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Elicitation and aggregation 
of multimodal estimates 
improve wisdom of crowd effects 
on ordering tasks
Yeawon Yoo 1*, Adolfo R. Escobedo 2*, Ryan Kemmer 3 & Erin Chiou 4

We present a wisdom of crowds study where participants are asked to order a small set of images 
based on the number of dots they contain and then to guess the respective number of dots in each 
image. We test two input elicitation interfaces—one elicits the two modalities of estimates jointly 
and the other independently. We show that the latter interface yields higher quality estimates, even 
though the multimodal estimates tend to be more self-contradictory. The inputs are aggregated 
via optimization and voting-rule based methods to estimate the true ordering of a larger universal 
set of images. We demonstrate that the quality of collective estimates from the simpler yet more 
computationally-efficient voting methods is comparable to that achieved by the more complex 
optimization model. Lastly, we find that using multiple modalities of estimates from one group yields 
better collective estimates compared to mixing numerical estimates from one group with the ordinal 
estimates from a different group.

The wisdom of crowds (WOC) phenomenon, which posits that the aggregate information from a group can 
surpass the accuracy of any individual, inclusive of subject-matter experts, has been observed across various 
contexts. A compelling popular example comes from the television game show “Who wants to be a millionaire”, 
where contestants are offered opportunities to consult an expert and solicit the collective responses from a live 
studio audience to answer a given question. Over the show’s height in popularity, expert answers were reported to 
be correct 65% of the time, while audiences were correct 91% of the time1. Examples of the WOC phenomenon in 
other settings include identifying and classifying craters on the surface of Mars2, estimating corporate earnings3, 
predicting winners of elections4, estimating the height of a mountain5, among many others.

The vast majority of studies to assess crowd wisdom involve numerical estimation (i.e., numerosity) tasks 
such as guessing how many jelly beans are packed inside a glass jar6 and estimating the number of black dots 
on a white background7. However, prior works have also evaluated its applicability to ordering tasks, such as 
recalling the correct ordering of a list after it is shuffled8,9 and ordering multiple images based on the number 
of dots they contain (i.e., from the image with the fewest to the one with the most)10,11. But, it is only recently 
that researchers have considered combining these two modalities of estimates on the same task10. Although the 
initial results appear promising, more efforts along this direction are needed to determine how the elicitation 
and aggregation of such multimodal inputs can further enhance WOC effects.

A quintessential example of a numerical estimation activity comes from the well-known experiment attrib-
uted to Galton12, in which county fair attendees were asked to guess the weight of an ox; the individual estimates 
were reported to be off the mark, but the aggregation of 787 guesses yielded a near-perfect estimate of the true 
value. Working with numerical estimates has led to WOC methods being linked most commonly with simple 
aggregation functions such as average, median, and mode13. The ease with which this type of estimates can be 
elicitated has also facilitated the wide deployment of WOC activities on crowdsourcing platforms (e.g., Amazon 
MTurk14, Prolific15). In turn, this has allowed researchers to experiment with a variety of novel treatments for 
further teasing out crowd wisdom. These include but are not limited to “debiasing training”16, conversational 
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agents17, programmed micro-breaks18, and the “sharing of social information” provided by other participants—
and even by computer models—during input elicitation19,20.

Numerical estimation activities have also been featured in the exploration of a WOC offshoot termed “wisdom 
of the inner crowd” (WOIC)21,22, which holds that better individual (and collective) estimates can be attained 
by eliciting and aggregating multiple estimates from each participant, such as eliciting estimates on the same 
numerosity question at varying time intervals (e.g.,23–25) and prompting participants to reconsider their initial 
estimates, known as “dialectical bootstrapping”21. Other work has demonstrated that eliciting responses to a logi-
cally equivalent rephrasing of the original question tends to outperform asking the same question on separate 
occasions26,27. Although these and other WOIC treatments can improve crowd wisdom, their complexity may 
make them difficult to implement outside of laboratory settings.

Ordering activities are less prominent in the literature, but they have also been employed to address a variety 
of complex tasks. Examples include arranging the 50 U.S. states from east to west, listing U.S. presidents based 
on when they served in office, and ordering international rivers from shortest to longest8,9. Ordering tasks 
may become more demanding because they require implicit pairwise comparisons between entities, whereas 
numerical estimation involves focusing on only one entity at a time. Ordering tasks also involve different types of 
aggregation methods. Among the most popular are voting rules designed to return an aggregate ranking that best 
represents the collection of input rankings according to social welfare functions, e.g., the Borda rule, the plurality 
rule, and the Copeland rule8,28,29. Certain functions are easy to evaluate, while others such as the Kemeny rule 
(see30) induce computationally intractable (i.e., NP-hard) problems and are usually modeled and solved using 
integer programming techniques—for example, a binary program developed for the Kemeny rule31 can be solved 
using the standard branch-and-bound algorithm. Probabilistic methods have also been applied, but they have 
performed consistently worse in this context8. In contrast with this diversity of aggregation methods, there has 
been little research on how different options for eliciting ordinal inputs may impact WOC and WOIC results.

In an effort to leverage multiple types of elicited inputs, Kemmer et al.10 devised a dot estimation study in 
which participants were asked both to order multiple images based on the number of dots they contain and to 
guess the respective number of dots in each image. The two types of estimates were aggregated using optimization 
models designed to return an aggregate ordinal-numerical pair that is closest to the collection of inputs accord-
ing to social choice-inspired distance functions32. The collective orderings obtained in10 from these multimodal 
aggregation models consistently outperformed those obtained by aggregating the standalone ordinal inputs with 
traditional social welfare functions. Although these results intimate that using inputs of different modalities may 
enhance WOC effects, their generalizability is limited by their dependence on elaborate mathematical models and 
state-of-the-art optimization software. In fact, the best performing model entails solving an NP-hard problem. 
The aforementioned study also did not analyze the implications of different input elicitation options on WOC, 
let alone on individual accuracy.

This work analyzes in greater depth the degree to which the elicitation and aggregation of ordinal and numeri-
cal estimates can improve accuracy of individual and collective estimates on ordering tasks. To this end, it 
presents two intuitive elicitation options and deploys them via a crowdsourcing platform. Altogether, this work 
addresses three key research questions:

•	 Are there significantly different effects on individual and collective accuracy when ordinal and numerical 
inputs are elicited jointly versus independently?

•	 Can fast, commonly accessible aggregation methods leverage the two modalities of estimates to improve 
crowd wisdom effects?

•	 What are the added benefits of using the two modalities of estimates from each participant versus aggregating 
ordinal estimates from a group of participants and numerical estimates from a different group of participants?

Results
To address the research questions, we designed a web-based study via Amazon Mechanical Turk (N= 600) to 
crowdsource the ordering of different sets of images based on the number of dots contained in each image. There 
are 30 images in a set, with distinct quantities of black dots, ranging from 50 to 79, scattered randomly onto a 
white background. Each participant is assigned four smaller ordering tasks (i.e., image subsets) consisting of a 
pseudorandom selection of 2, 3, 5, and 6 images, respectively; there is a different 30-image dataset associated 
with each of the four task sizes. The specific subsets are assigned to participants so that all 30 images are viewed 
the same number of times per task (see Methods for more details). In the ordinal estimation task, the assigned 
images are provided along the bottom row of the interface. Participants click on each image and then on a blank 
square on the top row to arrange the images in increasing order of the number of dots they contain. For visual 
reference, Fig. 1 provides an example of the 3-image ordering task; Fig. 1a shows the initial setup (i.e., before 
the participant orders the images), and Fig. 1b shows the interface following the placement of the first image.

Participants then proceed to the numerical estimation task, which entails guessing the total number of dots 
in each of the images they saw in the preceding ordering task. For half of the participants, this information 
is elicited jointly, that is, all assigned images are shown side-by-side as the participant arranged them in the 
ordering task with a text box underneath each image to elicit the numerical estimates (see Fig. 2a). For the 
other half of participants, numerical estimates are elicited independently; that is, each assigned image is shown 
individually and in a randomized order, with an input text box underneath (see Fig. 2b). Figure 2a and b show 
the interfaces of these two distinct numerical elicitation options, referred to as the joint-elicitation interface and 
the independent-elicitation interface, respectively. In effect, the joint-elicitation interface is designed to increase 
the efficiency and convenience of eliciting the two input modalities, while the independent-elicitation interface 
is intended to attenuate potential negative impacts of accessing one’s own earlier estimates33. Before proceeding, 
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it is important to elaborate on a few additional details regarding the crowdsourced activity. First, Figs. 1 and 
2 are stylized representations; screenshots of the actual interfaces seen by my participants are included in the 
Supplementary Material. Second, participants were compensated with a payment of $1.00 for approximately 5 
minutes of work, irrespective of the accuracy of their estimates. Finally, the participant demographics are sum-
marized in the Supplementary Material.

After the study was completed, the data are aggregated using methods that support both ordinal and numeri-
cal inputs. As a baseline of comparison, we employ the cardinal (i.e., numerical) and ordinal aggregation model 
(COA), which is the optimization-based method that achieved the best performance in10. As Sect. "Introduction" 
explains, COA represents an NP-hard optimization problem and thereby poses computational scalability issues. 
In pilot computational tests, individual problem instances associated with this study took up to 10 hours to solve 
using the mixed-integer programming techniques introduced in32. Hence, a 10-minute time limit is imposed 
per COA instance, after which the best incumbent solution is extracted, along with its optimality gap—that is, a 
provable worst-case bound on how far its objective function value could be from the optimal value. While some 
instances were solved to optimality, many were not. However, these optimality gaps varied between 0.01% and 
11%, meaning that the performance of COA for any of the instances that was terminated after 10 minutes of 
solve time could be at best 11% better than what is reported in the results.

The remaining aggregation methods took fractions of a second to solve each problem instance. These are 
based on traditional voting rules that have performed well in previous ordinal estimation studies: Plurality voting, 
Borda Count, and Copeland’s method30. Each requires a set of ranking vectors as inputs and returns an aggregate 
ranking vector. They are extended to the context at hand through a simple data conversion. Specifically, the vec-
tor of numerical estimates of participant ℓ , say bℓ , is first converted into a ranking vector, denoted as rank(bℓ) ; 
the ith element in the vector indicates the position that participant ℓ ’s numerical estimate for image i occupies 
within their full list of estimates, sorted in non-decreasing order and accounting for ties. Then, the voting rule is 
applied to aggregate the vectors rank(bℓ) of all participants as well as their respective ordinal estimates, denoted 
as aℓ . It is important to remark that the conversion into ordinal estimates truncates differences about the preci-
sion of the individual numerical estimates. This does not occur with the COA model, which imposes a different 
type of penalty to each modality of inputs (see32 for more details).

Figure 1.   Ordinal elicitation interface for the 3-image task.

Figure 2.   Numerical elicitation interfaces for the 3-image task.
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Individual performance
To highlight the basic differences between the elicitation interfaces, we first delve into two aspects at the indi-
vidual participant level: completion time and degree of self-contradiction. Figure 3 summarizes the comple-
tion time for each of the four task sizes and the two interfaces. Outliers are excluded to improve analysis and 
visualization. They were identified based on standard statistical criteria: data points below Q1− 1.5× IQR and 
above Q3+ 1.5× IQR , with IQR representing the interquartile range calculated as Q3− Q1 (where Q1 is the 
first quartile, and Q3 is the third quartile).

To assess whether the differences in completion times between numerical estimation and ordinal estimation 
tasks are statistically significant, we conducted a two-sample t-test on the average completion times for each 
of the four task sizes and the two interfaces (see the Supplementary Material for the detailed results). With the 
independent-elicitation interface, the average differences between the ordinal and the numerical estimation task 
completion times were 8.12, 15.28, 27.54, and 38.99 seconds for the 2-, 3-, 5-, and 6-image tasks, respectively; with 
the joint-elicitation interface, the corresponding average differences were 4.86, 15.42, 5.49, and 14.49 seconds. 
In short, the numerical estimation task took significantly longer than the ordinal estimation task in the 3-image 
and 6-image tasks with the joint-elicitation interface; the same relationship held true for the 3-, 5-, and 6-image 
tasks with the independent-elicitation interface (see the Supplementary Material for the specific p-values).

Next, we delve into the differences in completion times between the two interfaces. Similarly, we conducted a 
two-sample t-test to determine whether the average completion times of each task in the joint-elicitation interface 
and in the independent-elicitation interface are statistically significantly different. Ordinal task completion times 
were relatively indistinguishable across the two interfaces, which can be determined by comparing one-by-one 
and side-by-side the red violin plots in Fig. 3a and b corresponding to the results shown in Appendix Tables 2 
and 3 in the Supplementary Material. On the other hand, the numerical estimation completion times were longer 
with the independent-elicitation interface for the larger task sizes, specifically, they were 21.17 and 27.58 seconds 
higher on average than with the joint-elicitation interface for the 5- and 6-image tasks, respectively. These notice-
ably longer completion times indicate that numerical estimates are more easily elicited with the joint-elicitation 
interface, as expected. On the other hand, average differences in numerical estimation completion times between 
the two interfaces were not as significant for the two smaller task sizes—the independent-elicitation interface 
took 4.50 seconds more for the 2-image task but 0.47 seconds less on the 3-image task. One plausible explanation 
is that it is less cognitively demanding (although not necessarily conducive to more accurate results) to provide 
a numerical guess based on a prior ordering estimate. However, for smaller-sized tasks, having such a point of 
reference does not seem to yield a significant advantage.

To report on the degree of the self-contradiction of the multimodal input estimates, we analyze the similarity 
between aℓ and rank(bℓ ), for each participant ℓ . Their similarity is measured using three correlation coefficients, 
namely Kendall-τ , Spearmans’ ρ , and Pearson, which have been previously employed for related purposes (e.g., 
see34–36). The domain of each measure is [−1, 1] ; the left and right endpoints connote complete negative and posi-
tive correlation, respectively, and the midpoint 0 connotes no association. As shown in Fig. 4, participants’ ordinal 
estimates were more similar to (the orderings induced by) their numerical estimates when the two modalities of 
input were elicited jointly. For instance, the median Kendall-τ correlations were 1.0, 1.0, 0.6, 0.47 with the joint-
elicitation interface and 1.0, 0.33, 0.31, and 0.28 with the independent-elicitation interface, for the 2-, 3-, 5-, and 
6-image tasks, respectively; correlation values varied with the other two coefficients, but similar discrepancies 
across the interfaces can be observed. These statistics reflect that having access to one’s own ordinal estimates 
can help maintain relative consistency in one’s numerical estimates.

Next, we analyze how participants performed individually at estimating the correct ordering of the image 
subsets assigned to them. Individual performance on the ordinal estimation task was relatively indistinguishable 
for the two participant groups, because this interface was identical for all participants. Hence, the analysis focuses 
on the individual ordinal estimates induced from each participant’s inputs in the numerical estimation task (i.e., 
rank(bℓ)). The converted inputs are compared to the ground-truth ordering of the respective image subset seen by 
a participant by counting their discordant pairs, that is, the total pairs of images where the participant’s ordering is 
the reverse of the true ordering. A perfectly ordered subset of images yields no discordant pairs, and less accurate 
orderings result in more discordant pairs. When ordering n images, the maximum number of discordant pairs 

Figure 3.   Completion times by interface, estimation task, and task size.
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is n(n− 1)/2 ; hence, there can be at most 1, 3, 10, and 15 discordant pairs, corresponding to the last tick on the 
x-axis in Fig. 5, for the 2-, 3-, 5-, and 6-image tasks, respectively.

Figure 5 plots individual accuracy for each of the four task sizes and two interfaces via bar graphs; each 
represents the percentage of participants who attained one of the possible numbers of discordant pairs, which 
are enumerated along the x-axis. For instance, over 50% of the joint-elicitation interface participants submitted 
numerical estimates that induced a perfect ordering for the 2-image task (see Fig. 5a) but less than 1% did so for 
the 6-image task (see Fig. 5g). A similar pattern of decreasing accuracy is evident in the independent-elicitation 
interface.

Figure 5 also demonstrates that the inputs gathered via the joint-elicitation interface resulted in lower-quality 
estimates. For example, the proportion of perfect orderings in the 2-image task was higher for the independent-
elicitation interface by approximately 20 percentage points. More generally, for each of the four task sizes, the 
distribution associated with the independent-elicitation interface skews right (i.e., more mass is concentrated on 
the x-values that connote fewer errors), with a roughly descending pattern as one moves right. On the other hand, 
those associated with the joint-elicitation interface increasingly resemble normal distributions, with the values 
concentrated toward the middle. These results indicate that, although eliciting multiple modalities of estimates 
jointly led to less self-contradiction, this had a negative effect on individual accuracy. A natural explanation is 
that with this method of elicitation, errors in the ordering task are less likely to be self-corrected through the 
numerical estimation task.

Crowd performance
Crowd performance is calculated by aggregating the participants’ estimates using the methods described in Sect. 
“Aggregation Methods” Section. The results are reported in Fig. 6 via eight two-dimensional plots corresponding 
to each possible combination of task size and interface. In each plot, the x-axis indicates the group size, which 
is regulated by taking subsets of the input data (refer to Sect. “Notes on Task Allocation” for more details). The 
y-axis reports the Kemeny-Snell distance37 (i.e., the number of discordant pairs) between each collective esti-
mate and the ground truth. It is henceforth denoted as d∗M , where M represents the aggregation method used to 
obtain the collective estimate. The reported metric has been normalized to lie between 0 and 1, both inclusive, 
by dividing by the maximum number of pairwise reversals between two rankings of each respective size38. Note 
that lower values of d∗M correspond to more accurate collective estimates (since this metric reflects the distance 
or disagreement with the ground truth).

The results support the wisdom of crowds effect, i.e., that accuracy tends to improve as more individual 
estimates are aggregated. This holds for both interfaces and across all tested task sizes and aggregation methods. 
However, the collective estimates associated with the independent-elicitation interface significantly outper-
formed those associated with the joint-elicitation interface; in fact, nearly every collective estimate obtained 
with the independent-elicitation interface is more accurate than the best collective estimate obtained with the 
joint-elicitation interface (in Fig. 6, nearly every point on a specific-color curve in the right column is located 
below the same-colored curve in the left column). For example, in the 5-image task, d∗COA = 0.16 when using a 
group of 30 participants with the independent-elicitation interface, whereas d∗COA = 0.34 when using ten times 
the number of participants with the joint-elicitation interface. Similar performance disparities occurred with 
other task sizes and aggregation methods demonstrating that, although WOC effects are observed in both inter-
faces, eliciting numerical estimates independently from ordinal estimates resulted in more accurate collective 

Figure 4.   Correlation between ordinal and numerical estimates for each elicitation interface.
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estimations. Based on these findings and those of Sect. "Individual performance" the remainder of this paper 
will focus on the inputs obtained with the independent-elicitation interface.

Next, we compare the quality of the collective estimates attained with the tested aggregation methods. The 
optimization-based method (the COA model) consistently achieved better results than the voting rule-based 
methods, as shown in Fig. 6. Specifically, for the joint-elicitation interface, the COA model outperformed the rest 
of the methods by an average distance from the ground truth ( d∗M , for each respective method M) of 0.14, with 

Figure 5.   Distribution of individual ordinal estimation errors resulting from the (converted) 
numerical estimation inputs (left column: joint-elicitation interface, right column: independent-elicitation 
interface).
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variations ranging from as little as 0.04 to as large as 0.30. Although the differences between the optimization-
based method and the voting rule-based methods diminish in the independent-elicitation interface, the COA 
model still edged out voting rule-based methods in most cases by an average d∗M value of 0.02, with variations 
as large as 0.08. It is worth reiterating that the COA model did not reach optimality at the ten-minute time limit 
in many cases; however, based on the recorded optimality gaps, which were 10.89% or lower on every instance, 
its performance is not expected to be dramatically better. Its performance edge was highest when fewer inputs 
were used to derive the collective estimate. This highlights a significant practical advantage of this method, as 

Figure 6.   Accuracy of collective ordinal estimates - lower values of d∗
M

 connote more accurate collective 
estimates (left column: joint-elicitation interface, right column: independent-elicitation interface). 
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the cost of crowdsourcing increases with the number of participants recruited. However, COA is also the method 
that requires the highest computational effort. In fact, for most of the instances generated from this study and 
especially for the higher task sizes (5-image and 6-image tasks), it exceeded the 10-minute time limit. Moreover, 
as more individual estimates are aggregated, most of the multimodal voting rules exhibit a comparable perfor-
mance to COA. Among them, the multimodal Borda rule attained the best results, and it even outperformed 
COA in some cases in the independent-elicitation interface—specifically, with inputs from 300 participants in 
the 3-image task, d∗Borda = 0.06 and d∗COA = 0.08 , and with inputs from 300 participants in the 5-image task, 
d∗Borda = 0.038 and d∗COA = 0.043 . Note that all of the voting-based methods required less than one second of 
computation time. Altogether, these comparisons demonstrate that, given sufficient individual estimates, high-
quality collective estimates can be obtained with simpler aggregation methods and nominal computational effort.

Assessing the added value of multimodal elicitation
This subsection explores further how multimodal estimates can affect crowd wisdom. In particular, we compare 
the effectiveness of aggregating the ordinal and numerical estimates from a single group of individuals (“coupled-
estimate group”) against mixing the ordinal estimates from one group of individuals with the numerical estimates 
from a different group (“separate-estimate groups”) and then aggregating the two modalities of estimates together. 
Based on the findings of Sect. "Crowd performance", the multimodal Borda voting rule is used to aggregate the 
estimates in both cases, to take advantage of its computational ease and high-quality outputs.

Figure 7 contains one plot for each of the four task sizes comparing the performances of the coupled-estimate 
groups (left of the dividing line) and of the separate-estimate groups (right of the dividing line). The x-axis dis-
plays the group size; it is reported as a single number for the coupled-estimate group and as an ordered pair for 
the separate-estimate group, with the first coordinate indicating the size of the group providing ordinal estimates 
and the second the size of the group providing numerical estimates. The y-axis provides the respective d∗Borda 
distance (lower values connote more accurate collective estimates).

The four subfigures show that smaller coupled-estimate groups perform on par or better than larger separate-
estimate groups. For example, in the 3-image task, coupled-estimate groups of size 100 yielded a more accurate 
collective estimate (median distance of 0.14) than separate-estimate groups of size (100, 100) (median distance 
of 0.18); note that the total number of estimates is identical in both cases, but the separate-estimate group has 
twice the number of participants. More impressively, in the 3-image task, coupled-estimate groups of size 100 
performed comparably to separate-estimate groups of size (150, 150), with median d∗Borda distances of 0.14 and 
0.15, respectively, and virtually identical minimum and maximum values. In this case, the separate-estimate 
groups entailed 200% more participants and 50% more total inputs.

It is worth emphasizing that, although an equal number of ordinal inputs and numerical inputs are aggregated 
to obtain each of the collective estimates plotted in Fig. 7, the coupled-estimate groups’ estimates benefit from 
having their two modalities of inputs come from the same set of participants. In effect, two pieces of interrelated 
information from each image in an assigned subset are used in the coupled-estimate groups’ estimates, while 
only one piece of information from each image in an assigned subset is used in the separate-estimate groups’ 

Figure 7.   Accuracy of collective estimates obtained from coupled-estimate groups and separate-estimate 
groups of different sizes (lower d∗

Borda
 values connote more accurate collective estimates).
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estimates—although the latter use information from twice the number of combinations of image subsets. Based 
on these observations, we conjecture that the main mechanism underlying this result is linked with the concept 
of WOIC (see Sect. "Introduction"). In fact, the coupled-estimate groups’ results may additionally benefit from 
using the participants’ multiple responses from logically equivalent rephrasing of a given question (i.e., ordering 
and numerical estimates for each assigned image)26,27.

These differing performances support the notion that, for ordering tasks, the two elicited estimate modalities 
possess complementary information that can help to counteract each individual’s errors from completing ordinal 
or numerical estimation tasks. In other words, when data from only one estimate modality is utilized from each 
participant, this complementarity is lost. Based on this explanation, another mechanism that could be potentially 
at work is cognitive-process diversity39, which suggests that the aggregation of several estimates is enhanced when 
the estimates are based on different cognitive processes. Grounded on dual process theory, cognitive-process 
diversity differentiates between intuitive processes, characterized by being preconscious and fast and analytical 
processes, characterized as slow, deliberative, rule-governed, and conscious40. The ordinal estimation task fits the 
description of an analytical process; the numerical estimation task could fit the description of either of the two 
cognitive processes, depending on the specific response times and frame of mind of each participant. However, 
this statement is based on speculation and needs to be rigorously tested with a specialized experimental design. 
As such, it is left for future work.

Discussion
This study contributes to the understanding of how joint multimodal input elicitation and aggregation can 
enhance wisdom of crowds effects1 on ordering tasks. Firstly, we show that the input elicitation modality affects 
the quality of information and any subsequent aggregation thereof. Participants who provided numerical esti-
mates independently from their ordinal estimates over a subset of images with dots (i.e., those who received 
the independent-elicitation interface) provided considerably better estimates than those who completed them 
jointly (i.e., those who received the joint-elicitation interface). Caveats for the higher level of accuracy attained 
with the separate-elicitation interface are that participants required relatively more time to provide numerical 
estimates for each image in their assigned subset and that their multimodal inputs were more self-contradictory. 
Nonetheless, the latter finding aligns with a core principle of WOC, namely that erroneous inputs can cancel out 
to produce better collective estimates.

Secondly, we demonstrate that the enhanced WOC effects from multimodal estimates documented herein 
are not reserved for optimization-based methods. They are also accessible to commonly used voting rules, fol-
lowing a suitable data conversion relevant to ordering tasks. Indeed, although the optimization model produced 
better collective estimates when relatively few inputs were available, the modified voting rules yielded nearly the 
same level of accuracy in fractions of a second, and they entailed a few lines of code reproducible with desktop 
programs. These findings help to overcome some of the impractical aspects of aggregating multimodal estimates 
using optimization-based methods10,32, namely, the need for specialized software and prohibitive computational 
times—which took as long as 10 hours for some of the instances generated from this study.

Thirdly, the featured computational experiments highlight the added value of jointly eliciting multiple modali-
ties of estimates from a single group of participants, as opposed to mixing the inputs from two groups who each 
provide estimates of a single but distinct modality. The former tends to yield better collective estimates even 
when there is an equal or higher number of total estimates aggregated from the latter. Stated otherwise, the sin-
gle group joint estimation design enables the extraction of higher-quality estimates with fewer resources. These 
findings have important implications for the design of cost-effective crowdsourcing activities and surveys, where 
recruitment costs and time can be limiting factors.

Fourthly, another contribution relates to the burgeoning concept of the wisdom of crowds in one mind21,22, 
which holds that better individual (and collective) estimates can be attained by gathering and aggregating mul-
tiple estimates from each participant in the crowd. Prior works have lent support to this phenomenon mostly by 
eliciting estimates regarding the same question at varying time intervals (e.g., see23–25). More advanced imple-
mentations have demonstrated that eliciting responses to a logically equivalent rephrasing of the original ques-
tion outperforms asking the same question on separate occasions26,27. The multimodal input elicitation method 
featured herein further supports this idea, with the added contribution of allowing two distinct, logically inter-
related questions to be asked of each image from each participant over a single sitting. The takeaways from this 
analysis further demonstrate that certain choices in how multimodal estimates are obtained and used can have 
different practical implications. In particular, using multiple modalities of estimates from each participant can 
help extract WOC effects from smaller groups relative to mixing the numerical estimates of one group with 
the ordinal estimates from a different group. If these findings can be replicated and scaled to more ordering 
tasks, they could help reduce costs, especially in situations in which recruiting more participants is costlier than 
increasing individual workload. It is also relevant to remark that the presented method of eliciting the multiple 
modalities of estimates independently rather than jointly aligns with the wisdom of the inner crowd guidance 
to design questions that can generate estimates with statistically independent errors22,41.

The outcomes of this research evoke compelling questions for further research. To begin, the presented study 
used numerical estimates to complement and enhance collective ordinal estimates on ordering tasks, but it did 
not delve into the converse, that is, whether and how ordinal estimates can be leveraged for numerosity tasks. 
Moreover, the featured tasks entailed human computation activities with a known ground truth—i.e., the order-
ing of the image sets is known a priori. On many real-world tasks that harness the power of crowdsourcing and 
collective intelligence, a ground truth may not be immediately available—e.g., stock prediction42—or it may not 
exist altogether—e.g., crowdsourced opinion43. Hence, an interesting research direction is to explore whether 
the proposed methods would be beneficial in those contexts as well. Finally, the practical benefits of multimodal 



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2640  | https://doi.org/10.1038/s41598-024-52176-3

www.nature.com/scientificreports/

aggregation motivate theoretical questions beyond wisdom of crowds, including the sociotheoretic analysis of 
voting rules (see30) that accept both numerical and ordinal inputs and the study of the polyhedral structure 
(see44) underlying the optimization model.

Methods
Distance functions
The optimization-based method (the COA model32) finds a pair of ordinal and numerical estimate vectors that 
minimize the cumulative disagreement with the individual input estimates, according to two suitable distance 
functions. The distance functions used in this study are the Normalized Projected Kemeny-Snell distance ( dNPKS
)38 and the Normalized Project Cook-Kress distance ( dNPCK)45, respectively; these are extensions of the Kemeny-
Snell distance ( dKS)37 and the Cook-Kress distance ( dCK)46). The mathematical descriptions are provided in the 
ensuing paragraphs.

To define the distance functions, it is important to introduce the requisite notation. Denote V as the full 
set of alternatives (i.e., universal set of images) to be evaluated. Let aℓ and bℓ denote the ordinal and numerical 
estimate vectors, respectively, gathered from participant ℓ ∈ L . The subset of alternatives evaluated in a (resp., 
b ) is denoted as Va (resp., Vb ); then aℓi  (resp., bℓi  ) denotes the rank position (resp., numerical guess) provided by 
participant ℓ for alternative i ∈ Va (resp., i ∈ Vb ). Finally, Va1

⋂

Va2 represents the subset of alternatives evalu-
ated in both rankings a1 and a2 , and a1(V

a1∩Va2 )
 and a2(V

a1∩Va2 )
 denote the projections of each ranking onto the 

subset of alternatives evaluated in both rankings (the analogous definition of the common subset of alternatives 
evaluated in both b1 and b2 is omitted for simplicity).

The distance function dNPKS between two possibly incomplete rankings is defined as38:

Here, dKS is a distance metric that counts the number of discordant pairs between two complete rankings a1 and 
a
2 over n alternatives and is defined as37:

The distance function dNPKS is nonlinear. The scaled Kendall tau-extended correlation coefficient47 is an alterna-
tive linear measure on incomplete rankings that can be equivalently used via a binary programming formulation 
to solve the Kemeny ranking aggregation problem31.

The distance function dNPCK between two possibly incomplete numerical estimation vectors is defined as45:

where where R := U − L denotes the range of the numerical estimates (U is the highest value and L the lowest 
value in the inputs). Here, dCK is a distance metric that calculates the pairwise differences of intensity between 
two complete numerical estimation vectors b1 and b2 over n alternatives and is defined as46:

Aggregation methods
This section introduces the aggregation methods employed in the paper. First, it presents the optimization-based 
method, which builds on the distance functions described in the preceding subsection. Then, it presents three 
traditional voting rule-based methods defined for ordinal vectors, and it describes how they are extended to 
handle numerical estimate vectors.

Optimization‑based method: the cardinal and ordinal aggregation (COA) model
The COA model jointly aggregates a set of cardinal (i.e., numerical) and ordinal vectors using distance functions 
dNPKS and dNPCK . The optimization model finds the cardinal-ordinal vector pair (r∗, rank(r∗)) that minimizes 
the cumulative distance to the given inputs; its definition can be abbreviated as:

In the solution, the ordinal vector rank(r) is induced by ordering the numerical values in r . This logic is enforced 
through linearized expressions (see32), which build on the binary programming formulation for the Kemeny 
ranking aggregation problem31.
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Voting rule‑based methods
The three voting rules featured in this study are applicable to ordinal vectors (i.e., rankings). In social choice 
theory, they are formally denoted as social choice functions, which map a given set of preference rankings over a 
set of alternatives into a winner, meaning that they return a single alternative rather than a ranking of all of the 
alternatives30. To obtain a full ranking (or social ordering), all alternatives are ordered in non-increasing order of 
the respective scores assigned by the voting rule. Moreover, each rule is extended to handle numerical estimate 
vectors through a simple data conversion. Specifically, the vector of numerical estimates of participant ℓ , bℓ , is 
first converted into a ranking vector, denoted as rank(bℓ) ; the ith element in the vector indicates the position 
that participant ℓ ’s numerical estimate for alternative i occupies within their full list of estimates, sorted in non-
decreasing order and accounting for ties. The mathematical description of the voting rules is provided in the 
ensuing paragraphs.

The plurality rule selects the alternative with the most first-place votes. The function for determining whether 
alternative i is in first place in the ordinal vector from participant ℓ ∈ L is given by30:

The plurality rule assigns a score to each alternative based on its number of first-place votes; the score of alterna-
tive i can be obtained as:

The Borda rule assigns a score to each alternative in a ballot according to how many alternatives it defeats, and 
it chooses the alternative with the highest score as the winner30. Mathematically, assuming that there exist n 
alternatives and the highest score is n− 1 (i.e., there are at most n− 1 alternatives ranked lower than the first-
placed alternative), the Borda rule assigns a score to each alternative, where the score of alternative i is defined as:

The Copeland rule chooses the alternative with the highest number of pairwise wins minus defeats as a winner, 
which is mathematically written as30:

Notes on task allocation
To gain a better understanding of the plots in Fig. 6, which showcase the quality of collective estimates across 
various group sizes, it is useful to elaborate on how the image subsets were divided and allocated. For each task 
size x ∈ {2, 3, 5, 6} , the image subsets assigned to each participant were generated by first randomly permuting the 
integers from 1 to 30 and then assigning the images corresponding to the first x integers to the first participant, 
the images corresponding to the second x integers to the second participant, and so on, until all 30 integers are 
allocated; this is repeated with a new random permutation of the integers from 1 to 30, as needed. Notice that 
30 is exactly divisible by 2, 3, 5, and 6, meaning that the full set of 30 images randomized with each permutation 
can be allocated without remainder.

It is also helpful to specify how many times each image is evaluated based on the corresponding group size. As 
previously mentioned, a total of 300 participants took part in the study, and the number of times each image was 
shown varied depending on the task size and the subset of participants selected. For instance, in the 6-image task, 
with all 300 participants viewing 6 images each, there were a total of 1800 (= 300× 6) observations. Considering 
that there were 30 images in total, each image was viewed 60 ( = 300× 6/30 ) times (based on the aforementioned 
task allocation design). Similarly, in the 5-image task, with all 300 participants viewing 5 images each, there were 
1500 (= 300× 5/30) observations, resulting in each image being seen 50 times ( = 300× 5/30 ). The calculation 
of how many times each image is seen can be generalized to different group sizes with the formula:

The formula can be applied when fewer participant estimates are used to obtain an aggregate estimate (i.e., to 
generate the collective estimates of smaller group sizes). For example, in the 2-image task, when estimates from 
75 people are used (the left-most x-axis tick value), each image is seen only 5 times (= 75× 2/30).

Human subjects study protocols
This research study involving human participants was designed and implemented according to Institutional 
Review Board (IRB) guidelines. The study was reviewed and approved by the Institutional IRB Committee 
within the Office of Research Integrity and Assurance at Arizona State University (STUDY00010770: “Estimat-
ing the number of dots in an image”). Accordingly, we affirm that (1) all methods employed were executed in 
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strict accordance with pertinent regulations governing the research; (2) the experimental protocols received 
explicit approval before beyond deployed, ensuring adherence to ethical and regulatory standards; (3) informed 
consent was diligently obtained from all study subjects, without exception; and (4) participants were monetarily 
compensated.

Data availability
The datasets used and/or analyzed during the current study are available in the Github repository, https://​github.​
com/​ryank​emmer/​simpl​eRati​ngRan​king.
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