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H∞ state estimation 
of continuous‑time neural 
networks with uncertainties
Aiting Li , Yanhui Chen *, Yun Hu , Dazhi Liu  & Jinhui Liu 

H∞ state estimation is addressed for continuous-time neural networks in the paper. The norm-
bounded uncertainties are considered in communication neural networks. For the considered neural 
networks with uncertainties, a reduced-order H∞ state estimator is designed, which makes that the 
error dynamics is exponentially stable and has weighted H∞ performance index by Lyapunov function 
method. Moreover, it is also given the devised method of the reduced-order H∞ state estimator. Then, 
considering that sampling the output y(t) of the neural network at every moment will result in waste 
of excess resources, the event-triggered sampling strategy is used to solve the oversampling problem. 
In addition, a devised method is also given for the event-triggered reduced-order H∞ state estimator. 
Finally, by the well-known Tunnel Diode Circuit example, it shows that a lower order state estimator 
can be designed under the premise of maintaining the same weighted H∞ performance index, and 
using the event-triggered sampling method can reduce the computational and time costs and save 
communication resources.

The state estimation or filtering issue1–3 has gained increasing attention in communication neural networks 
over the past few decades. In many applications, such as information processing and control engineering, it is 
common for large-scale neural networks to have only partial access to information from the network output. 
Thus, to estimate the neuron state must be estimated from the available output measurements of the network 
and then utilized to implement a specific scenario.4–17 The purpose for state estimation is to estimate the internal 
state values using the measured outputs of communication neural networks. Specifically, the outputs of neural 
networks are used as the inputs to devise a state estimator such that the error dynamic outputs are robust to 
external noise with reference to the output errors of the original neural networks. As a tool widely used to solve 
state estimation issues, while H∞ state estimation makes no additional statistical assumptions about exogenous 
input signals compared to orthodox state estimators18 likely the Kalman state estimator. Besides, uncertainty can 
cause instability in neural network systems, come down to epistemic situations concerning imperfect or unknown 
information19,20. And the reduced-order state estimation is a the useful method to implement state estimation 
and save computing resources21. Therefore, for the reduced-order H∞ state estimation of neural networks applied 
in the field of communication, it is vital to consider with uncertainty.

Stability22–24, which describes whether the plant has convergence under initial conditions (not necessarily 
zero), is independent of the input action. And stability is the basis for the work of neural networks. The stability 
theory proposed by Lyapunov in 1892 is highly superior in the study of stability25: for internal descriptive models; 
for univariate, linear, constant; for multivariate, nonlinear, time-varying systems. Lyapunov functional method 
is a simple and useful method to study stability of neural networks with uncertainties26–29.

When the neural network is applied to information transmission, it is necessary to sample the data from time 
to time, although it is possible to transmit all the data resources, sometimes unnecessary data is also transmit-
ted, which can waste the communication resources.But event-triggered control can increase efficiency while 
guaranteeing performance30,31. Most of the studies on controlling the periodic execution of events for signals in 
communication transmission systems has been through ZOH or time-event-triggered schemes32,33. From the 
theoretical analysis point of view, the time-triggered scheme and ZOH are preferred. The time-triggered sampling 
strategy proposed in this paper34–36 is a good solution to the problem of wasted communication resources37. It 
samples only under the condition of “event” occurrence, so it can save resources by designing appropriate “event 
triggering conditions” for sampling and avoiding unnecessary data transmission. Therefore, it is necessary to 
design an event-triggered reduced-order H∞ state estimator.
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In this paper, it is solved H∞ state estimation of continuous-time neural networks with uncertainties. This is 
the first time that we greatly popularized the reduced-order and event-triggered reduced-order H∞ state estima-
tor to continuous-time neural networks with uncertainties and considered about its information transmission 
performance. The main contributions are as follows: (1) For the continuous-time neural networks with bounded 
uncertainties, a reduced H∞ state estimator is addressed using the outputs of the considered neural networks 
for the goal of state estimation. (2) Some sufficient conditions in the form of LMIs are provided to make sure 
that the error system is exponentially stable and has weighted H∞ performance index by Lyapunov function 
method. (3) In addition, an event-triggered strategy is structured for the outputs’ sampling of the considered 
neural networks in order to reduce the number of outputs’ samples. (4) Based on the structured event-triggered 
strategy, a reduced H∞ state estimator is also addressed using the event-triggered outputs of the considered neural 
networks for the goal of state estimation. (5) And there is given some sufficient conditions in LMIs form which 
can guarantee the exponentially stability with the same weighted H∞ performance index for the error system. 
(6) Finally, compared the usual reduced H∞ state estimator with the reduced H∞ state estimator based on the 
structured event-triggered strategy in application of the well-known Tunnel Diode Circuit example, the latter 
has fewer sampling times than the former, thus achieving the purpose of saving computer resources.

This study is formed as below. In “Problem statements and preliminaries”, it is provided some preliminary 
results. The H∞ state estimation issue is discussed in “Main results” for continuous-time neural networks with 
uncertainties. Some simulations are elucidated in “Simulation” the reasonability of the presented methods. And 
“Conclusions” is concluded this study.

Notations: Rn is the n dimensional vectors space, Rn×m is all (n×m) dimensional real matrices set. With 
regard to P ∈ R

n×n , P > 0 , P−1 and PT are represented respectively that P is symmetric positive definite matrix, 
the inverse and transpose of P. The symmetrical items is denoted by ∗ in a symmetric matrix. For P ∈ R

n×n , 
�min(P) is the minimum eigenvalue and �max(P) is maximum eigenvalue. I and 0 are the identity and zero matrix 
with suitable dimensions, respectively. L2[0,∞) expresses the square integrable function space over [0,∞) . ‖ ‖ 
means the norm of Euclidean.

Problem statements and preliminaries
Consider continuous-time neural networks with uncertainties as following:

where e(t) ∈ R
n is the system state, f (e(t)) =

[

f1(e1(t)) f2(e2(t)) · · · fn(en(t))
]T

∈ R
n is the neuron activation 

function, y(t) ∈ R
m is the measured output, z(t) ∈ R

p is the estimated signal, v(t) ∈ R
q denotes the Gaussian 

white noise, v(t) ∈ L2[0,∞) . A ∈ R
n×n , B ∈ R

n×n , C ∈ R
n×q , D ∈ R

m×n , F ∈ R
m×n , and G ∈ R

m×q are the 
known constant matrices. �A(t) , �B(t) represent the system time-varying uncertainties which are unknown 
matrices and subject to the below constraints

where M ∈ R
n×n , L1, L2 ∈ R

n×n are matrices of set constants, and N(t) satisfying NT (t)N(t) ≤ I is an unknown 
time-varying matrix. For ease of notation, set �A(t) � �A and �B(t) � �B.

Then for the system (1), the H∞ state estimator is formed as

in which ef (t) ∈ R
nf  is the state of estimator and zf (t) ∈ R

p is estimated z(t), Af ∈ R
nf×nf  , Bf ∈ R

nf×m , 
Cf ∈ R

p×nf  , and Df ∈ R
p×m are the unknown filter matrices. And 1 ≤ nf ≤ n , when nf = n , Eq. (3) is called 

the full-order H∞ state estimator of Eq. (1); when 1 ≤ nf < n , Eq. (3) is called the reduced-order H∞ state esti-
mator of Eq. (1). And the structure of the plant is shown in Fig. 1.

From Eqs. (1) and (3), it is gotten the error dynamics

where ξ(t) =
[

e(t)
ef (t)

]

,  Ã =

[

A 0
Bf D Af

]

,  �Ã =

[

�A 0
0 0

]

,  B̃ =

[

B
Bf F

]

,  �B̃ =

[

�B
0

]

,  C̃ =

[

C
Bf G

]

, 

H̃ =
[

H − Df D − Cf

]

,  ẽ(t) = z(t)− zf (t).
And the lemmas and definition are also proposed as following.

Lemma 1  (32 Schur complement lemma) For a given symmetric matric S =

[

S11 S12
ST12 S22

]

∈ R
(n+m)×(n+m) , where 

S11 ∈ R
n×n and S22 ∈ R

m×m , then the following three statements are equivalent: 

(1)
ė(t) = (A+�A(t))e(t)+ (B+�B(t))f (e(t))+ Cv(t),

y(t) = De(t)+ Ff (e(t))+ Gv(t),

z(t) = He(t),

(2)
[

�A(t) �B(t)
]

= MN(t)
[

L1 L2
]

(3)
ėf (t) = Af ef (t)+ Bf y(t),

zf (t) = Cf ef (t)+ Df y(t),

(4)
ξ̇ (t) = (Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ C̃v(t),

ẽ(t) = H̃ξ(t)− Df Ff (e(t))− Df Gv(t),
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(a)	 S < 0;
(b)	 S11 < 0 , S22 − ST12S

−1
11 S12 < 0;

(c)	 S22 < 0 , S11 − S12S
−1
22 S

T
12 < 0.

Lemma 2  17 For matrices M, L and N(t) with proper dimensions, N(t) satisfies NT (t)N(t) ≤ I , then it holds

Lemma 3  23 Dispute Eq. (4) with v(t) ≡ 0 . Let ξ(0) = 0 be the equilibrium point of it, assume that there exists a 
Lyapunov functional V(t, ξ(t)) and class-κ functions κi , i = 1, 2, 3 satisfying

and

then the system (4) is asymptotically stable. If κ3(‖ξ(t)‖) is decreasing exponentially, then the system (4) is expo-
nentially stable.

Definition 1  For a preassigned constant γ > 0 , the system (4) is called to be exponentially stable and have a 
weighted H∞ performance index γ , if it satiafies 

(1)	 when v(t) = 0 , the system (4) is exponentially stable;
(2)	 under zero initial condition (ZIC), one holds 

when v(t) ∈ L2[0,∞).

Main results
The H∞ state estimation issue here is to devise the state estimator matrices Af  , Bf  , Cf  , and Df  to make sure the 
system (4) be exponentially stable and have a weighted H∞ performance index. The main results are as following.

Theorem 1  For the system (4) and the given positive constant γ0 , suppose there exist positive scalars ι1 , ι2 , and 
a positive symmetric matrices P1i ∈ R

n×n , P2j ∈ R
nf×nf  , matrices AF ∈ R

nf×nf  , BF ∈ R
nf×m , CF ∈ R

p×nf  , and 
DF ∈ R

p×m such that

MTN(t)L+ LTNT (t)M ≤ ιMTM + ι−1LTL, 0 < ι ∈ R.

κ1(�ξ(t)�) ≤ V̇(t, ξ(t)) ≤ κ2(�ξ(t)�),

V̇(t, ξ(t)) ≤ −κ3(�ξ(t)�),

∫ ∞

0
ẽT (t)ẽ(t)dt ≤ γ 2

∫ ∞

0
vT (t)v(t)dt

(5)

















P1A+ ATP1 + ι1L
T
1 L1 + 2P1 DTBTF P1B P1C HT − DTDT

F P1M

∗ AF + 2P2 BFF BFG − CT
F 0

∗ ∗ − ι2L
T
2 L2 0 − FTDT

F 0

∗ ∗ ∗ − γ 2
0 I − GTDT

F 0
∗ ∗ ∗ ∗ − I 0

∗ ∗ ∗ ∗ ∗ − 1

ι−1
1 +ι−1

2

I

















< 0

Figure 1.   The Structure for State Estimator of the system (1).
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hold, then the system (4) be exponentially stable and have a weighted H∞ performance index γ0 . And the state 
estimator matrices are Af = P−1

2 AF , Bf = P−1
2 BF , Cf = CF , and Df = DF.

Proof  Let the Lyapunov function be

then it obtains

in which a = min{�min(P1), �min(P2)} , b = max{�max(P1), �max(P2)}.
Then, it will be proved that

According to Eqs. (3) and (4), taking the time derivation of Lyapunov function (4) along (3) could be obtained 
that

where η(t) =







e(t)
ef (t)
f (e(t))
v(t)






,  �1 =









P1A+ A
T
P1 + 2P1 + ι1L

T
1
L1 + (ι−1

1
+ ι−1

2
)P1MM

T
P1 D

T
B
T
F

P1B P1C

∗ AF + 2P2 BFF BFG

∗ ∗ − ι2L
T
2
L2 0

∗ ∗ ∗ − γ 2
0
I









, 
�2 =

[

H − DFD −CF −DFF −DFG
]

,  AF = P2Af ,  BF = P2Bf ,  CF = Cf ,  DF = Df .
The last step in Eq. (9) utilizes Lemma 2:

Then, using the Schur Complement Lemma twice for Eq. (6) and collapsing yields �1 +�T
2�2 < 0 , and thus 

Eq. (8) holds.
Applying Eq. (8) yields that

When v(t) = 0 , utilizing Eq. (10) and ẽT (s)ẽ(s) > 0 , it is implied that

Combining it and Eq. (7), the system (4) is exponentially stable with v(t) = 0 on the grounds of Lemma 3.
Now, consider v(t)  = 0 . Under ZIC, one has V(0, ξ(0)) = 0 , V(t) ≥ 0 . Following Eq. (10), sequentially, it has

Furthermore, integrate t from 0 to ∞ on two sides of Eq. (11), it gets that

(6)V(t, ξ(t)) � V(t) = ξT (t)Pξ(t), P =

[

P1 0
0 P2

]

,

(7)a�ξ(t)�2 ≤ V(t) ≤ b�ξ(t)�2, ∀t ≥ 0,

(8)V̇(t)+ 2V(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t) ≤ 0, ∀t ≥ 0.

(9)

V̇(t)+ 2V(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t)

= ξ̇T (t)Pξ(t)+ ξT (t)Pξ̇ (t)+ 2ξT (t)Pξ(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t)

≤ [(Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ C̃V(t)]TPξ(t)+ ξT (t)P[(Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ C̃V(t)]

+ 2ξT (t)Pξ(t)+ [H̃ξ(t)− Df Ff (e(t))− Df G(t)]
T [H̃ξ(t)− Df Ff (e(t))− Df G(t)] − γ 2

0 v
T (t)v(t)

=

[

e(t)
ef (t)

]T
[

ATP1 +�ATP1 DTBTf P2

0 AT
f P2

]

[

e(t)
ef (t)

]

+ f T (e(t))
[

BTP1 +�BTP1 FTBTf P2
]

[

e(t)
ef (t)

]

+ vT (t)
[

CTP1 GTBTf P2
]

[

e(t)
ef (t)

]

+

[

e(t)
ef (t)

]T [

P1A+ P1�A 0
P2Bf D P2Af

] [

e(t)
ef (t)

]

+

[

e(t)
ef (t)

]T [

P1B+ P1�B
P2Bf F

]

f (e(t))+

[

e(t)
ef (t)

]T [

P1C
P2Bf G

]

v(t)+ 2

[

e(t)
ef (t)

]T [

P1 0
0 P2

]T [

e(t)
ef (t)

]

+ [H̃ξ(t)− Df Ff (e(t))− Df G(t)]
T [H̃ξ(t)− Df Ff (e(t))− Df G(t)] − γ 2

0 v
T (t)v(t)

≤ ηT (t)(�1 +�T
2�2)η(t)

eT (t)�ATP1e(t)+ eT (t)P1�Ae(t) =eT (t)LT1 N
T (t)MTP1e(t)+ eT (t)P1MN(t)L1e(t)

≤ι−1
1 eT (t)P1MMTP1e(t)+ ι1e

T (t)LT1 L1e(t);

f T (e(t))�BTP1e(t)+ eT (t)P1�Bf (e(t)) =f T (e(t))LT2 N
T (t)MTP1e(t)+ eT (t)P1MN(t)L2f (e(t))

≤ι−1
2 eT (t)P1MMTP1e(t)+ ι2f

T (e(t))LT1 L1f (e(t)).

(10)V(t, ξ(t)) ≤ exp(−2t)V(0, ξ(0))−

∫ t

0
exp(−2(t − s))[ẽT (s)ẽ(s)− γ 2

0 v
T (s)v(s)]ds.

V(t, ξ(t)) ≤ exp(−2t)V(0, ξ(0)).

(11)

∫ t

0
exp(−2(t − s)− 2s)ẽT (s)ẽ(s)ds ≤

∫ t

0
exp(−2(t − s))ẽT (s)ẽ(s)ds ≤

∫ t

0
exp(−2(t − s))γ 2

0 v
T (s)v(s)ds.
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Thus, based on Definition 1, the system (4) is exponentially stable and has a weighted H∞ performance index 
γ0 . Proof is over. 	�  �

On the other hand, consider that sampling y at all times exists to sample unnecessary data. To determine the 
specific values of the outputs y(t) and reduce the number of samples, an event-triggered sampling strategy is 
used to generate the sampling time series {tk} , t0 = 0:

where ey(t) = y(t)− y(tk) , t > tk , � > 0 and � > 0 are event-triggered parameters to be designed. And in 
the event-triggered sampling interval [tk , tk+1) , set ŷ(t) = y(tk) , where ŷ(t) is the output of Zero Order Holder 
(ZOH) in Fig. 2. Then for the system (1), the form of the H∞ state estimator based on the event-triggered sam-
pling strategy (12) is

where ef (t) , zf (t) , Af  , Bf  , Cf  , and Df  are same as them in (3).
From Eqs. (1), (12) and (13), it is gotten the error dynamics

where ξ(t),  Ã,  �Ã,  B̃,  �B̃,  C̃,  H̃,  and ẽ(t) are same as them in (4), and B̂ =

[

0
−Bf

]

.

Then, based on the event-triggered sampling strategy (Eq. 12), the solution of H∞ state estimation issue is 
as following:

Theorem 2  For the system (14) and the given positive constant γ0 , suppose there exist positive scalars ι1 , ι2 , and a 
positive symmetric matrices P1i ∈ R

n×n , P2j ∈ R
nf×nf  , � ∈ R

m×m , � ∈ R
m×m matrices AF ∈ R

nf×nf  , BF ∈ R
nf×m , 

CF ∈ R
p×nf  , and DF ∈ R

p×m such that

∫ ∞

0
ẽT (t)ẽ(t)dt ≤ γ 2

0

∫ ∞

0
vT (t)v(t)dt.

(12)tk+1 = {t > tk | e
T
y (t)�ey(t) ≥ yT (tk)�y(tk)},

(13)
ėf (t) = Af ef (t)+ Bf ŷ(t),

zf (t) = Cf ef (t)+ Df ŷ(t),

(14)
ξ̇ (t) = (Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ B̂ey(t)+ C̃v(t),

ẽ(t) = H̃ξ(t)− Df Ff (e(t))+ Df ey(t)− Df Gv(t),

Figure 2.   The structure for state estimator based on event-triggered sampling strategy (Eq. 12).
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hold, then the system (14) be exponentially stable and have a weighted H∞ performance index γ0 . And the state 
estimator matrices are Af = P−1

2 AF , Bf = P−1
2 BF , Cf = CF , and Df = DF.

Proof  Also select the Lyapunov function as Eq. (6). Only the proof of the following equation is given here, and 
the rest of the proof procedure is similar to the proof of Theorem 1.

By the event-triggered sampling strategy (Eq. 12), when t ∈ [tk , tk+1) , the event is not triggered, it means that

i.e.

In [tk , tk+1) , according to Eqs. (13), (14) and (17), and taking the time derivation of Lyapunov function (6) along 
(14) could be obtained that

w h e r e  η̃(t) =





















e(t)

ef (t)

f (e(t))

ey (t)

v(t)





















,   

�̃1 =













P1A+ A
T
P1 + 2P1 + ι1L

T
1
L1 + (ι−1

1
+ ι−1

2
)P1MM

T
P1 D

T
B
T
F

P1B 0 P1C

∗ AF + 2P2 BFF − B
T
F

BFG

∗ ∗ − ι2L
T
2
L2 0 0

∗ ∗ ∗ −� 0

∗ ∗ ∗ ∗ − γ 2
0
I













, 

�̃2 =
[

H − DFD −CF −DFF 0 −DFG
]

,  �̃3 =
[

D 0 F −I G
]

,  AF = P2Af ,  BF = P2Bf ,  CF = Cf ,  DF = Df .
The last step in Eq. (18) also utilizes Lemma 2, which we would not repeat here. Then, using the Schur Com-

plement Lemma three times for Eq. (15) and collapsing yields �̃1 + �̃T
2 �̃2 + �̃T

3��̃3 < 0 , and thus Eq. (16) 
holds. The proof is completed. 	�  �

(15)

























P1A+ ATP1 + ι1L
T
1 L1 + 2P1 DTBTF P1B 0 P1C HT − DTDT

F DT� P1M

∗ AF + 2P2 BFF − BF BFG − CT
F 0 0

∗ ∗ − ι2L
T
2 L2 0 0 − FTDT

F FT� 0
∗ ∗ ∗ −� 0 0 −� 0

∗ ∗ ∗ ∗ − γ 2
0 I − GTDT

F GT� 0
∗ ∗ ∗ ∗ ∗ − I 0 0
∗ ∗ ∗ ∗ ∗ ∗ −� 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ − 1

ι−1
1 +ι−1

2

I

























< 0

(16)V̇(t)+ 2V(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t) ≤ 0, ∀t ∈ [tk , tk+1).

eTy (t)�ey(t) < yT (tk)�y(tk), t ∈ [tk , tk+1),

(17)eTy (t)�ey(t) < (y(t)− ey(t))
T�(y(t)− ey(t)), t ∈ [tk , tk+1).

(18)

V̇(t)+ 2V(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t)

= ξ̇T (t)Pξ(t)+ ξT (t)Pξ̇ (t)+ 2ξT (t)Pξ(t)+ ẽT (t)ẽ(t)− γ 2
0 v

T (t)v(t)

≤ [(Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ B̂ey(t)+ C̃V(t)]TPξ(t)

+ ξT (t)P[(Ã+�Ã)ξ(t)+ (B̃+�B̃)f (e(t))+ B̂ey(t)+ C̃V(t)] + 2ξT (t)Pξ(t)

+ [H̃ξ(t)− Df Ff (e(t))+ Df ey(t)− Df G(t)]
T [H̃ξ(t)− Df Ff (e(t))+ Df ey(t)− Df G(t)]

− γ 2
0 v

T (t)v(t)+ (y(t)− ey(t))
T�(y(t)− ey(t))− eTy (t)�ey(t)

=

[

e(t)
ef (t)

]T
[

ATP1 +�ATP1 DTBTf P2

0 AT
f P2

]

[

e(t)
ef (t)

]

+ f T (e(t))
[

BTP1 +�BTP1 FTBTf P2
]

[

e(t)
ef (t)

]

+ eTy (t)
[

0 −BTf P2
]

[

e(t)
ef (t)

]

+ vT (t)
[

CTP1 GTBTf P2
]

[

e(t)
ef (t)

]

+

[

e(t)
ef (t)

]T [

P1A+ P1�A 0
P2Bf D P2Af

] [

e(t)
ef (t)

]

+

[

e(t)
ef (t)

]T [

P1B+ P1�B
P2Bf F

]

f (e(t))

+

[

e(t)
ef (t)

]T [

0
−P2Bf

]

ey(t)+

[

e(t)
ef (t)

]T [

P1C
P2Bf G

]

v(t)+ 2

[

e(t)
ef (t)

]T [

P1 0
0 P2

]T [

e(t)
ef (t)

]

+ [H̃ξ(t)− Df Ff (e(t))− Df G(t)]
T [H̃ξ(t)− Df Ff (e(t))− Df G(t)] − γ 2

0 v
T (t)v(t)

+ (De(t)+ Ff (e(t))+ Gv(t)− ey(t))
T�(De(t)+ Ff (e(t))+ Gv(t)− ey(t))− eTy (t)�ey(t)

≤ η̃T (t)(�̃1 + �̃T
2 �̃2 + �̃T

3��̃3)η̃(t)
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The following Theorem is considered to get a smaller performance index. It’s a suboptimal and better result 
in state estimation.

Theorem 3  For the system (14) if it can find positive scalars ι1 , ι2 , and a positive symmetric matrices P1i ∈ R
n×n , 

P2j ∈ R
nf×nf  , � ∈ R

m×m , � ∈ R
m×m matrices AF ∈ R

nf×nf  , BF ∈ R
nf×m , CF ∈ R

p×nf  , and DF ∈ R
p×m such that

then it could be find a suboptimal H∞ performance index γ0.

In addition, to avoid triggering the sample an infinite number of times in a short period of time, i.e. Zeno 
behavior, the following theorem will give a positive lower bound on the event trigger interval.

Theorem 4  For Eq. (12), assume that exist positive scalars m̄ , n̄ , p̄ , q̄ , and r̄ such that �e(t)��e(tk)�
≤ m̄,  �f (e(t))��e(tk)�

≤ n̄

,  �v(t)��e(tk)�
≤ p̄,  �ḟ (e(t))��x(tk)�

≤ q̄,  �v̇(t)��e(tk)�
≤ r̄,  then the lower bounded of the minimum event-trigger inter-execution 

interval is

where tk+1 − tk ≥
����D�

�D�[(�A�+�ML1�)m̄+(�B�+�ML2�)n̄+�C�p̄]+�F�q̄+�G�r̄.

Proof  For any 0 < t ∈ [tk , tk+1 , then �ey(t)� = �y(t)− y(tk)� < ����y(tk)� from (12). For any t ∈ [tk , tk+1) , 
it holds

Taking the time integral from tk to t, one has

When t = tk+1 , it triggers the homologous event, that signifies

And by �ey(tk)� = 0 and Eq. (19), it follows

Suppose �x(tk)� �= 0 , then it yields that

In summary, one can find a Tmin = min{tk+1 − tk} > 0 that excludes Zeno behavior under the proposed event-
triggered strategy (12). Proof is finished. 	�  �

Remark 1  Theorem 3 serves to rule out the possibility that the event-triggered strategy (Eq. 12) may have unlim-
ited sampling for a short period of time, i.e., the Zeno phenomenon. If infinite sampling occurs in a short period 
of time, this will not only not reduce the number of samples, but also increase the burden of computer computa-
tion and measurement, or even computer crash, so the event-triggered strategy that excludes the occurrence of 
such a situation is good for in application of the considered event-triggered strategy.

Simulation
The well-known Tunnel Diode Circuit in Fig. 3 which modeled as the system (1) is illustrated to display the 
effectiveness of the method.

Assume the coefficient matrices are

min γ0

s.t. (15) holds,

Tmin = min{tk+1 − tk} > 0,

�ėy(t)� ≤�ẏ(t)�

=�D[(A+�A(t))e(t)+ (B+�B(t))f (e(t))+ Cv(t)] + Fḟ (e(t))+ Gv̇(t)�

≤�D�[(�A� + �ML1�)�e(t)� + (�B� + �ML2�)�f (e(t))� + �C��v(t)�] + �F��ḟ (e(t))� + �G��v̇(t)�

≤{�D�[(�A� + �ML1�)m̄+ (�B� + �ML2�)n̄+ �C�p̄] + �F�q̄+ �G�r̄}�e(tk)�

(19)
�ey(t)� − �ey(tk)� ≤ {�D�[(�A� + �ML1�)m̄+ (�B� + �ML2�)n̄+ �C�p̄] + �F�q̄+ �G�r̄}�e(tk)�(t − tk)

�ey(tk+1)� =����y(tk)� = ����De(tk)+ Ff (e(tk))+ Gv(tk)� ≥ ����D��e(tk)�.

����D��e(tk)� ≤{�D�[(�A� + �ML1�)m̄+ (�B� + �ML2�)n̄+ �C�p̄] + �F�q̄+ �G�r̄}�e(tk)�(t − tk).

tk+1 − tk ≥
����D�

�D�[(�A� + �ML1�)m̄+ (�B� + �ML2�)n̄+ �C�p̄] + �F�q̄+ �G�r̄
> 0.
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Choose the neuron activation function as f (e(t)) =
[

tanh(e1)
tanh(e2)

]

,  and v(t) = −0.1 cos(t) exp(−0.2t),  ι1 = 1

, ι2 = 0.8, γ0 = 2.
By Theorem 1, it can formulate the state estimator parameters as following:

(1)	 The parameters of the full-order ( nf = 2 ) H∞ state estimator for the system (1):

(2)	 The parameters of the reduced-order ( nf = 1 ) H∞ state estimator for the system (1):

Af = −2.2704,  Bf = −0.0746,  Cf = −0.2562,  Df = 0.4232 . And by Theorem 2, it can formulate the state 
estimator parameters as following:

(1)	 The parameters of the full-order ( nf = 2 ) H∞ state estimator for the system (1):

	   Af =

[

−2.9335 − 0.1817
−0.4888 − 3.7419

]

,  Bf =
[

−0.0003
−0.0007

]

,  Cf =
[

1.0495 0.3705
]

,  Df = 1.2059,  and the event-

triggered parameters are � = 1.9985 and � = 0.0343.
(2)	  The parameters of the reduced-order ( nf = 1 ) H∞ state estimator for the system (1):
	   Af = −2.4452,  Bf = −1.5084,  Cf = −0.1620,  Df = 0.4845,  and the event-triggered parameters are 

� = 0.6467 and � = 0.2760.

Then, by the SIMULINK Toolbox of MATLAB, the system (4) is exponentially stable with v(t) = 0 , see Fig. 4a, 
b by Theorem 1, Fig. 5a, b by Theorem 2. And from Fig. 4a, 5a for nf = 2 , Figs. 4b, 5b for nf = 1 , the locus of 
ξ(t) of system (4) with v(t) = 0 shows little difference in the overall trend. The oscilloscopes for z(t) and zf (t) is 
displayed in Fig. 4c, d by Theorem 1, Fig. 5c, d by Theorem 2.

From Figs. 4c, d, 5c, d above, compared with the full-order ( nf = 2 ) and reduce-order ( nf = 1 ) state estima-
tors, the zf (t) of the reduce-order state estimator is closer to z(t), and the order is lower. This shows that a lower 
order state estimator can be designed under the premise of maintaining the same weighted H∞ performance 
index. And according to Figs. 4c, 5c, 4d and 5d, the state estimators given by Theorems 1 and 2 do not differ 
much in their estimation of z(t).

From Figs. 4c, d, 5c, d above, compared with the full-order ( nf = 2 ) and reduce-order ( nf = 1 ) state estima-
tors, the zf (t) of the reduce-order state estimator is closer to z(t), and the order is lower. This shows that a lower 
order state estimator can be designed under the premise of maintaining the same weighted H∞ performance 
index. And according to Figs. 4c, 5c, 4d and 5d, the state estimators given by Theorems 1 and 2 do not differ 
much in their estimation of z(t).

However, as can be seen from Fig. 6a, b, the use of event-triggered sampling avoids the need to sample y(t) 
from time to time, which reduces the computational and time costs and saves resources. And compared with 
the existing studies, such as1,2,4,5, the reduce-order ( nf = 1 ) state estimator and the event-triggered reduce-order 

A =

[

−5.1 1.5
−7 − 2.1

]

, B =

[

1.3 1.2
1.0 0.2

]

, C =

[

1
0.1

]

, D =
[

0.2 0.4
]

, F =
[

0.6 0.8
]

, G = 0.4,

H =
[

0.7 0.3
]

, M =

[

10 10
0.2 1

]

, L1 =

[

−0.3 − 0.3
2.8 0.2

]

, L2 =

[

−0.1 0.1
2.2 − 0.5

]

,

N(t) =

[

sin(t) exp(−0.9t) 0
0 0.75 exp(−t)

]

.

Af =

[

−2.9271 − 0.1689
−0.4595 − 3.7192

]

, Bf =

[

−0.0003
−0.0007

]

, Cf =
[

−1.0870 − 1.0870
]

, Df = 1.1930.

Figure 3.   The tunnel diode circuit.
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( nf = 1 ) state estimator can reduce computational resources in by utilizing state estimators of smaller order 
instead of full-order state estimators to achieve the same goal in practical applications.

Remark 2  The reduced-order filter can save the communication resources because the order of the filter state is 
reduced. In detail, the state dimension of the full-order filter is equal to that of the original neural networks, while 
the state dimension of the reduced-order filter is less than that of the original neural networks. In terms of the 

Figure 4.   The dynamic trajectory by Theorem 1.

Figure 5.   The dynamic trajectory by Theorem 2.
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state dimension, the reduced-order filter saves communication resources. And in Fig. 6a, b, they are all event-
triggered filter. The event-triggered reduce-order ( nf = 1 ) state estimator can save communication resources 
because of the reduced order. Compared the event-triggered full-order filter ( nf = 21 ) in Fig. 6a with the event-
triggered reduce-order ( nf = 1 ) state estimator in Fig. 6b, the reason of saving communication resources is same, 
i.e. the reduced order. However, for the filter without event-triggered strategy and the filter with event-triggered 
strategy, the filter that is not based on the event-triggered strategy receives is all y(t), while the filter based on the 
event-triggered strategy receives only the y(t) sifted by the event-triggered generator, thus realizing the saving 
of communication resources. Therefore, the reduce-order state estimator and the event-triggered reduce-order 
state estimator can reduce computational resources in by utilizing state estimators of smaller order instead of 
full-order state estimators. The method proposed in this paper has the following limitations: (1) In practical 
applications, it may be difficult to find reduced-order filters. (2) The eligible event-triggered strategy may miss 
the transmission of critical data, thus affecting the actual measurement and estimation. These are what we need 
to circumvent in our future research.

According to the above analysis, the proposed methods of the reduced-order H∞ state estimators and the 
(reduced-order) H∞ state estimators based on the event-triggered sampling strategy are availability.

Conclusions
An H∞ state estimation has been studied for continuous-time neural networks with norm-bounded uncertainties 
via designing a reduced-order H∞ state estimator and an event-triggered reduced-order H∞ state estimator. For 
the considered neural networks with uncertainties, both a reduced-order H∞ state estimator and an event-trig-
gered reduced-order H∞ state estimator have been designed, which ensure that the error dynamic is exponentially 
stable and has weighted H∞ performance index by Lyapunov function method. Moreover, it has also given the 
devised methods of the reduced-order and event-triggered reduced-order H∞ state estimator. compared with 
the full-order ( nf = 2 ) and reduce-order ( nf = 1 ) state estimators, the zf (t) of the reduce-order state estimator 
is closer to z(t), and the order is lower. The use of event-triggered sampling avoids the need to sample y(t) from 
time to time. Finally, by the example of well-known Tunnel Diode Circuit, it has shown that a lower order state 
estimator can be designed under the premise of maintaining the same weighted H∞ performance index, and 
using the event-triggered sampling strategy can reduce the computational and time costs in communication and 
save resources. And in the future, our direction is focus on the reduce-order ( nf = 1 ) state estimators design for 
the neural networks with impulse and affine disturbance by applying an event-triggered strategy.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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