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Research on the influence 
of different sampling resolution 
and spatial resolution in sampling 
strategy on landslide susceptibility 
mapping results
Xianyu Yu 1,2* & Huihui Chen 1

Landslides, recognized as a significant global natural disaster, necessitate an exploration of the 
impact of various resolution types in sampling strategies on Landslide Susceptibility Mapping (LSM) 
results. This study focuses on the segment from Zigui to Badong within the Three Gorges Reservoir 
Area, utilizing two resolution types: sampling resolution and spatial resolution, The Support 
Vector Machine (SVM) is employed to obtain LSM results, which are then analyzed using Receiver 
Operating Characteristic (ROC) curve, specific category accuracy and statistical methods. Artificial 
Neural Network (ANN) and Convolutional Neural Network (CNN) were used to verify the reliability 
of the results. Additionally, five common machine learning models, including Logistic Regression 
(LR), are used to conduct experiments on four sampling resolutions (10 m,30 m,50 m and 70 m) to 
further investigate the effect of sampling resolution on LSM results. These are evaluated using a 
comprehensive quantitative method. The results reveal that increasing spatial resolution improves 
the prediction accuracy, while increasing sampling resolution produces a contrary effect. Furthermore, 
the impact of spatial resolution on LSM results is more pronounced than that of sampling resolution. 
Finally, Fanjiaping landslide and Huangtupo landslide are selected as references for comparative 
analysis, with the results aligning with engineering reality.

A landslide is the process in which a hillside body composed of rock, soil, or debris accumulations is subjected 
to the combined effects of groundwater activity, seismic activity, or artificial slope-cutting, and under the action 
of gravity, an overall downward slide occurs along a certain soft and weak surface1. As one of the most frequent 
types of geological hazards, landslides result in significant losses to human life, the economy, and other areas 
annually. The occurrence of landslides is influenced by numerous factors, including landform, geology, soil com-
position, weather conditions, and land use2. Due to their wide distribution, high frequent, destructive nature, and 
rapid development, landslides present unique characteristics. They can also trigger secondary disasters such as 
river blockages, leading to floods and mudslides, further intensifying the damage3. Consequently, landslides, as 
significant geological events, have profound implications for human survival and development4.

Advancement in Geographic Information System (GIS) and earth observation technology have made Remote 
Sensing (RS) and GIS essential in modeling natural disaster susceptibility5. Landslide Susceptibility Mapping 
(LSM) is a commonly employed approach for predicting the spatial distribution and probability of landslides. 
LSM outcomes are crucial for reducing landslide disaster risks and for efficient land resource allocation6. In LSM 
modeling, the sampling strategy significantly affects the results. Several studies have validated this impact. Liu 
et al. proposed a frequency-ratio based LSM sampling strategy, showing superior performance over conventional 
methods7. Tekin et al. assessed the effects of two landslide sampling techniques on LSM, finding that selecting 
landslide-affected pixels from the entire landslide polygon yields higher prediction accuracy than selecting a 
similar proportion of pixels from any part of the landslide body8. Dagdelenler et al. re-evaluated seed cell sam-
pling strategies, presenting the effects of two different sampling strategies (landslide zones and seed cells) on LSM 
and comparing the susceptibility maps derived from these strategies9. Hussin et al. summarized four common 
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landslide sample extraction strategies: (1) using the center-of-mass method for individual pixel sampling; (2) 
extracting all pixels within the entire landslide body; (3) selecting pixel points in and around the landslide crown 
line using the main scarp upper edge method; (4) the seed-cell approach10. However, these strategies focus solely 
on various landslide sampling methods, and only a small amount of literature has considered the consistency of 
non-landslide and landslide sampling methods11,12.

Different resolutions of samples serve as a global sampling strategy, applying the same method for both 
landslides and non-landslides. Sample resolution includes spatial and sampling resolution. Regarding spatial 
resolution, the prediction accuracy of landslide susceptibility heavily relies on the quality of input data, primarily 
derived from Digital Elevation Models (DEM)13. Therefore, selecting the appropriate DEM spatial resolution 
is a crucial step in LSM research14. Schlögel et al. conducted LSM in the Ubaye Valley of the southern French 
Alps using three different resolutions (5 m, 10 m, and 25 m) for slope units, with their findings favoring a 10 m 
resolution15. Meena et al. evaluated LSM in the Kulu Valley of the Himalayan Mountains using three different 
spatial resolutions (12.5 m, 30 m, and 90 m), highlighting the highest accuracy at a 30 m resolution16. Chen 
et al. assessed the impact of seven spatial resolutions ranging from 30 to 90 m on LSM prediction and identified 
the highest accuracy at a 70 m resolution. Their study concluded that a finer resolution did not necessarily yield 
superior accuracy in LSM prediction14. However, studies regarding the potential impact of sampling resolution 
on LSM have not been reported in the literature. Based on the available literature, it can be concluded that the 
effect of spatial resolution on LSM has no obvious regularity in different study areas and spatial resolution. 
Additionally, there is a notable gap in research concerning the influence of sampling resolution on LSM, so there 
is no unified standard for the potential effect of different resolutions on LSM.

This article takes focuses on Zigui to Badong section of in the Three Gorges Reservoir Area to investigates 
the influence of different sampling resolutions (10 m, 16 m, and 30 m) and spatial resolutions (10 m, 16 m, and 
30 m) on LSM outcomes. Nine LSM factors, including elevation, slope, aspect, curvature, lithology, distance to 
faults, Topographic Wetness Index (TWI), Normalized Difference Vegetation Index (NDVI), and multi-year aver-
age rainfall. The experiment on sampling resolution selected LSM factors using a 16 m × 16 m and 30 m × 30 m 
window based on a fixed LSM factor resolution of 10 m. To correspond with the selected sampling resolution, the 
experiment on spatial resolution used corresponding DEM (10 m, 16 m, and 30 m) and remote sensing images 
[Sentinel-2 (10 m), GF-1 (16 m), and Landsat-8 (30 m)] to obtain the LSM factors. For the experiment, all the 
grid points in the study area were used as the whole sample, the grid points in 70% of the landslide surface and 
an equivalent number of non-landslide grid points were randomly selected to construct the training set, while the 
grid points in the remaining 30% of the landslide surface serves as a validation set. The support vector machine 
(SVM) is used to derive LSM results at different sampling and spatial resolutions, evaluated using the Receiver 
Operating Characteristic (ROC) curve, specific category accuracy and statistical methods. To ensure the reli-
ability of the experimental findings, both artificial neural network (ANN) and convolutional neural network 
(CNN) are employed, and a comprehensive quantitative scoring method evaluates the LSM results of the three 
models. In order to further explore the impact of sampling resolution on LSM results, five common machine 
learning models, including logistic regression (LR), were used to conduct experiments on different sampling 
resolutions (10 m, 30 m, 50 m, and 70 m), which consistently support the conclusions the previous experiment. 
Fanjiaping and Huangtupo landslides are selected for comparative analysis and verification, with results aligning 
with engineering reality. This comprehensive investigation of optimal sampling and spatial resolutions aims to 
enhance the scientific precision and accuracy of LSM, offering significant theoretical and practical value.

The flow chart of this article is shown in Fig. 1.

Figure 1.   Experimental flow chart.
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Study area and data sources
Study area
The study area, situated in the Zigui to Badong section, represents the first area of the Three Gorges Reservoir of 
the Yangtze River, spans 55 km in length and covers an area of 388 square kilometers, situated at 100°18′–110°52′ 
east longitude and 30°01′–30°56′ north latitude. A schematic diagram of the study area is provided in Fig. 2. 
Located within the mid-latitude subtropical monsoon climate zone, the area’s climatic elements are influenced 
by local topography and elevation variations. exhibiting notable spatial and temporal distribution variations 
significant microclimate characteristics17. Geological hazards primarily include landslides, collapses, and bank 
collapses, with landslides being particularly frequent, causing substantial human casualties and economic losses. 
Typical landslides in the area include Fanjiaping, Zhaoshuling, Xintan, Baishuihe, among others18.

Data
Raw data
The main data used in this article and their applications are detailed in Table 1. The 1:50,000 scale geological 
map19 and the 1:10,000 scale landslide hazard map20 can meet the precision requirements of 10 m resolution, and 
can match the highest precision DEM data and remote sensing image data in this article. The landslide hazard 
database includes information about the occurrence time, type, and impact of some landslides in the study area. 

Figure 2.   (a) Schematic map of the Three Gorges reservoir area. (b) Schematic map of the study area crossing 
boundaries. (c) Schematic map of the elevation of the study area.

Table 1.   Data list of the study area.

Name Spatial resolution/scale Use

DEM data 10 m, 12.5 m, 30 m Extract elevation, slope, aspect, TWI and other factors

Sentinel-2
GF-1
Landsat-8

Multispectral 10 m
Multispectral 16 m
Multispectral 30 m

Extract NDVI

Basic geological map 1:50,000 Extract lithology

Landslide hazard map 1:10,000 Extract landslide information

Landslide hazard database – Extract partial landslide time, type, damage, etc

Rainfall data – Get average annual rainfall information



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1549  | https://doi.org/10.1038/s41598-024-52145-w

www.nature.com/scientificreports/

The rainfall data, derived from interpolation at each rainfall monitoring station, which only has time resolution 
but not spatial resolution, so the annual average rainfall for many years is used to eliminate the influence of time 
factors. It should be noted that, for consistency in resolution and facilitating a comprehensive analysis of the 
impact of spatial resolution and sampling resolution on LSM results, the 16 m DEM data utilized in this study 
were obtained by resampling the global 12.5 m DEM data provided by the ALOS satellite.

Factor resolution processing
The factorial resolutions are treated as follows (with ① and ④ being the same experimental data):

①  10 m sampling resolution (SA-10): the basic LSM factors resolution is 10 m, achieved by employing a 
10 m DEM and Sentinel-2 (10 m) remote sensing images to obtain the LSM factors at the corresponding 
sampling resolution.
② 16 m sampling resolution (SA-16): on the basis of the same LSM factors resolution (10 m), the LSM factors 
are selected using a 16 m × 16 m window.
③ 30 m sampling resolution (SA-30): on the basis of the same LSM factors resolution (10 m), the LSM factors 
are selected using a 30 m × 30 m window.
④ 10 m spatial resolution (SP-10): the basic LSM factors resolution is 10 m, achieved by employing a 10 m 
DEM and Sentinel-2 (10 m) remote sensing images to obtain the LSM factors at the corresponding spatial 
resolution.
⑤ 16 m spatial resolution (SP-16): the LSM factors are resolved at a spatial resolution of 16 m, obtained 
through resampling a 12.5 m DEM to a 16 m DEM and GF-1 (16 m) remote sensing images to obtain the 
LSM factors at the corresponding spatial resolution.
⑥ 30 m spatial resolution (SP-30): the LSM factors are resolved at a spatial resolution of 30 m, achieved by 
employing a 30 m DEM and Landsat-8 (30 m) remote sensing images to obtain the LSM factors at the cor-
responding spatial resolution.

Factor data
Based on the literature review, nine commonly used base factors are selected for this study: elevation, slope, 
aspect, curvature, lithology, distance to faults, TWI, NDVI, and multi-year average rainfall6,21,22. To avoid cor-
relation and multicollinearity among these factors, diagnostic methods like Pearson Correlation Coefficient23, 
Variance Inflation Factor and Tolerance24, and Relief-F algorithms25 are employed. The final diagnosed landslide 
evaluation factors are shown in Fig. 3, with related information presented in Table 2.

Software
The software used in this article includes ArcGIS 10.8, ENVI 5.3, IBM SPSS Statistics 26, IBM SPSS Modeler 18, 
and PyTorch 1.7.1. The sources and uses are shown in Table 3.

Experimental models and methods
Models
SVM model
SVM, initially proposed by Vapnik26, is a supervised learning method utilized for classification, regression, and 
anomaly detection27. Known for its high prediction accuracy and performance, SVM is considered a classic 
nonlinear prediction model for evaluation28. Assuming a linearly separable training vector xi (i = 1, 2, …, n) 
belonging to two different classes yi =  ± 1, SVM can find an n-dimensional hyperplane in the data space using 
a kernel function, so that the margin ‖ w ‖

/

2 between the classification boundary and the nearest data point is 
the largest, thereby clearly distinguishing between landslide and non-landslide categories29. This hyperplane is 
represented by formulas (1) and (2).

where ‖ w ‖ is the normal vector norm of the hyperplane, b is a scalar, xi is a point on the hyperplane, and w 
is a vector perpendicular to the hyperplane.

Commonly employed kernel functions include linear, polynomial, Radial Basis Function (RBF), and Sigmoid. 
Among these, RBF demonstrates superior performance with fewer parameters and greater flexibility30. Therefore, 
this study adopts an RBF kernel-based SVM approach for LSM.

The schematic map of the SVM model is shown in Fig. 4.

ANN model
ANN is a nonlinear computational model that mimics the human nervous system for information acquisition, 
processing, representation, and calculation31. The ANN model offers several advantages: (a) strong generalization 
ability, (b) robust self-learning capability and adaptability, (c) excellent nonlinear mapping capability, (d) high 
fault tolerance and good fitting performance28. Typically, the ANN model consists of three interconnected layer 
types: input layer, hidden layer, and output layer29, as shown in Fig. 5. In this article, the input layer represents 
the LSM factors, the hidden layer encompasses the neurons utilized, and the output layer signifies the predicted 
likehood of landslide occurrence along with the calculation of its probability value.

(1)L =
1

2
�w�2

(2)yi((w × xi)+ b) ≥ 1
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Figure 3.   LSM factors in the study area: (a) elevation, (b) aspect, (c) slope, (d) curvature, (e) distance from 
faults, (f) lithology, (g) TWI, (h) NDVI, (i) rainfall.

Table 2.   LSM factor-related information.

Category Factors Unit Value range

Topography

Elevation m 31–1969

Aspect – (1) Flat; (2) north; (3) northeast; (4) east; (5) southeast; (6) south; (7) 
southwest; (8) west; (9) northwest

Slope m 0–83.6972

Curvature – −48.6784 to 43.92

Geological
Distance from faults m 0–8739.89

Lithology – (1) Hard rock; (2) soft–hard alternating rock; (3) soft rock

Hydrography TWI – 1.89579–21.1451

Human engineering activities NDVI – −0.6766 to 0.9995

Atmospheric rainfall Rainfall mm/year 964.029–1090.24

Table 3.   Sources and uses of software.

Name Source Use

ArcGIS 10.8 https://​www.​esri.​com/ Landslide susceptibility mapping

ENVI 5.3 https://​envi.​geosc​ene.​cn/ Remote sensing image processing

IBM SPSS Statistics 26 https://​www.​ibm.​com/ Data analysis

IBM SPSS Modeler 18 https://​www.​ibm.​com/ SVM and ANN modeling

PyTorch 1.7.1 https://​pytor​ch.​org/ CNN modeling

https://www.esri.com/
https://envi.geoscene.cn/
https://www.ibm.com/
https://www.ibm.com/
https://pytorch.org/
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CNN model
The deep learning algorithm CNN, introduced by LeCun et al.32, is an enhanced approach based on ANN, where 
artificial neurons respond to surrounding elements to extract information33. A typical CNN model includes 
five essential components: the input layer, convolutional layer, pooling layer, fully connected layer, and output 
layer2, as shown in Fig. 6. The convolutional layer, central to CNN, consists of multiple convolutional kernels that 
linearly map the input data to extract finer feature information. The adoption of a shared weight strategy in the 
convolutional layer allows the entire network to be trained with fewer parameters compared to a fully connected 
network34. The pooling layer crucial in CNN, performs downsampling operations through various nonlinear 
functions to reduce feature size, retain essential details, and mitigate overfitting with different data35. The fully 
connected layer acts as a “classifier” within the convolutional neural network, with its input comprising high-
dimensional features extracted after the operations of the convolutional and pooling layers36. The parameters of 
CNN used in this article are shown in Table 4.

Figure 4.   Schematic map of the SVM model.

Figure 5.   Schematic map of the ANN model.
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Evaluation methods
ROC curve
ROC curve is widely employed for analyzing LSM results37–39. The ROC curve focuses on binary classification 
model, with four possible outcomes in prediction results: (1) True Positive (TP), (2) False Positive (FP), (3) 
True Negative (TN), (4) False Negative (FN). These results can be represented by a confusion matrix, as shown 
in Fig. 7.

Figure 6.   Schematic map of the CNN model.

Table 4.   CNN parameter values.

Various parameters Parameter value Various parameters Parameter value

Convolution kernel size 1 × 3 Iterations 30

Max pooling kernel 1 × 2 Batch data size 2000

Activation function ReLu Learning rate 0.0001

Error function Cross entropy error Optimizer Adam

Figure 7.   Schematic map of the dichotomous model.
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Where P is a positive example and N is a negative example40.
The ROC curve begins at the point (0, 0) and ends at (1, 1), plotting the true negative rate (TNR) represented 

on the horizontal axis and the true positive rate (TPR) depicted on the vertical axis41. This article evaluates LSM 
results at different sampling and spatial resolutions through ROC curves and AUC values.

Specific category precision analysis
The conventional approach for quantitative analysis in LSM relies on Landslide Susceptibility Zoning (LSZ) 
results, calculated by the ratio of landslide area in highly susceptible zones to total landslide area. The specific 
category precision analysis method, however, considers the number of calculation units within classified zones, 
thus addressing the issue of the model producing favorable results when a large portion of the LSZ falls within 
the extremely high-risk category. This method provides a more suitable approach for LSM results analysis42. As 
shown in formula (3).

where i = 1, 2, …, n, n is the number of landslide-prone zoning categories, Ai is the number of grid cells occupied 
by landslides in the i-th landslide-prone zoning category, Bi is the number of landslides in the i-th landslide-prone 
area category, and Pi is the specific category precision of the i-th landslide-prone area category.

Statistical methods
Statistical methods employed in this study include Overall accuracy (OA), Precision, Recall, F-measure, and 
Matthews correlation coefficient (MCC). As shown in formula (4)–(8)43.

where OA measures the ratio of correct predictions to total predictions. Precision and Recall values range 
between 0 and 1, with values closer to 1 indicating a higher proportion of correct predictions. In cases where 
Precision and Recall exhibit conflicting behavior, a commonly used approach is to consider their harmonized 
measure, the F-measure. MCC is essentially the correlation coefficient between actual and predicted binary clas-
sifications, yielding values ranging from −1 to + 1, where + 1 means perfect prediction, 0 means no better than 
random, and −1 means complete inconsistency between prediction and actual44.

Landslide susceptibility mapping
Create a training set and a validation set
The training set was composed of an equal proportion of landslide samples (strain value of 1) and non-landslide 
samples (strain value of 0)45, Furthermore, several scholars have investigated the impact of different sample ratios 
in the training dataset on the outcomes of LSM46. Considering various LSM models, this article opted to construct 
the training set using an equal proportion of landslide and non-landslide samples. Taking the spatial resolution 
of 10 m as an example, the study area contained 3,829,404 effective grid cells, with 202 landslide occurrences. To 
construct the training sample set, 70% of the landslide surface were randomly selected, resulting in 141 landslides 
(164,274 grid cells), along with an equal number of non-landslide data (164,274 grid cells). Consequently, the 
training set comprised a total of 328,548 grid cells. The remaining 30% of the landslide surface (61 landslides, 
68,542 grid cells) were set aside for validation. As shown in Fig. 8.

LSM results
Landslide susceptibility index (LSI)
The training set constructed in "Create a training set and a validation set" was used for training the SVM model. 
Then, the entire set is utilized as input for the trained SVM model to generate the landslide susceptibility index 
(LSI) for the study area, as shown in Fig. 9.

Landslide susceptibility zoning (LSZ)
To enhance the comprehensibility of the LSM results and provide a more intuitive representation, a manual 
threshold method was employed to categorize the landslide susceptibility index (LSI) map shown in Fig. 9 into 

(3)Pi =
Ai

Bi
× 100%

(4)OA =
TP + TN

TP + FP + TN + TP

(5)Precision =
TP

TP + FP

(6)Recall =
TP

TP + FN

(7)F −measure =
2× Precision× Recall

Precision+ Recall

(8)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)
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five distinct levels: Very Low (0–0.5), Low (0.5–0.75), Moderate (0.75–0.85), High (0.85–0.95), and Very High 
(0.95–1). This classification aimed to obtained LSZ with different sampling and spatial resolutions, as shown in 
Fig. 10.

Experimental results
ROC curve and AUC value
The AUC corresponds to the region enclosed by the ROC curve and the X-axis. A larger AUC suggests higher 
precision47. Figure 11 and Table 5 show the ROC curves and AUC values from the SVM model at different 
sampling and spatial resolutions.

According to Table 5, it is evident that among the sampling resolutions, the maximum AUC value of 0.871 
is obtained for SA-10. Conversely, among the spatial resolutions, the highest AUC value of 0.913 is obtained for 
SP-30. Additionally, AUC values for spatial resolutions consistently higher than those for sampling resolutions.

Analysis results of specific category precision
Specific category precision based on SVM model’s experimental results at different sampling and spatial resolu-
tions are shown in Table 6.

According to Table 6, the highest specific category precision in the “Very High” category for sampling resolu-
tions was 39.14% for SA-10, while for spatial resolutions, it was 52.51% for SP-30. Additionally, spatial resolutions 
yielded consistently higher specific category precision in the “Very High” category than sampling resolutions.

Results of statistical methods
The calculation results for five statistical methods, including OA, Precision, Recall, F-measure, and MCC, are 
presented in Table 7.

Figure 8.   Spatial distribution of training set and validation set.

Figure 9.   LSI produced by: (a) SA-10, (b) SA-16, (c) SA-30, (d) SP-10, (e) SP-16, (f) SP-30.
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Figure 10.   LSZ produced by: (a) SA-10, (b) SA-16, (c) SA-30, (d) SP-10, (e) SP-16, (f) SP-30.

Figure 11.   ROC curve.

Table 5.   AUC values of different sampling and spatial resolutions. Maximum value is in bold.

Resolution type AUC​

95% confidence interval

Lower limit Upper limit

SA-10 0.871 0.870 0.872

SA-16 0.868 0.867 0.869

SA-30 0.866 0.864 0.868

SP-10 0.871 0.870 0.872

SP-16 0.901 0.900 0.902

SP-30 0.913 0.912 0.915
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According to Table 7, among the sampling resolutions, the 10 m resolution exhibits the highest values for OA 
(78.68%), Precision (0.1985), Recall (0.8257), F-measure (0.3201), and MCC (0.3767). Conversely, among the 
spatial resolutions, the 30 m resolution exhibits the highest values for OA (83.00%), Precision (0.2435), Recall 
(0.8636), F-measure (0.3798), and MCC (0.4286). Additionally, the statistical method values for spatial resolution 
consistently surpass those for the sampling resolution.

Analysis of results based on SVM for two resolutions
The results from the SVM model in Fig. 11 and Tables 5, 6 and 7 in "Experimental results" reveal that as the sam-
pling resolution increases, the AUC value gradually decreases, the specific category precision for the “Very High” 
category decreases, and the performance metrics of the statistical methods (OA, Precision, Recall, F-measure, and 
MCC) also decline. Conversely, as the spatial resolution increases, the AUC value gradually increases, the specific 
category precision for the “Very High” category improves, and the performance metrics of the statistical methods 
also enhance. Furthermore, the AUC value, the specific category precision for the “Very High” category, and the 
performance metrics of the statistical methods are consistently favor spatial resolution over sampling resolution.

Reliability analysis of the conclusions
To ensure the reliability of the impact of different sampling and spatial resolutions on LSM results, both ANN 
and CNN models were employed for LSM analysis. These models were trained and validated using identical 
datasets to ensure that any variations in the LSM results were solely attributed to changes in the models. Fur-
thermore, AUC value, specific category precision for the “Very High” category, and statistical methods were 
used to analyze the experimental results. The results, as shown in Tables 8, 9 and 10 in "Analysis of AUC values 
for two models", “Analysis of specific category precision for two models” and "Statistical methods analysis of 
ANN and CNN models".

Table 6.   Analysis results of specific category precision. Maximum value is in bold.

Resolution type

Category of susceptibility (%)

Very low Low Medium High Very high

SA-10 1.42 10.64 22.83 30.73 39.14

SA-16 1.44 11.45 22.94 29.60 38.69

SA-30 1.46 11.60 22.28 29.11 38.23

SP-10 1.42 10.64 22.83 30.73 39.14

SP-16 1.08 12.53 22.98 32.39 48.34

SP-30 1.05 12.47 22.87 33.31 52.51

Table 7.   Results of calculation with statistical methods. Maximum value is in bold.

Resolution type

Statistical methods

OA (%) Precision Recall F-measure MCC

SA-10 78.68 0.1985 0.8257 0.3201 0.3767

SA-16 78.49 0.1979 0.8223 0.3190 0.3758

SA-30 78.28 0.1933 0.8207 0.3129 0.3708

SP-10 78.68 0.1985 0.8257 0.3201 0.3767

SP-16 81.37 0.2274 0.8633 0.3600 0.4113

SP-30 83.00 0.2435 0.8636 0.3798 0.4286

Table 8.   AUC values for two models. Maximum value is in bold.

Resolution type

AUC​

ANN CNN

SA-10 0.880 0.857

SA-16 0.872 0.851

SA-30 0.857 0.846

SP-10 0.880 0.857

SP-16 0.911 0.885

SP-30 0.921 0.890
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Analysis of AUC values for two models
According to Table 8, it is evident that both the ANN and CNN models exhibit results that closely resemble those 
of the SVM model. Among the sampling resolutions, the highest AUC values were achieved at a 10 m resolution, 
with respective values of 0.880 and 0.857. Moreover, the AUC values obtained by the models gradually decrease 
as the sampling resolution increases. Concerning spatial resolution, the highest AUC values were achieved at a 
30 m resolution, with respective values of 0.921 and 0.890. Furthermore, the AUC values obtained by the models 
gradually increase as the spatial resolution increases. Additionally, AUC values for spatial resolution consistently 
surpass those for sampling resolution.

Analysis of specific category precision for two models
According to Table 9, it is evident that both the ANN and CNN models exhibit results that closely resemble those 
of the SVM model. Among the sampling resolution, the specific category precision for the “Very High” category 
was achieved at a 10 m resolution, with respective values of values of 49.12% and 44.19%. Moreover, the specific 
category precision obtained by the models gradually decrease as the sampling resolution increases. Regarding 
spatial resolution, the specific category precision for the “Very High” category were achieved at a 30 m resolu-
tion, with respective values of 56.88% and 46.41%. Furthermore, the specific category precision obtained by the 
models gradually increase as the spatial resolution increases. Additionally, the specific category precision for the 
“Very High” category for spatial resolution are surpasses that in sampling resolution.

Statistical methods analysis of ANN and CNN models
According to Table 10, it is evident that both the ANN and CNN models exhibit results that are slightly differ 
from those of the SVM model. In the validation results of the ANN model, the highest OA (77.93%), Precision 
(0.1961), F-measure (0.3186), and MCC (0.3754) were achieved at a resolution of 10 m for sampling resolu-
tion, with only the Recall (0.8504) being highest at a resolution of 16 m. For spatial resolution, the highest OA 
(83.80%), Precision (0.2534), F-measure (0.3921), and MCC (0.4392) were achieved at a resolution of 30 m, with 
only the Recall (0.8678) being highest at a resolution of 16 m. In the validation results of the CNN model, the 
highest OA (80.33%), Precision (0.2184), Recall (0.8044), and F-measure (0.3101) were achieved at a resolution 
of 10 m for sampling resolution, only the MCC (0.3662) was highest at a resolution of 16 m. For spatial resolu-
tion, the highest OA (80.68%) and Recall (0.8382) were achieved at a resolution of 30 m, the highest Precision 

Table 9.   Analysis results of specific category precision for two models. Maximum value is in bold.

Resolution type

Specific 
category 
precision-"very 
high"

ANN CNN

SA-10 49.12 44.19

SA-16 47.95 42.01

SA-30 45.90 41.59

SP-10 49.12 44.19

SP-16 56.49 45.18

SP-30 56.88 46.41

Table 10.   Statistical methods under ANN and CNN models. Maximum value is in bold.

Model Resolution type

Statistical methods

OA (%) Precision Recall F-measure MCC

ANN

SA-10 77.93 0.1961 0.8488 0.3186 0.3754

SA-16 76.51 0.1860 0.8504 0.3052 0.3636

SA-30 73.79 0.1684 0.8490 0.2811 0.3422

SP-10 77.93 0.1961 0.8488 0.3186 0.3754

SP-16 82.05 0.2350 0.8678 0.3698 0.4200

SP-30 83.80 0.2534 0.8667 0.3921 0.4392

CNN

SA-10 80.33 0.2184 0.8044 0.3101 0.3531

SA-16 80.17 0.1998 0.7998 0.3008 0.3662

SA-30 79.03 0.1895 0.7059 0.2989 0.3572

SP-10 80.33 0.2184 0.8044 0.3101 0.3531

SP-16 80.35 0.2226 0.8095 0.3482 0.3998

SP-30 80.68 0.2071 0.8382 0.3321 0.3873
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(0.2226), F-measure (0.3482), and MCC (0.3998) were achieved at a resolution of 16 m. Additionally, the OA, 
Precision, Recall, F-measure, and MCC values for spatial resolution exceed those for sampling resolution.

Quantitative analysis of LSM results
Given the inconsistent results among the SVM, ANN, and CNN models using statistical methods, a scoring 
method was employed to provide a comprehensive evaluation of the impact of different sampling and spatial 
resolutions on LSM. This method involved evaluating the AUC value of LSM results, the specific category preci-
sion for the “Very High” category, and statistical methods. The scoring principle is as follows: the AUC value, 
the specific category precision for the “Very High” category, and statistical methods obtained from experiments 
with different sampling and spatial resolutions are ranked from high to low and assigned scores ranging from 3 
to 1, with 3 being the highest score and 1 the lowest. In the case of ties, the lower score is assigned. For statistical 
methods, the score is determined by averaging the scores obtained from the five methods: OA, Precision, Recall, 
F-measure, and MCC. A higher score in the quantitative analysis indicates a higher level of prediction accuracy24.
The score tables are shown in Tables 11 and 12.

According to Tables 11 and 12, it can be observed that for sampling resolution, the highest integrated scores of 
AUC value, specific category precision for the "Very High" category, and the average value of statistical methods 
in the comprehensive quantitative evaluation results of the SVM, ANN, and CNN models were obtained at a 
sampling resolution of 10 m, with scores of 9, 8.6, and 8.6, respectively. Regarding spatial resolution, the highest 
integrated scores of AUC value, specific category precision for the “Very High” category, and the average value 
of statistical methods in the comprehensive quantitative evaluation results of the SVM, ANN, and CNN models 
were obtained at a spatial resolution of 30 m, with scores of 9, 8.8, and 8.2, respectively.

Based on comprehensive quantitative analysis, it has been observed that the prediction accuracy of LSM 
results decreases with an increase in sampling resolution, while it increases with an increase in spatial resolution. 
Moreover, the values of AUC, specific category precision for the “Very High” category, and statistical methods at 
the three different spatial resolutions are higher than those at the sampling resolution, indicating that the impact 
of spatial resolution on LSM results is greater than that of sampling resolution.

Further experiments on sampling resolution
Given the absence of relevant research on the effect of sampling resolution on LSM results, this study will further 
investigate the performance results of different sampling resolutions under various machine learning models to 
verify the impact of sampling resolution on LSM results. This study includes five widely employed machine learn-
ing models: SVM, ANN, LR, C5.0, and Bayes, to model different sampling resolutions (10 m, 30 m, 50 m, and 
70 m). The LSM results will be evaluated using AUC values, specific category precision, and statistical methods. 

Table 11.   Comprehensive quantitative evaluation results for sampling resolution. Maximum value is in bold.

Model Sampling resolution AUC​ Specific category precision “very high” Statistical methods Total score

SVM

10 3 3 3 9

16 2 2 2 6

30 1 1 1 3

ANN

10 3 3 2.6 8.6

16 2 2 2.2 6.2

30 1 1 1.2 3.2

CNN

10 3 3 2.6 8.6

16 2 2 2.2 6.2

30 1 1 1.2 3.2

Table 12.   Comprehensive quantitative evaluation results for spatial resolution. Maximum value is in bold.

Model Spatial resolution AUC​ Specific category precision “very high” Statistical methods Total score

SVM

10 1 1 1 3

16 2 2 2 6

30 3 3 3 9

ANN

10 1 1 1 3

16 2 2 2.2 6.2

30 3 3 2.8 8.8

CNN

10 1 1 1.2 4.2

16 2 2 2.8 6.8

30 3 3 2.2 8.2
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Furthermore, a comprehensive quantitative assessment will be conducted through the utilization of a scoring 
method. The results of AUC values and specific category precision are shown in Figs. 12 and 13, while Tables 13 
and 14 provide the statistical methods and score tables.

In response to the results of Figs. 12 and 13 and Table 13, a comprehensive quantitative assessment will be 
made using a scoring method, as shown in Table 14.

Figure 12.   AUC values.

Figure 13.   Specific category precision “Very High”.
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According to Table 14, the comprehensive quantitative evaluation results of SVM, ANN, LR, C5.0, and Bayes 
models indicate that, overall, AUC value, specific category precision for the “Very High” category, and statistical 
methods average, the highest comprehensive score of the three is 10 m sampling resolution, which are 12, 11.8, 
11.8, 11.8, and 10.6, respectively, Moreover, the total score decreases as the sampling resolution increases, Based 
on the above results, it is demonstrated that the prediction accuracy of the LSM results decreases as the sampling 
resolution increases, consistent with the findings in "Reliability analysis of the conclusions"; thus, validating the 
effect of sampling resolution on the results of landslide susceptibility assessment.

Table 13.   Statistical methods under five models. Maximum value is in bold.

Model Resolution

Statistical methods

OA (%) Precision Recall F-measure MCC

SVM

10 78.68 0.1985 0.8257 0.3201 0.3767

30 78.28 0.1933 0.8207 0.3129 0.3708

50 78.10 0.1910 0.8165 0.3095 0.3679

70 77.33 0.1869 0.8255 0.3048 0.3638

ANN

10 77.93 0.1961 0.8487 0.3186 0.3754

30 73.79 0.1684 0.8499 0.2821 0.3422

50 74.75 0.1701 0.8244 0.2819 0.3439

70 73.72 0.1664 0.8238 0.2725 0.3580

LR

10 76.57 0.1789 0.7948 0.2920 0.3530

30 76.17 0.1766 0.7924 0.2861 0.3581

50 76.12 0.1776 0.7908 0.2900 0.3514

70 76.13 0.1762 0.7907 0.2886 0.3501

C5.0

10 96.38 0.6816 0.7317 0.7111 0.7032

30 91.94 0.4114 0.7826 0.5393 0.5543

50 87.15 0.2927 0.8031 0.4290 0.4661

70 84.39 0.2567 0.8406 0.3933 0.4391

Bayes

10 74.57 0.1623 0.7648 0.2678 0.3327

30 75.13 0.1650 0.7700 0.2718 0.3362

50 73.95 0.1601 0.7845 0.2657 0.3310

70 73.65 0.1590 0.7870 0.2465 0.3296

Table 14.   Comprehensive quantitative evaluation results. Maximum value is in bold.

Model Resolution AUC​ Specific category precision “very high” Statistical methods Total score

SVM

10 4 4 4 12

30 3 3 3 9

50 2 2 1.8 5.8

70 1 1 1.2 3.2

ANN

10 4 4 3.8 11.8

30 3 3 2.4 8.4

50 2 1 2.4 5.4

70 1 2 1.4 4.4

LR

10 4 4 3.8 11.8

30 1 3 2.6 6.6

50 2 2 2.4 6.4

70 2 1 1.2 4.2

C5.0

10 4 4 3.4 11.4

30 3 3 2.8 8.8

50 1 2 2.2 5.2

70 2 1 1.6 4.6

Bayes

10 4 4 2.6 10.6

30 3 2 3.6 8.6

50 1 3 2.2 6.2

70 2 1 1.6 4.6
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Discussion
The LSZ map obtained from the SVM model at 30 m spatial resolution is chosen as an example for analysis. It 
is shown in Fig. 14.

As can be seen from Fig. 14, there are 21 km2 of high susceptibility areas, accounting for 5.41% of the total 
area, and 12 km2 of very high susceptibility areas, accounting for 3.09% of the total area. In addition, the medium, 
high, and very high susceptibility subzones are mainly located along the river, and the low and very low suscep-
tibility subzones are mainly located further away from the water system. Through field surveys, it is evident that 
landslides are primarily located in the medium, high, and very high susceptibility zones, accounting for 95.05% of 
the total. Similar conclusions were found in the LSM results at other resolutions, indicating that the experimental 
results obtained are consistent with the distribution of landslides and engineering experience in the study area.

In order to further validate the conclusions obtained in this article, Fanjiaping landslide and Huangtupo land-
slide were selected for comparative analysis and validation of the results. Their distribution is shown in Fig. 15.

Combining the distribution of known landslide surfaces in the study area (Fig. 15) and the results of LSZ 
(Fig. 10), and selecting the Huangtuopo landslide and the Fanjiaping landslide as a reference to get Fig. 16.

In the case of the Huangtupo landslide, the northwest corner of SA-30 exhibits the highest prediction accuracy, 
and the degree of agreement of its prediction results gradually increases as the sampling resolution decreases. 
Regarding SP-30, it displays the highest agreement in prediction results, while the north and northwest corners 
of SP-16 have higher prediction accuracies, with the agreement of their prediction results gradually decreasing 
as the spatial resolution decreases. For the Fanjiaping landslide, higher prediction accuracies are observed in 
the northern, central, and northwestern corners of SA-30, with the degree of agreement of its prediction results 
increasing as the sampling resolution decreases. In the case of SP-30, it includes almost the entire landslide sur-
face, and the degree of agreement gradually decreases with the decrease in spatial resolution. Moreover, the pre-
dictions at spatial resolutions tend to match more closely than those at their corresponding sampling resolutions.

The analysis of the experimental results in "Experimental results" and "Reliability analysis of the conclusions" 
has led to the conclusion that the highest prediction accuracy is achieved with a 10 m sampling resolution. Since 
there is no relevant study on the effect of sampling resolution on LSM results to corroborate these findings, 
this study further explores the impact of sampling resolution in "Further experiments on sampling resolution", 
which yields experimental results that align with the previous conclusions. This further validates the influence 
that sampling resolution has on LSM results. This influence may be attributed to the influence of the number of 
training sample points with 10 m sampling resolution is sufficiently large compared to the sampling resolutions 
of 16 m, 30 m, 50 m and 70 m, and a sufficient number of training sample points can construct a model that is 

Figure 14.   LSZ chart for SA-30.

Figure 15.   Distribution of landslides. (The pictures of the Huangtupo landslide and the Fanjiaping landslide 
on the left are taken at the scene, Remote sensing imagery from publicly available Sentinel-2 satellite imagery; 
https://​senti​nel.​esa.​int/).

https://sentinel.esa.int/
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more relevant to the actual situation. However, it is important to note that the difference in sampling resolution 
also affects the spatial correlation between sample points. When conducting statistical analyses of data with 
spatial attributes, it is necessary to consider the interdependence of training samples, and the spatial correla-
tion between the samples should be reduced as much as possible48. Therefore, in future studies, it is important 
to explore a suitable sampling resolution that can reduce the spatial correlation between sample points while 
ensuring a sufficient number of training sample points for the analysis of LSM results.

The analysis of experimental results in "Experimental results" and "Reliability analysis of the conclusions" 
indicates that a 30 m spatial resolution yields the highest prediction accuracy. This finding diverges from several 
existing studies, possibly due to the influence of spatial resolution on landslides being contingent on the scale 
of landslides within the study area. Utilizing identical resolutions for both landslides and geo-environmental 
information may introduce potential biases49. For example, small grid cells adeptly capture morphological details 
of shallow landslides but are less effective for large, deep-seated landslides, whose features are more discernible 
at coarser resolutions50,51. The study also acknowledges certain limitations: (1) Landslides, as complex natural 
hazards, are influenced by various geological and environmental factors, complicating accurate modeling; (2) The 
quality of the DEM data; (3) The limited number of landslide references in the database. Consequently, further 
research on the optimal spatial resolution for predictive LSM modeling is warranted.

Conclusion
This article focuses on the section from Zigui to Badong in the Three Gorges Reservoir Area as the study area. The 
SVM model is employed to generate LSM results under various sampling and spatial resolutions. The obtained 
results are then evaluated and analyzed using ROC curves, specific category accuracy, and statistical methods. 
To ensure the reliability of the experimental findings, ANN and CNN models were also used for verification. 
Subsequently, a comprehensive quantitative scoring method is employed to assess the LSM results from obtained 
the three models. To verify the reliability of the sampling resolution results, five models of SVM, ANN, LR, C5.0 
and Bayes were selected to model and discuss four different sampling resolutions (10 m, 30 m, 50 m and 70 m). 
The total score results indicate that the highest sampling resolution of 10 m yields the best prediction accuracy for 
LSM results. As the sampling resolution increases, the prediction accuracy of LSM results decreases, consistent 
with the experimental results obtained in "Reliability analysis of the conclusions". The results show that: firstly, 
the results of 10 m sampling resolution in SVM, ANN, and CNN models outperform those at 16 m and 30 m. 
As the sampling resolution increases, the accuracy of LSM result predictions decreases. Conversely, the results 
of 30 m spatial resolution in SVM, ANN, and CNN models are superior to those at 10 m and 16 m. Moreover, as 
the spatial resolution increases, the accuracy of LSM result predictions increases. Secondly, AUC values, specific 
category precision for the “Very High” category, and statistical methods results derived from the spatial resolution 
are superior to those obtained from the sampling resolution. This indicates that spatial resolution has a greater 
impact on the LSM results than sampling resolution. Finally, Fanjiaping landslide and Huangtupo landslide are 

Figure 16.   Detailed map of the Huangtupo landslide and Fanjiaping landslide (satellite images from Google 
Earth Pro 7.3; https://​www.​google.​com/​intl/​en/​earth/).

https://www.google.com/intl/en/earth/
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selected as references for comparative analysis and verification of the results, and the results obtained are in line 
with the engineering reality.

This article provides systematic research on different sampling and spatial resolutions, which can provide a 
certain degree of reference for the selection of sampling resolution and spatial resolution of LSM factors when 
researchers carry out LSM. These findings contribute to improving the scientific accuracy and precision of LSM, 
holding significant theoretical and practical value for engineering applications.

Data availability
The data processing platform can be downloaded directly through the link provided in Table 3. However, basic 
geographic data, basic geological data, and landslide distribution data are all confidential data in China. Accord-
ing to the requirements of relevant laws, these confidential data have been decrypted when we use them. Any 
researchers in related fields that need these decrypted data can contact the corresponding author to obtain them.
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