finger-width7 
and curvature-dependent surface tension can theoretically lead to the stabilization (destabilization) of conven-
tionally unstable (stable)  situations8. In the last two decades, studies of viscous fingering have been extended to 
complex fluids, usually leading to wider fingers compared to the simple Newtonian  counterparts9. Intriguing 
side-branching patterns with multiple small sided-fingers are often observed with complex, yield-stress  fluids10 
in a uniform cell.

The control of the fingering instabilities plays a significant role in enhancing the efficiency of various tech-
nological applications, e.g., chromatography  separation11, printing  devices12,  coating13, oil-well cementing, and 
large-scale enhanced oil  recovery14. For simple Newtonian fluids, several strategies have recently been devel-
oped to suppress the fingering instability, for example, using time-dependant injection flow  rate15–17, an elastic 
 confinement18–20, a gap-gradient  cell21–23, and an external electric  field24. Nevertheless, such crucial control of 
the primary viscous fingering instability has not been reported for complex fluids, which are commonly pre-
sent in natural and industrial settings. Here, we demonstrate the feasibility of inhibiting the viscous fingering 
instability of complex fluids of shear-thinning with a low-yield stress using a radially-tapered narrow cell using 
experiment and theory.

Experimentally, we prepare two different aqueous solutions (Sa and S b ) of PolyAcrylic Acid (PAA) to have 
different viscosity contrasts as the complex displaced fluid (see “Methods”). We first fill in one complex PAA 
solution in a radial cell and subsequently inject a gas (nitrogen, viscosity µ1 = 1.76× 10−5 Pa · s at 20◦ C) as a 
pushing fluid 1 (see Fig. 1a,b). The gas is injected at a constant flow rate, Q, ranging from 0.02 to 2 slpm (standard 
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liter per minute) by a flow controller (Alicat) with an accuracy of 1 ml/min. Figure 1c shows the rheological 
measurements (Anton Paar MCR302) of the shear stress ( τ ) varying with shear rate ( ̇γ ) for the two complex 
solutions; (Sa ) is more viscous than (Sb ). Neglecting the elastic properties (see “Methods” for the justification), 
the flow curve data shows an excellent fit with the common Herschel−Bulkley (HB)  model25:

where τc , κ , and n correspond to the yield stress, consistensy index, and power-law index, respectively.
The viscosity data ( µ ) varying with shear rate ( ̇γ ) is well described by the corresponding HB model (Eq. 1) 

via µ ≡ τ/γ̇ = τc/γ̇ + κγ̇ n−1 , shown in Fig. 1c inset. Table 1 summarizes the best nonlinear-fit results of the 
rheological measurements of τ = f (γ̇ ) for 0.025 ≤ γ̇ ≤ 86 s−1 . The corresponding HB fitting functions are plot-
ted as lines in Fig. 1c. Both solutions are shear-thinning, with decreasing viscosity with increasing γ̇ , i.e., n < 1 . 
However, the neutralized PAA solution with NaOH (Sa ) is more viscous, by ≈ 15×−70× than (Sb ) without 
NaOH depending on γ̇ , and has a greater τc but a smaller n.

Results and discussion
Using flat Hele−Shaw cells of a fixed gap thickness, we observe complex fingering patterns, which overall resemble 
the classical viscous fingering for simple Newtonian fluids but has complex side-fingers along the side of the 
major fingers, as shown in Fig. 1b. In agreement, similar patterns were observed previously, referred as side-
branching26 or the elasto-inertial  regime27,28 in a uniform cell. Interestingly, the side-branched fingers can be 
obtained only at high flow rates ( Q ≥ 1.5 slpm) for the less viscous fluid (Sb ) but for all the experimental range 
of Q = 0.02− 1.5 slpm for the more-viscous fluid (Sa).

When using a radially converging cell of a constant and negative gap-thickness gradient, α = dh(r)/dr (see 
Fig. 2a), we stopped observing side-branched fingers but smooth classical viscous fingers for more-viscous (Sa ) 
with using Q = 0.02− 1.5 slpm. This is consistent with a recent experimental  study29, revealing mitigation of 
side-branching, but not inhibition of the primary viscous fingering, for a complex yield-stress fluid in a rectan-
gular tapered cell. Is it even possible to eliminate complex viscous fingerings for a unfavorable mobility contrast, 
Mc ∼ µ2/µ1 > 1 ? To answer this critical question, we systematically conduct experiments of a gas pushing a 
PAA complex fluid under various flow rates (Q) and five different taper gradients ( α ). Using a different complex 
solution, remarkably, with suitable rheological and flow parameters, we can control and inhibit the primary 
fingering instability and observe complete stable and flat interfaces between the pushing Newtonian gas and 
the displaced, complex fluid (Sb ) (of Mc ≈ 103 − 105 ), as illustrated by a fully circular displacement front, i.e., 
stable interface, in Fig. 2c.

Figure 2d shows the experimental phase diagram of unstable versus stable displacements manifested in wavy 
fingering (e.g., Fig. 2b) or a smooth circular (e.g., Fig. 2c) interfacial pattern, when the gas is pushing the complex 

(1)τ = τc + κγ̇ n,

Figure 1.  (a) Top-view schematics of the fluid-fluid displacement experiment where one less viscous complex 
fluid 1 of varying viscosity ( µ1 ) with shear rate ( ̇γ ) is pushing another immiscible one, denoted as complex fluid 
2 with changing viscosity ( µ2 ). (b) Representative experimental snapshot of complex viscous fingering produced 
with a complex yield-stress (PAA) solution (Sa ) displaced by a gas injected with a flow rate Q = 0.2 slpm 
(standard liter per minute) in a flat Hele-Shaw cell, under the mobility contrast Mc = µ2/µ1 = 5.58× 10

4 and 
at the interface velocity U0 = 14.3 mm/s. The scale bar corresponds to 2 cm. (c) Flow curves of shear stress, τ , 
and viscosity, µ , depending on shear rate ( ̇γ ) for the two complex solutions used: (Sa  , ) and (Sb , ). The lines 
in (c) correspond to the best fits of the data to the Herschel–Bulkley model (Eq. 1).

Table 1.  Rheological parameters for the two complex fluids with the HB model (Eq. 1).

Complex solution PAA (wt %) NaOH (wt %) τc (Pa) κ (Pa·sn) n

(Sa) 0.10 0.034 3.29 7.12 0.37

(Sb) 0.10 0 0.06 0.14 0.63
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fluid (Sb ) under various values of α and Q. We differentiate three types of displacements observed during the 
experiments with the fluid (Sb ), namely uniform stable (filled circle, ), fingering/wavy unstable (open circle,  

), and transitional (filled square, ) displacements. The latter corresponds to the transitional state where the 
interface starts to develop a wavy profile.

A crucial observation from Fig. 2d is that, firstly, a stable interface accompanying with a full displacement 
occurs at low Q in a converging-gap cell, whereas an unstable interface with fingering pattern always happen 
in a uniform-gap cell (of α = 0 ). Secondly, a steeper converging gap gradient helps stabilize the interface, and 
the transition from stable to unstable interfaces happens at a higher flow rate Q as the gap-gradient value |α| 
is increased. Thirdly, such experimental stability diagram is established only for the complex fluid (Sb ) since a 
complete sweep has never been observed with our experimental parameters for the more-viscous fluid (Sa ) of a 
high mobility contrast, Mc = µ2/µ1 = 2.68× 104 − 1.16× 107 . The complex fluid (Sb ) has a lower and small Mc

-range of 1.61× 103 − 1.67× 105 than (Sa ). These contrast results between the two complex solutions highlight 
not only the complexity but also the importance of rheological parameters, via κ , n and local γ̇ , in controlling 
complex viscous fingering.

To gain physical insights, we develop a simplified linear stability analysis generalized to two yield-stress, 
power-law fluids (Fluid 1 pushing Fluid 2) in a radially-tapered cell, as depicted in Fig. 2a. The introduction of 
a constant gap gradient ( α ) produces a linearly-varying height, h(r), between the two plates of the cell so that 
h(r) = hc + αr , where hc is the gap-thickness at the cell centre (r = 0) . Considering the fluids’ interface at r = r0 , 
the height can be expressed as h(r) = h0 + α(r − r0) , with h0 the gap-thickness at the fluid-fluid interface. For 
fluids in the narrow gap, we use a modified Darcy’s law replacing the constant viscosity ( µ ), typically applicable 
for a simple Newtonian fluid, by the effective shear-dependent viscosity, µeff  , to approximate the complex fluid’s 
velocity in a homogeneous porous medium. Although this model may not be rigorously accurate for all types 
of non-Newtonian fluids in different flow  regimes30,31, the applicability of this approximation has been verified 
numerically for a Bingham fluid at low-pressure, one-channel and high-pressure, fully flowing  regimes31 and 
validated experimentally for weakly shear-thinning  fluids32 and for yield-stress gel solution (of shear-thinning 
[ n ≈ 0.4 ] and with a yield stress ranging from 10 to 50 Pa)26. Since our complex fluids, S a and S b , are shear-
thinning with less important values of yield-stress, the applicability of the modified Darcy’s law describing our 
complex fluids’ velocity field may be expected and allows us to arrive at an analytical solution (given below).

Neglecting the fluids’ elastic properties (justified in the Section of “Methods”), the governing equations of 
the immiscible, complex fluids are the continuity equation (taking gap-variation into account) and 2D depth-
average modified Darcy’s law using µeff :

(2)∇ ·
(

hUj

)

= 0 and Uj = − h2

12µeffj

�∇Pj ,

Figure 2.  Control of complex viscous fingering using a radially-tapered cell, with a linearly varying gap 
thickness ( h(r) = hc + αr ), schematically shown in (a), the side-view of the experiment. Here, hc is the gap-
thickness at the cell centre (r = 0) . (b) Experimental snapshots of a branched viscous fingering pattern observed 
when a gas is pushing the complex solution (Sb ) in a flat Hele-Shaw cell with hc = 0.5 mm and Q = 0.2 slpm 
(standard liter per minute). (c) By contrast, snapshots of a stable interface obtained when the gas is pushing (Sb ) 
in a tapered cell of the gap gradient α = −3.33× 10

−2 , with hc = 5.16 mm and Q = 0.2 slpm. The scale bars 
in (b) and (c) represent 20 mm. (d) Experimental results of stability diagram, with uniform stable (filled circle) 
versus fingering/wavy unstable interfaces (open circle) under various values of flow rate, Q, and the tapered gap 
gradient, |α| . Black squares ( � ) represent a transitional state where the interface starts to develop a wavy profile.
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where Uj(r, θ) = (urj , uθ j) and Pj(r, θ) are the depth-average velocity and pressure fields of the fluid indexed j, 
respectively. j represents the two complex fluids during the fluid-fluid displacement process; j = 1 (2) denotes 
the pushing (displaced) fluid.

The complex fluid’s viscosity ( µeffj ) is modeled using the Herschel–Bulkley law (see Eq. 1) for yield-stress 
fluids, with the local shear rate approximated by γ̇ (r) = urj/h(r) , and can be expressed as: µeffj = τcj

.
γ
+ κj

.
γ
nj−1 , 

with yield stress ( τcj ), consistensy index ( κj ), and power-law index ( nj ). The depth-average continuity equation 
can be expressed using the pressure field ( Pj ) and further simplified. By setting nj = 1 and τcj = 0 , we obtain and 

recover the simple Newtonian fluid case: ∂
2Pj
∂r2

+ 1
r

∂Pj
∂r + 3α

h

∂Pj
∂r + 1

r2
∂2Pj
∂θ2

= 022.
In the linear stability analysis, the pressure field is expressed as the solutions of the base state and the pertur-

bation, ǫ(θ , t) = ǫ0r0(t) exp (ikθ + σ t):

where fj(r) corresponds to the base-state pressure when the interface is stable and independent of θ . The term 
of gkj(r)ǫ represents the perturbation that propagates along the interface with wavenumber, k, and the growth 
rate of the perturbation, σ . We employ the kinematic boundary conditions, i.e., two complex fluids moving at 
the same velocity at the interface, and the Young−Laplace equation for the pressure jump at the interface due to 
surface tension and curvature. To obtain analytical solutions, we assume that the fluid yield stress is negligible 
compared to the viscous stress, i.e., small Bingham ( Bnj ≪ 1 ) situation, where the Bingham number is the ratio 
of the yield to viscous stress: Bnj = τcj

κj

( urj
h

)nj  . Focusing on the moment when the perturbation starts to propagate, 

implying small perturbation (ǫ ≪ 1) , ǫ0 ≪ 1 , g ′kj(r)ǫ ≪ f ′j (r) , and negligible high-order terms of O
(

ǫ2
)

 , we 
obtain the dimensionless dispersion relation Eq. (4) below, with the dimensionless growth rate, σ̄ = σ r0

U0
 , and 

the dimensionless wavenumber, k̄ = k (see Supplementary Information for the detailed derivation):

where γ  is the interfacial tension, the complex fluids’ viscosity at the interface is given as 

µj|r=r0 =
(

τcj + κj

(

U0
h0

)nj) h0
U0

 , and θc corresponds to the contact angle at the interface and is measured between 
the plate and the curved meniscus (across the gap). θc = 0 corresponds to a completely wetting displaced fluid, 
whereas θc = π to a perfectly non-wetting one.

Consequently, taking τcj = 0 , nj = 1 , κj = µj in Eq. (4) for simple fluids, and defining the viscosity contrast 
� = µ1

µ2
 and Capillary number Ca = 12U0µ2

γ
 , the dispersion relation recovers to the same formula by Al-Housseiny 

and Stone for Newtonian fluids with constant viscosity (Eq. 24 in Ref.22). In addition to the crucial influences of 
α , � , Ca, and wetting angle ( θc ) for the simple fluid case, the derived dimensionless perturbation growth rate ( σ  ) 
as a function of ( k ) depends on the fluids’ rheological properties ( κj , nj , τcj ) and the local velocity, radius, and 
gap thickness at the interface ( U0, r0, h0 , respectively) for the complex yield-stress fluids. The primary stabiliz-
ing mechanism for both  Newtonian20,21,23 and Non-Newtonian viscous fingering instabilities using a converg-
ing taper is similar. That is through a stabilizing Capillary effect, via the term of 2α cos θc in Eq. (4) as α < 0 , 
since the Laplace pressure becomes more significant when the fluid-fluid interface travels across a narrower 
gap and can overcome the destabilizing effect of the pressure gradient due to viscosity difference, via the term 
12U0
γ

(µ2|r=r0 − µ1|r=r0) . However, comparing the expression of the dimensionless dispersion relation (Eq. 4) 
to the Newtonian counterpart (in Ref.22), we notice an additional, distinct term via − 12αr0

γ
(
√
n1τc1 +

√
n2τc2) , 

which has a positive value for a converging taper since α < 0 , while r0 , γ , nj , and τcj have positive values. This 
positive term, depending on the yield stress of the fluids, tends to increase the growth rate and, hence, has a 
destabilizing effect promoting the fingering instability growth, which could explain the more likely appearance 
of viscous fingering using complex fluids. Additionally, instead of being constant in the Newtonian case, the 
viscosity value depends on various factors, such as the interfacial location, thickness, and velocity as well as 
the rheological valuables of τc , k, and n. On the one hand, if the pertubation’s growth rate σ is less than zero for 
every wavenumber, k, the interface will always be stable theoretically. On the other hand, the wavenumber at the 
maximum growth ( ̄kmax ) can be found by taking the derivative of the above dimensionless dispersion Eq. (4) 
with respect to k̄ and setting ∂σ

∂k
= 0:

(3)Pj(r, θ , t) = fj(r)+ gkj(r)ǫ(θ , t),

(4)

12σh0

γ

(

κ1
√
n1

(

U0

h0

)n1

+ κ2
√
n2

(

U0

h0

)n2)

= −12U0

γ

(√
n1µ1|r=r0 +

√
n2µ2|r=r0

)

− 12αr0

γ

(

2
√
n1τc1 + 2

√
n2τc2

)

− 12αr0

γ

(

κ1
√
n1

(

U0

h0

)n1

+ κ2
√
n2

(

U0

h0

)n2)

+ k

(

12U0

γ

(

µ2|r=r0 − µ1|r=r0
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+ 2α cos θc +
h0

2

r02

)

− h0
2

r02
k
3
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k̄max is the wave number at the maximum growth, i.e., theoretically, the most unstable mode’s wave number. 
Hence, σ(k̄max) < 0 theoretically signifies the stability of the interface, that is, no growth of the most unstable 
mode in this situation.

It turns out that the expression of k̄max for the PAA complex fluid is rather similar to its Newtonian coun-
terpart. Similar to the Newtonian scenario, one noticeable result from Eq. (5) is that k̄max primarily varies with 
the interfacial velocity U0 , which is increased with Q and (slightly) decreased with increasing |α| for a fixed hf  , 
the taper’s thickness at the edge (see Fig. 2a). In addition, a converging gap gradient ( α < 0 ) helps reduce the 
value of k̄max , while an important difference in viscosity, via the local term of µ2 − µ1 , has a destabilizing effect 
on the interface, enlarging the values of k̄max . A significant difference compared to the Newtonian case is that 
the viscosity terms now encompass the effect of complex fluids’ yield-stress τc and other rheological parameters 
through k and n.

Using the wavenumber of maximum growth k̄max (Eq. 5) and the dimensionless dispersion relation (Eq. 4), 
we obtain the growth rate at the most unstable mode, σ(k̄max) . To compare with our theoretical prediction, we 
plotted in Fig. 3a the values of σ(k̄max) using Eq. (4), with the values of viscosity ( µ1 and µ2 ) and the velocity, 
location, and gap-thickness at propagating fluid-fluid interface ( U0 , r0 and h0 ) analyzed from the experiments. 
From Fig. 3a, we can observe a transition from stable (filled symbols) to unstable (open symbols) interfaces when 
σ(k̄max) < 7.5 from the experimental data, slightly deviating from the theoretical value of σ < 0 for a stable 
interface with a decay growth rate. In other words, the experimental values show a bound growth rate, i.e., a 
limited growth rate for the instability, while the experimental interface is still stable in reality. Figure 3b–d are 
the overlays of representative experimental snapshots, revealing the evolution of the interface profiles of stable 
(filled blue triangle) and unstable displacement (open blue triangle) for (Sb ) while unstable interface (open 
orange diamond) for (Sa).

The deviation between our experimental results and theoretical prediction of the stable versus unstable dis-
placement may be due to the few assumptions we made. For example, the impact of the gravity and the elastic 
properties have been ignored. Moreover, whenever |α| is getting bigger, the assumptions of small ratio of gap 

(5)k̄max =





h0
2

r02
+ 2α cos θc + 12U0

γ

�

µ2|r=r0 − µ1|r=r0

�

3 h0
2

r02





1
2

.

Figure 3.  Comparison between experimental and theoretical results: (a) The growth rate of the perturbation 
at the most unstable mode of kmax , σ(k̄max) using Eqs. (4) and (5) for different experiments performed with 
various gap-gradient, |α| . The experiments with the more viscous solution (Sa ) always show unstable wavy 
interface ( ). In contrast, for the less viscous complex fluid (Sb ), stable displacement ( ) and unstable interface 
( ) are observed with nearly-zero and relatively-large growth rate σ  , respectively. Theoretically, stable interfaces 
occur with a negative growth rate, i.e., when σ < 0 . Consistently, our experiments show stable displacements 
(filled symbols) when σ < 7.5 . (b)–(d) are the overlays of experimental snapshots, revealing the evolution of the 
interface profiles for the three big symbols ( , , ) in (a), respectively. The time steps are δt = 22 s, 0.6 s, and 
1 s in (b), (c) and (d), respectively. Each scale-bar represents a length scale of 20 mm.
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change ( α(r−r0)
h0

≪ 1 ) as well as the characteristic length scale over which the depths varies being much larger 
than that of the perturbation scale ( kh0

αr0
≫ 1 ) may not be applicable. Last but not the least, we neglected the yield 

stress compared to the viscous stress by assuming small Bn ≪ 1 . These assumptions likely contribute to the 
drifting of the critical growth rate at the most unstable mode from 0 (theoretically) to 7.5 (observed with our 
experimental conditions).

Conclusions
In summary, we have demonstrated a powerful way of stabilizing the primary viscous fingering instability for 
complex yield-stress, power-law fluids using a tapered narrow cell experimentally and theoretically for the first 
time. Experimentally, using a radially converging taper, we can hinder complex fingering patterns, e.g., eliminat-
ing side-fingers for the more-viscous (Sa ) of Mc ≈ 104 − 107 and suppressing wavy interfaces completely for the 
less-viscous complex fluid (Sb ) of Mc ≈ 103 − 105 . With a linear stability analysis using the simplified, effective 
Darcy’s law, we derive the dispersion relation and establish a convenient stability criterion corresponding to the 
perturbation’s growth rate of the most unstable mode. In addition to the viscosity contrast ( � = µ1/µ2 ), gap 
gradient ( α ), θc and Capillary number (Ca) for the simple Newtonian fluids, several vital parameters affect the 
complex fluids’ viscous fingering stability criterion, namely the fluid’s rheological characteristics, such as κ , τc , 
n, and γ , as well as the interface position, gap thickness, and velocity ( r0 , h0 and U0 , respectively). Firstly, these 
parameters affects the value of the wavenumber of maximum growth kmax and the dispersion relation via the 
complex expression of the local viscosity for yield-stress fluids. Secondly, compared to the Newtonian dispersion 
relation, an additional (positive) term—depending on the yield-stress and power-law index of the fluids—appears 
in Eq. (4) for a converging taper, thereby destabilizing the interface and promoting fingering pattern for the 
complex fluids. This theoretical stability criterion through σ(k̄max) , despite the assumption of small Bn ≪ 1 , 
shows fair agreement with the experimental results using two low yield-stress fluids of distinct mobility ratios. 
These results, particularly the complex dispersion relation (Eq. 4) and σ(k̄max) , provide quantitative insights 
into the designs and strategies for controlling viscous fingering and interfacial profiles during complex fluids’ 
displacement in microfluidics, narrow cells, packed beads, and porous media.

Methods
Sample preparation
The two aqueous solutions of PAA (SigmaAldrich, molecular weight: Mw ≈ 1, 250, 000 ) are prepared to produce 
different viscosity contrasts. Both solutions have the same polymer concentration, by slowly adding the polymer 
powder in water and subsequently stirring the mixture at high speed for 1 hr. The mixture generates an acid 
solution that can be neutralized using a basic solution. The two PAA solutions: (Sa ) and (Sb ) are prepared with 
and without NaOH (Sb ), respectively, by stirring them for another 10 hours at medium speed. Finally, after the 
agitation, the solution is allowed to rest for a day before performing rheological measurements.

Rheological measurements
We further perform oscillation amplitude sweep tests at constant frequency ( ω̂ = 1 rad/s) to validate negligible 
elasticity of the complex fluids. Shown in Fig. 4 below are the results of the loss factor, i.e., the ratio of the loss 
modulus ( G′′ ) to the storage modulus ( G′ ). The former G′′ represents the viscous properties of the complex fluids, 
while the latter G′ fluid elasticity with respect to the shear stress, τ . The fluid’s viscous behavior prevails when 
the loss factor ( G′′/G′ ) is greater than unity, whereas elastic for G′′/G′ < 1 . The vertical dashed lines represents 
the yield-stress values for the fluids (Sa ) and (Sb ). We only focus on the (color shaded) regime whereby fluids 
are flowing, i.e, τ > τc , when G′′/G′

� 1 , meaning the viscous component prevails. Hence, we can neglect the 
elastic effects of the fluids in the theoretical analysis.

Figure 4.  The data of loss factor, the ratio of the loss modulus ( G′′ ) to the storage modulus ( G′ ), varying with 
the shear stress, τ , obtained during oscillation amplitude sweep test at constant frequency ( ̂w = 1 rad/s). The 
vertical dashed lines represent the yield-stress ( τc ) values of the two fluids.
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