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A gene expression‑based classifier 
for HER2‑low breast cancer
Serena Di Cosimo 1, Sara Pizzamiglio 2*, Chiara Maura Ciniselli 2, Valeria Duroni 2, 
Vera Cappelletti 1, Loris De Cecco 3, Cinzia De Marco 1, Marco Silvestri 1, 
Maria Carmen De Santis 4,5, Andrea Vingiani 1,5, Biagio Paolini 6, Rosaria Orlandi 7, 
Marilena Valeria Iorio 7, Giancarlo Pruneri 1,5 & Paolo Verderio 2

In clinical trials evaluating antibody‑conjugated drugs (ADCs), HER2‑low breast cancer is defined 
through protein immunohistochemistry scoring (IHC) 1+ or 2+ without gene amplification. However, 
in daily practice, the accuracy of IHC is compromised by inter‑observer variability. Herein, we aimed 
to identify HER2‑low breast cancer primary tumors by leveraging gene expression profiling. A 
discovery approach was applied to gene expression profile of institutional INT1 (n = 125) and INT2 
(n = 84) datasets. We identified differentially expressed genes (DEGs) in each specific HER2 IHC 
category 0, 1+, 2+ and 3+. Principal Component Analysis was used to generate a HER2‑low signature 
whose performance was evaluated in the independent INT3 (n = 95), and in the publicly available 
TCGA and GSE81538 datasets. The association between the HER2‑low signature and HER2 IHC 
categories was evaluated by Kruskal–Wallis test with post hoc pair‑wise comparisons. The HER2‑
low signature discriminatory capability was assessed by estimating the area under the receiver 
operating characteristic curve (AUC). Gene Ontology and KEGG analyses were performed to evaluate 
the HER2‑low signature genes functional enrichment. A HER2‑low signature was computed based 
on HER2 IHC category‑specific DEGs. The twenty genes included in the signature were significantly 
enriched with lipid and steroid metabolism pathways, peptidase regulation, and humoral immune 
response. The HER2‑low signature values showed a bell‑shaped distribution across IHC categories (low 
values in 0 and 3+; high values in 1+ and 2+), effectively distinguishing HER2‑low from 0 (p < 0.001) 
to 3+ (p < 0.001). Notably, the signature values were higher in tumors scored with 1+ as compared 
to 0. The HER2‑low signature association with IHC categories and its bell‑shaped distribution was 
confirmed in the independent INT3, TCGA and GSE81538 datasets. In the combined INT1 and 
INT3 datasets, the HER2‑low signature achieved an AUC value of 0.74 (95% confidence interval, 
CI 0.67–0.81) in distinguishing HER2‑low vs. the other categories, outperforming the individual 
ERBB2 mRNA AUC value of 0.52 (95% CI 0.43–0.60). These results represent a proof‑of‑concept for 
an observer‑independent gene‑expression‑based classifier of HER2‑low status. The herein identified 
20‑gene signature shows promise in distinguishing between HER2 0 and HER2‑low expressing tumors, 
including those scored as 1+ at IHC, and in developing a selection approach for ADCs candidates.

Abbreviations
A2M  Alpha-2-macroglobulin
ACDs  Antibody-conjugated drugs
AUC   Area under the receiver operating characteristic curve
CI  Confidence interval
DEGs  Differentially expressed genes
FC  Fold change
GEP  Gene expression profile

OPEN

1Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, 
Italy. 2Bioinformatics and Biostatistics Unit, Department of Epidemiology and Data Science, Fondazione IRCCS 
Istituto Nazionale Dei Tumori, Milan, Italy. 3Molecular Mechanisms Unit, Department of Research, Fondazione 
IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. 4Radiation Oncology 1, Fondazione IRCCS Istituto Nazionale Dei 
Tumori, Milan, Italy. 5Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. 6Department of 
Pathology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. 7Molecular Targeting Unit, Department 
of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy. *email: sara.pizzamiglio@
istitutotumori.mi.it

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-52148-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2628  | https://doi.org/10.1038/s41598-024-52148-7

www.nature.com/scientificreports/

GO  Gene ontology
HER2  Human epidermal growth factor receptor 2
HR  Hormone receptor
IHC  Immunohistochemistry
INT  Institutional internal database
ISH  In situ Hybridization
KW  Kruskal-Wallis
MBC  Metastatic breast cancer
p  p value
PCA  Principal component analysis
ROC  Receiver operating characteristic
rp  Partial correlations coefficient
SLPI  Secretory leukocyte protease inhibitor
TCGA   The cancer genome atlas
T-DXd  Trastuzumab deruxtecan
vs.  Versus

Assessment of Human Epidermal growth factor Receptor 2 (HER2) status is a standard practice in breast cancer 
 diagnostics1. Early clinical studies have indicated that anti-HER2 therapy provides benefit exclusively to patients 
with breast cancer scoring 3+ at immunohistochemistry (IHC) and/or exhibiting gene amplification at in situ 
hybridization (ISH)1–3. This has resulted in distinguishing treatable HER2-positive tumors from the rest, which 
are considered negative when IHC scores are 0, 1+, or 2+ without  amplification1. However, emerging evidence is 
challenging this binary classification, as antibody–drug conjugates (ADCs)4, particularly trastuzumab deruxtecan 
(T-DXd), showed benefit beyond HER2-positive  cases5. For instance, in the DESTINY-Breast04 study, T-DXd 
demonstrated a 50% reduction in the risk of progression, and a 36% reduction in the risk of death in patients with 
HER2-low (IHC 1+, and 2+ without amplification) metastatic breast cancer (MBC)6. This has prompted further 
investigation in the ongoing clinical trial DESTINY-Breast067, which is evaluating T-DXd in patients with even 
lower HER2 expression in MBC, specifically IHC 0 or 1+, referred to as ultralow based on the preliminary data 
of DAISY study showing a 30% clinical response in advanced treatment  lines8.

While these findings generated enthusiasm for T-DXd as a new effective therapy, concerns arose regarding 
the reproducibility of HER2-low definition from clinical trials to daily  practice9. Until now, pathologists have 
not needed to differentiate between IHC 0, with incomplete and faint staining in ≤ 10% of tumor cells, and IHC 
1+, same staining intensity in > 10% of tumor cells. Nor have they been required to distinguish IHC 1+ from 
2+ showing weak to moderate staining. However, interpreting IHC results in tumors without over-expression is 
 challenging10. A recent study by Fernandez et al.11 found the highest rate of discordant cases in IHC between the 
0 and 1+ categories, with an agreement reaching 70% in the best-case scenario. This finding was strengthened 
by the Yale University report, where only 26% of cases showed a 90% agreement in the same categories, and by 
Schettini et al.12, who alerted that over half of the IHC discordant cases occurred among HER2-low tumors. 
Therefore, the routine use of IHC for determining HER2-low status, and assigning new ADC-based therapies 
raises concerns about analytical validity. Furthermore, it is crucial to investigate the biology of breast cancer fall-
ing within the gray zone of IHC+ 1 and 2+ to characterize breast cancer patients who benefit from new therapies.

Gene expression profiling is an undeniable tool for breast cancer characterization and  classification13,14, and 
offers advantages over conventional diagnostics including a quantitative output that reduces subjective inter-
pretations allowing a standardized and automated data analysis. Herein, we aimed to analyze breast cancer gene 
expression profile (GEP) with respect to HER2 IHC categories, and to train a genomic classifier for identifying 
HER2-low tumors.

Materials and methods
Datasets
GEPs from primary tumors of women with newly diagnosed operable breast cancer were retrieved from our 
institutional internal database (INT). Three distinct datasets with available patient, primary tumor and gene 
expression information were identified, specifically INT1 (n = 125) and INT2 (n = 84), which served as discov-
ery sets; and INT3 (n = 95), which served as an independent confirmatory set. For each dataset, we accessed 
patient age, primary tumor size, grade, hormone receptor (HR) status, HER2 according to IHC 0, 1+, 2+, and 
3+ categories; and primary tumor GEP at baseline (before any systemic treatment). Detailed information on 
RNA extraction and quality control has been described in original studies generating gene expression  data15–17. 
Briefly, GEP was obtained from RNA extracted from formalin-fixed paraffin-embedded tissue using Affymetrix 
U133 Plus 2.0 (INT1) and Affymetrix HTA-2.0 platforms (INT2); and from frozen tissue using Illumina Human 
HT-12_V3.0 platform (INT3). For in silico analysis, we used The Cancer Genome Atlas (TCGA) data from the 
publicly available TCGA Research Network (http:// cance rgeno me. nih. gov, lastly accessed on September 2022) 
and the  GSE8153818 from the NCBI Gene Expression Omnibus (https:// www. ncbi. nlm. nih. gov/ geo) with RNA 
sequencing data of 405 breast cancer patients. This study was conducted in accordance with the Declaration of 
Helsinki. All participants in the original studies had signed an informed consent that allowed the use of their 
samples for future biomarker research. The original studies were approved by the Institutional Review Board 
and the Ethics Committee of INT.

http://cancergenome.nih.gov
https://www.ncbi.nlm.nih.gov/geo
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Statistical analysis
Starting from INT1 and INT2 datasets, a filtering procedure was applied to select relevant genes, namely those 
with a log2 fold change (FC) value greater than 1 in absolute value (|log2(FC)|> 1) by comparing the different 
IHC categories, specifically 0 versus [vs.] others, 1+ versus others, 2+ versus others, 3+ versus others, and 1+ and 
2+ (HER2-low) vs. others. Afterwards, the expression values of the relevant genes were compared across the 
above categories using the non-parametric Wilcoxon test. Only genes with a statistically significant Bonferroni-
adjusted p value were considered as significantly differentially expressed. A Venn diagram approach was used 
to select differentially expressed genes (DEGs) in the specific IHC categories of interest. These category-specific 
DEGs were then processed by Principal Component Analysis (PCA)19 starting from the correlation matrix. 
The first Principal Component (1st PC) was used to generate a score (HER2-low signature) for each patient 
by weighting the standardized expression of the IHC category-specific DEGs with the pertinent coefficients. 
Partial correlations coefficient  (rp) between the genes of the signature were estimated in order to investigate the 
correlation between two genes corrected for presence of all the other genes of the signature. The capability of 
the signature to distinguish HER2-low breast cancer from HER2 0 or 3+ was initially evaluated in the discovery 
setting, represented by INT1, as INT2 lacked the categories 2+ and 3+, using the non-parametric Kruskal–Wal-
lis (KW) test with post hoc pair-wise comparisons between the IHC category of  interest20. This evaluation was 
subsequently extended to the confirmatory INT3, TCGA and GSE81538 datasets. The discriminatory capability 
of the signature was analysed in terms of area under the receiver operating characteristic (ROC) curve (AUC) 
with the corresponding 95% confidence interval (CI)21. For exploratory purpose, a cut-off value was identified 
by maximising the Youden index. All statistical analyses were conducted using SAS (version 9.4; SAS Institute, 
Inc.) and RStudio (version 4.2.1; The R Foundation for Statistical Computing), with a nominal alpha level of 5%.

Functional enrichment of the HER2-low signature for Gene Ontology (GO) biological process terms and 
KEGG  pathways22 was performed using the Cluster Profiler Bioconductor package. In particular, only statisti-
cally significant enriched pathways (p value < 0.05) defined by at least two IHC category-specific DEGs were 
considered for the analysis. Network representation to evaluate pathways commonalities was performed using 
Cytoscape 3.8.2  version23.

Ethical approval and consent to participate
This study was conducted in accordance with the Declaration of Helsinki. All participants in the original studies 
had signed an informed consent that allowed the use of their samples for future biomarker research.

Results
Patient characteristics
The overall and dataset-specific characteristics of the 304 study patient population from institutional datasets are 
reported in Table 1. In INT1, the median age was 49 years (range 26–67 years), and most tumors were between 2 
and 5 cm in size (82%), HR-positive (74%), and moderately differentiated, G2 (59%). In INT2, the median age was 
53 years (range 26–87 years), all tumors were triple negative, with most being > 5 cm (96%) and undifferentiated, 
G3 (87%). In INT3, the median age was 60 years (range 35–86 years), tumors ≤ 2 or between 2 and 5 cm had a 
similar proportion (51% and 44%, respectively), as well as grading, G2 (48%) and G3 (52%), while HR-positive 
cases were the majority (82%). Figure S1 reports study dataset HER2 IHC categories and hormone receptor status.

Overall, as reported in Table 2, 162 (53%) tumors were HER2-low, of which 119 HR-positive (74%) and 41 
HR-negative (25%), and 2 with missing information (1%); 110 were HER2 0 (36%), 31 HR-positive (28%) and 
78 HR-negative (71%), and 1 with missing information (1%); 32 were HER2 3+, 20 HR-positive (63.5%), and 12 
HR-negative (37.5%). The majority of HER2-low tumors were classified as luminal A (43%) or B (17%).

The overall distribution of PAM50 subtypes according to HER2 IHC categories and HR status is reported 
in Table S1.

HER2 IHC category‑specific genes and HER2‑low signature
HER2 DEGs according to the IHC category were identified following the study workflow shown in Fig. 1. A set 
of 20 IHC category-specific DEGs was selected, 11 genes in 1+, 8 genes in 2+ and 1 gene (CPLX1) in the HER2-
low category (Fig. 2, panel a). The 1st PC was used to define the HER2-low signature values by combining the 
standardized expression of each IHC category-specific DEGs with the pertinent coefficient (Fig. 2, panel b). 
Among the HER2-low signature genes, the highest correlation (partial correlation coefficient,  rp = 0.41) was 
observed between EGR1 and MXRA5, followed by AGTR1 and CPB1  (rp = 0.36), PGR and STC2  (rp = 0.35) and 
CPB1 and FSIP1  (rp = 0.34) (Fig. 2, panel b). No other correlations with an absolute value of  rp greater than 0.30 
were found suggesting that each gene within the HER2-low signature carries its own information.

HER2‑low gene signature discriminatory capability
In the discovery set, the HER2-low signature values were significantly associated with HER2 IHC categories 
(KW p < 0.0001) and exhibited a bell-shaped distribution across IHC categories, distinguishing HER2-low from 
both 0 (p = 0.0002) and 3+ (p = 0.0009) (Fig. 3, panel a). These findings were confirmed in the independent INT3 
dataset, where a statistically significant association was found between the HER2-low signature and the IHC 
categories (KW p = 0.0008). Specifically, HER2-low signature values were higher in HER2-low compared to 0 
(p = 0.0262) and 3+ (p = 0.0018) (Fig. 3, panel b). To further confirm these findings, we analyzed two publicly 
available datasets, TCGA and GSE81538 which included 783 and 402 breast cancer cases (Table S2). Once again, 
there was a significant association between the HER2-low signature and IHC categories (TGCA KW p = 0.0017 
and GSE81538 KW p < 0.0001), with higher values in HER2-low compared to 0 (TCGA p = 0.049 and GSE81538 
p < 0.0001) and 3+ (TCGA p = 0.003 and GSE81538 p = 0.0005) (Fig. 3, panel c and d).



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2628  | https://doi.org/10.1038/s41598-024-52148-7

www.nature.com/scientificreports/

Notably, across all the explored datasets the HER2-low signature consistently displayed its highest values 
within the 1+ and 2+ categories. While the HER2-low signature values exhibited a distribution pattern in HR-
positive cases similar to that of the overall population in each dataset, the limited number of HR-negative cases 
precluded any conclusive analysis (Fig. S2). However, in the largest TCGA dataset, with 69 out of 320 (18%) 
cases classified as HR-negative/HER2-low, the signature values showed higher levels in HER2-low compared to 
the 0 category (p = 0.02) (Fig. S2, panel c).

HER2‑low signature, ERBB2 mRNA levels and PAM50 subtypes
In the combined discovery and confirmatory dataset, the HER2-low signature achieved an AUC value of 0.74 
(95% CI 0.67–0.81) in distinguishing HER2-low vs. the other categories, outperforming the individual ERBB2 
mRNA AUC value of 0.52 (95% CI 0.43–0.60).

HER2-low signature values were higher in luminal A and B compared to other subtypes (p < 0.0001) (Fig. S3), 
consistent with 71% of HER2-low cases being classified as luminal A or B (Table S3). It is worth noting that high 
signature levels, i.e. above the Youden cut-off, effectively captured 45% of HER2-low cases with non-luminal-like 
features (Fig. S3, panel b).

HER2‑low signature gene enrichment analysis
Gene Ontology and KEGG pathway analyses were finally conducted showing significant alterations in pathways 
related to Gene Ontology, particularly in the biological process category. HER2-low signature genes showed 
common enrichment in lipid and steroid metabolic processes, regulation of peptidase, and humoral immune 
response. The network analysis revealed distinct interconnected patterns among the genes, with the most signifi-
cant functional modules involving EGR1 and STC2 and associated with oxygen regulation, metabolic processes, 
serine/threonine kinase signaling, and immune response (Fig. S4).

Table 1.  Clinico-pathological characteristics of breast cancer patients in the study datasets. *As reported by 
Prat A, et al. Clin Cancer Res 2014;20:511–521.

Clinico-pathological characteristics

Discovery set Confirmatory set

Total n = 304

INT1 INT2 INT3

n = 125 n = 84 n = 95

n (%) n (%) n (%) n (%)

Age (years)

 Median (Range) 49 (26–67) 53 (26–87) 60 (35–86) 52 (26–87)

 Missing – 1 – 1

Tumor size

 ≤ 2 cm 16 (13%) 1 (1%) 48 (51%) 65 (21%)

 2–5 cm 103 (82%) 1 (1%) 42 (44%) 146 (48%)

 > 5 cm 5 (4%) 81 (96%) 4 (4%) 90 (30%)

 Missing 1 (1%) 1 (1%) 1 (1%) 3 (1%)

 Grade

 II 74 (59%) 11 (13%) 46 (48%) 131 (43%)

 III 51 (41%) 73 (87%) 49 (52%) 173 (57%)

Hormone receptors

 Positive 92 (74%) 0 (0%) 78 (82%) 170 (56%)

 Negative 30 (24%) 84 (100%) 17 (18%) 131 (43%)

 Missing 3 (2%) – – 3 (1%)

HER2 IHC

 0 33 (26%) 52 (62%) 25 (26%) 110 (36%)

 1+ 62 (50%) 32 (38%) 26 (27%) 120 (40%)

 2+ 12 (10%) 0 (0%) 30 (32%) 42 (14%)

3+ 18 (14%) 0 (0%) 14 (15%) 32 (10%)

PAM50 subtype*

 Luminal A 41 (33%) 8 (10%) 48 (51%) 97 (32%)

 Luminal B 23 (18%) 10 (12%) 14 (15%) 47 (16%)

 HER2-enriched 21 (17%) 4 (5%) 12 (13%) 37 (12%)

 Basal-like 19 (15%) 59 (70%) 15 (16%) 93 (31%)

 Normal-like 21 (17%) 3 (4%) 0 (0%) 24 (8%)

 Undetermined 0 (0%) 0 (0%) 6 (6%) 6 (2%)
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Discussion
This study represents the first report leveraging a gene expression-based method for HER2-low assessment. By 
analyzing mRNA profiles from 304 breast cancer patients, a set of genes specifically associated with IHC cat-
egories was integrated into a signature capable of distinguishing HER2-low from both HER2 0 and 3+ tumors. 
The findings were validated through in silico analysis. Additionally, the study provides insights into the clinico-
pathological features and distribution of intrinsic subtypes of HER2-low breast cancer using publicly available 
datasets as references, while also exploring their underlying biology.

HER2 assessment is of growing importance in breast cancer management, as clinical trials of HER2-targeted 
ADCs have demonstrated promising outcomes in patients with HER2-low breast  cancer4–8. However, the identifi-
cation of these tumors in routine clinical practice remains challenging as the IHC-based evaluation lacks optimal 
inter-observer concordance, especially in the 0 and 1+  categories11,12. Building upon the hypothesis that mRNA 
expression has a wide dynamic range, recent studies have explored quantitative ERBB2 mRNA levels as a means 
to develop a new assay for HER2-low breast cancer. However, Xu et al.24 reported low concordance between IHC 
and quantitative RT-PCR methods for evaluating HER2 status, and Shu et al. confirmed these findings, espe-
cially in HER2 0 and 1+  cases25. Both studies concluded that single gene expression is inconclusive and unable 
to distinguish between HER2-low and HER2 0 categories. Another attempt to apply gene expression analysis 
was based on the hypothesis that HER2-low tumors could be HER2-enriched26. However, only a small fraction 
of these tumors fits this criteria; in our study, 7% of HER2-low/HR-positive and 5% of HER2-low/HR-negative 
cases, which is in line with the  literature12,26. At variance with previous studies based on evaluating single ERBB2 
mRNA and/or its targeted genes, we herein employed a distinct discovery-based approach to identify the most 
informative transcriptomic features for each HER2 IHC category by maximizing their differences. These features 
were then integrated into a scoring system. Across all the explored datasets, the HER2-low signature consistently 
displayed its lowest values within the 0 category. The findings highlight the significance of combining multiple 
transcriptomic features to improve their efficacy and address limitations associated with both existing genomic 
classifiers and single gene expression assessment methods. Moreover, a gene expression-based HER2 classifier 
offers advantages as an additional test in challenging cases, complementing existing IHC evaluation, and provides 
observer independence and cost-effectiveness, particularly in resource-limited situations.

The need to accurately identify HER2-low, particularly HER2 1+, arises with the advent of antibody–drug 
conjugates in clinical practice. A tool immune to IHC variability is crucial to ensure effective treatment and 
avoid unnecessary toxic and expensive interventions. The cost-effectiveness of current genomic classifiers, such 
as RT-PCR and open array techniques, further supports their suitability for this purpose.

At the time the present study was conducted, ESMO expert consensus statements advised considering HER2-
low breast cancer as a heterogeneous disease primarily influenced by hormone receptor expression rather than a 
distinct molecular  entity27. This advice was based on previous studies that failed to identify consistent and spe-
cific differences in mutational profiles between HER2-low and HER2 0  tumors28. Similarly, minimal differences 

Table 2.  Patient characteristics according to HER2 IHC categories. *As reported by Prat A, et al. Clin Cancer 
Res 2014;20:511–521.

Patient characteristics

HER2 IHC categories

TotalHER2 0 HER2-low HER2 3+

n % n % n % n %

Tumor size

 ≤ 2 cm 13 12 42 26 10 31 65 21

 2–5 cm 44 40 83 51 19 59 146 48

 > 5 cm 53 48 34 21 3 9 90 30

Missing 0 0 3 2 0 0 3 1

Grade

 II 36 33 86 53 9 28 131 43

 III 74 67 76 47 23 72 173 57

Hormone receptors

 Positive 31 28 119 73 20 63 170 56

 Negative 78 71 41 25 12 38 131 43

Missing 1 1 2 1 0 0 3 1

 PAM50 subtype*

 Luminal A 23 21 69 43 5 16 97 32

 Luminal B 18 16 27 17 2 6 47 15

 HER2-enriched 4 4 10 6 23 72 37 12

 Basal-like 56 51 36 22 1 3 93 31

 Normal-like 6 5 18 11 0 0 24 8

 Undetermined 3 3 2 1 1 3 6 2

 Total 110 100 162 100 32 100 304 100
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in intrinsic subtype classification have been observed once hormone receptors were taken into  account12,26, as 
reported in our study as well.

In this context, our findings offer some insights into HER2-low breast cancer biology. Firstly, we observed 
higher HER2-low signature values in HR-positive breast cancer. While transcript levels may not directly reflect 
protein expression or activity, it is noteworthy that among the HER2-low signature genes, EGR1and STC2, which 
are known estrogen receptor targets, have emerged as key players with significant functional roles. Prior breast 
cancer studies reported down-regulation of EGR1 is linked to unfavorable  prognosis29, while up-regulation of 
STC2 reduces cell proliferation, inhibits epithelial-mesenchymal transition, and is associated with late rather 
than early  recurrence30.

Secondly, the HER2-low signature includes genes that are outside the ER transcriptional network, previously 
described in breast cancer or other malignancies, and with a potential as molecular targets. Among these, SLPI 
(Secretory Leukocyte Protease Inhibitor) is involved in inflammation inhibition, immune response modulation, 
and cell proliferation  promotion31, and is found to be elevated in triple-negative breast cancer patients with poor 
 prognosis32. A2M (Alpha-2-Macroglobulin) has been shown to affect adhesion, migration, and growth by inhib-
iting signaling pathways such as PI3K/AKT and SMAD, while also increasing PTEN levels by down-regulating 
miR-2133. AGTR1 is a poorly described gene in breast cancer that has recently gained attention as a potential 
target for drug  repurposing34. Lastly, the HER2-low signature appears to perform equally well in identifying 
HER2-low cases in both HR-positive and HR-negative tumors, although the low number of HR-negative cases 
prevented conclusive analyses. Since HER2-low cases with HR-negative status are  uncommon12,26, further con-
firmatory analysis using a larger dataset is required.

The strengths of the present study lie in the sufficiently large patient cohorts from a single center. All patients 
participated in a clinical trial, enhancing the reliability of our findings. Patient primary tumor tissues underwent 
gene expression profiling using microarray technology. Importantly, the HER2-low signature performance was 
consistent across various microarray platforms and in silico analysis, indicating its independence from technical 

INT1
n= 125; 16,979 genes

Affymetrix U133 Plus 2.0

Selection of genes with log2(Fold Change)> |1| and Wilcoxon test p< 0.05 after 
Bonferroni adjustment according to the following comparisons:

0 vs. others
1+ vs. others
2+ vs. others
3+ vs. others
1+ and 2+ vs. others

Identification of IHC category-specific genes by Venn diagram  

HER2-low signature generation by Principal Component Analysis 

Evaluation of the discriminatory capability of HER2-low signature

INT2
n= 84; 22,235 genes
Affymetrix HTA-2.0

Discovery set

INT3
n= 95; 19,626 genes

Illumina Human HT-12_V3.0

TCGA
n= 783; 60,660 genes

Illumina HiSeq_RNASeqV2

Confirmatory set

Independent  evaluation of the discriminatory capability of HER2-low signature

GSA81538
n= 402; 27,979 genes

llumina HiSeq 2000

Figure 1.  Study flowchart for HER2-low signature development and testing.
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a.

b.

# gene
symbol

coefficient of
the first PC

1: AGTR1 0.0675
2: ARMCX6 0.0642
3: BMPR1B 0.0747
4: CPB1 0.0667
5: CPLX1 0.0644
6: EGR1 -0.0831
7: FSIP1 0.0887
8: GNG13 0.0529
9: MXRA5 -0.0508

10: NAT1 0.0916
11: PGR 0.0945
12: STC2 0.0884
13: A2M -0.0845
14: KRT6B -0.0899
15: CP -0.0684
16: ELF5 -0.0560
17: MMP7 -0.0711
18: SLC6A14 -0.0759
19: SLPI -0.0642
20: FDCSP -0.0726

Figure 2.  Identification of the 20 IHC category-specific genes and development of the HER2-low signature. a. 
The Venn diagram represents the number of specific and common genes for each HER2 IHC category, following 
their selection by the fold change and Wilcoxon test. The 12 genes identified in the INT1 dataset are in thin 
(3 genes in 1+, 8 genes in 2+ and one gene (CPLX1) in HER2-low); the 8 genes identified in the INT2 dataset 
are in bold; b. Partial correlation diagram and coefficient of the first principal component (PC) for the 20 IHC 
category-specific genes. The full order partial correlations between the 20 genes are visualized as a network, 
in which nodes represent genes and edges the dependencies between them. Thicker lines indicate higher 
correlation, with green lines representing positive correlations between genes and red lines indicating negative 
correlations. The HER2-low signature value was computed by combining the standardized expression of each 
gene with the pertinent first PC coefficient reported in the right part of the panel.
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aspects and probe quality. However, there are certain limitations to consider. This study was conducted on 
samples that may not be representative of the overall breast cancer population, therefore the signature should 
be validated in a prospective setting. The study is based on available retrospective data and further research is 
needed to determine the optimal cut-off for clinical application. Additionally, the verification of the signature 
relied on publicly available databases, and results are to be confirmed in additional external datasets.

Conclusion
This study represents a promising proof of concept for the utilization of a gene expression-based classifier in 
HER2-low breast cancer. The 20-gene HER2-low signature identified here, holds potential especially in distin-
guishing between HER2 0 and HER2-low expressing tumors, even those scored as 1+ at IHC, and in developing 
a selection approach for ADC candidates. Additionally, we have identified specific HER2-low genes, particularly 
those impinging on metabolism and immune response processes, that warrant further investigation and may 
contribute to defining HER2-lowness in the next future.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Figure 3.  Distribution of HER2-low signature values by HER2 IHC categories. a. Discovery; b. Confirmatory; 
and publicly available datasets, c.TCGA and d. GSE81538. Graphics report the distribution of the HER2-low 
signature values according to HER2 IHC categories: 0, HER2-low, and 3+ (left side); and 0, 1+, 2+, 3+ (right 
side). Each box indicates the 25th and 75th percentile. The horizontal lines inside the box indicate the median, 
whiskers indicate the extreme values. Discovery data set, excluding INT2 due to the absence of all IHC 
categories: HER2-low versus 0 (p = 0.0002) and versus 3+ (p = 0.0009); Confirmatory data set: HER2-low versus 0 
(p = 0.0262) and versus 3+ (p = 0.0018); TCGA data set: HER2-low versus 0 (p value 0.049) and versus 3+ (p value 
0.003) and GSE81538 data set: HER2-low versus 0 (p value 0.0005) and verus 3+ (p value < 0.0001).
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