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Droplet‑based logic gates 
simulation of viscoelastic fluids 
under electric field
F. P Santos 1*, G. Tryggvason 2 & G. G. S. Ferreira 3

Nano and microfluidic technologies have shown great promise in the development of controlled 
drug delivery systems and the creation of microfluidic devices with logic‑like functionalities. Here, 
we focused on investigating a droplet‑based logic gate that can be used for automating medical 
diagnostic assays. This logic gate uses viscoelastic fluids, which are particularly relevant since bio‑
fluids exhibit viscoelastic properties. The operation of the logic gate is determined by evaluating 
various parameters, including the Weissenberg number, the Capillary number, and geometric 
factors. To effectively classify the logic gates operational conditions, we employed a deep learning 
classification to develop a reduced‑order model. This approach accelerates the prediction of operating 
conditions, eliminating the need for complex simulations. Moreover, the deep learning model allows 
for the combination of different AND/OR branches, further enhancing the versatility of the logic gate. 
We also found that non‑operating regions, where the logic gate does not function properly, can be 
transformed into operational regions by applying an external force. By utilizing an electrical induction 
technique, we demonstrated that the application of an electric field can repel or attract droplets, 
thereby improving the performance of the logic gate. Overall, our research shows the potential of 
the droplet‑based logic gates in the field of medical diagnostics. The integration of deep learning 
classification algorithms enables rapid evaluation of operational conditions and facilitates the design 
of complex logic circuits. Additionally, the introduction of external forces and electrical induction 
techniques opens up new possibilities for enhancing the functionality and reliability of these logic 
gates.

Nano and microtechnologies have led to scientific breakthroughs in several disciplines with many applica-
tions, such as medicine, biomaterials, solar cells, and energy  production1–4. Nano and microfluidic technologies 
are currently acknowledged as emerging tools for preparing drugs with controlled properties and/or creating 
microfluidic devices similar to logic  circuits5–7. Thus, there have been significant efforts to elucidate the underly-
ing physics of microfluidic equipment. There is, currently, a particular interest in understanding droplet-based 
microfluidic devices due to their numerous applications, for example, on-chip separation, biochemical reactor, 
and logic  gates8–11.

Exploring viscoelastic droplet logic gates, as discussed  by9, is part of a quest to discover new ways of comput-
ing. This involves using fluid dynamics properties for computation and encoding data beyond traditional elec-
tronic parts. Viscoelastic droplet logic can mimic some aspects of biology, which could help identify biological 
substances, as suggested  by12. Viscoelastic droplet logic gates could also help create structures using biology-based 
building blocks and logical  operations13. There are several applications for droplet-based microfluidic systems 
with significant scientific impact, especially for those with rigorously controlled dynamics.

Several studies have tried to predict the droplets dynamics in microfluidic  devices14–16. Most of them are 
focused on Newtonian  fluids8,17, although most real applications involve non-Newtonian fluids, such as polymers 
and  emulsions18. Sang et al.19 investigated the viscosity effect on droplet formation in T-shaped microchannels 
for three types of continuous fluids; a Newtonian, a non-Newtonian power-law fluid, and a Bingham fluid. They 
evaluated the effect of the flow behavior index n, the coefficient K, and τ0 (yield stress in the Bingham model), 
observing that the droplet diameter is strongly dependent on those three parameters. They concluded in their 
numerical analysis that the droplet size decreases when K and n increase, and the droplet extension increases 
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with τ0 . Sontti and Atta compared the micro-droplet dynamics in T-junction20 and cross-junction21 geometries. 
They concluded that rheological behavior is a crucial parameter in the shape and size of the droplet formation. 
Chen et al.22 obtained similar results  as19–21, but stated that the index n is more important than K.

Qiu et al.23 studied the micro-droplet formation numerically and experimentally in a cross-junction for 
Newtonian and non-Newtonian fluids using the power-law model. They concluded that non-Newtonian liquid 
flow yields smaller droplet sizes due to its greater shear stress magnitude. Fatehifar et al.24 also investigated a 
non-Newtonian droplet in a Newtonian fluid and the effect on droplet size and different regimes for droplet 
formation in a cross-junction. Again, the rheological parameters play a critical role in the droplet dynamics and 
size; however, the authors still use the power-law model. As can be noted, there is a lack of studies for viscoelastic 
non-Newtonian dispersed phase simulation in the microfluidics literature.

A novel application of droplet-based microfluidics is the logic gate platform. These devices are usually used 
for diagnostic assay automatization. Despite many bio-fluids, such as blood, exhibiting non-Newtonian char-
acteristics, most studies have been concerned with Newtonian fluids. Droplet-based microfluidics are relatively 
cheap and versatile, making them extremely attractive for biomedical systems, such as gene sequencing through 
 synthesis25. In droplet-based logic gates, the dynamics of the droplet dictate the logic response of the system. The 
presence or absence of the droplet in the continuous phase usually represents one or zero, respectively, which 
should have a repeatable dynamic. Anandan et al.26 investigated droplet-based microfluidics logic gates using 
the phase-field method for four computational geometry models. They analyzed different operating conditions 
to optimize and parameterize the geometries and the input flows according to defined specifications. However, 
once again, their working fluids were Newtonian fluids. In the same direction, Yang et al.6 examined a logic device 
based on the particle dynamics in viscoelastic fluid focused on blood flow. They modeled the continuous fluid 
with the Oldroyd-B model. The particles were Lagrangian for a wide range of operations for XOR , OR , AND , 
and NOT gates. However, in this Lagrangian approach, the droplets cannot deform.

Asghari et al.8 studied droplet-based microfluidics logic gates with a non-Newtonian power-law model and 
also evaluated a specific AND/OR geometry configuration. The authors study the effects of relevant parameters: 
the power-law index, the droplet length, the capillary number, and the geometrical parameters of this system. 
They identified the regions where the logic operation would be possible in a sort of regime map. Although it is 
necessary to study viscoelastic fluids in logic gates microfluidics, as far as the authors’ knowledge, no droplet-
based logic gate study considers a viscoelastic model for deformable droplets. Accurate modelling of the viscous 
stresses in the fluid is essential because the droplet dynamics (breakup, deformation, and droplet generation) 
strongly depends on the relation between shear stress and the shear strain rate, which plays a vital role for 
logic gates devices. It is expected that a viscoelastic fluid in this system can operate differently from other non-
Newtonian fluids that follow the power-law models.

Electrically driven droplets are an alternative to control the dynamics of microfluidic logic devices. They 
have been proven to be an interesting tool in different applications because they respond relatively fast and are 
robust to  control27–29. Electrostatic forces in microfluidic devices were used experimentally for the first time 
 by30. They inferred that droplets react with different levels of deformation depending on the magnitude of the 
electrical stress. In another direction, Wehking et al.31 and Wehking and  Kumar32 studied the droplet dynam-
ics by numerical simulations under a direct current electric field in a microchannel. In their work, the droplet 
deformed, squeezed, decelerated, and pinned depending on the magnitude of the electric potential applied. Xi 
et al.33 proposed an experimental analysis of droplet-based microfluidic with electric field in cross-junction 
geometry. They corroborate that the droplet deformation is strongly dependent on the electric field intensity. Li 
and  Zhang34 studied the electro-hydrodynamic of droplet generation in a microfluidic device where the droplet is 
formed by inducing a polarization in the droplet by the electric field. They concluded that the droplet size varies 
with the electric capillary number, which means that an electric force induction can control the droplet size in this 
process. Yin et al.35 took the same approach but with a different geometry employing experiments and numerical 
simulation. They observed that the droplet size becomes smaller when the electric potential increases, and the 
electric capillary number is the most relevant parameter. While some microfluidics initiatives using electric fields 
are focused on droplet  manipulation31,32,34,35; none of them focus on logic gates devices.

In this present work, we provide: a systematic analysis of non-Newtonian viscoelastic fluid with Oldroyd-B 
model, considering the variation of Weissenberg number (Wi), Capillary number (Ca), and geometric param-
eters. A non-operating (when the logic gate does not work correctly) region may become operational (when the 
logic gate works properly) if an external force is applied. We also proposed an electrically induced technique to 
transform non-operational conditions into operational ones using an alternating current electric field. Instead of 
producing a map where the operation is feasible, as  in8, we conclude by providing a classification neural network 
to identify the regimes where the AND/OR logic gate is operational.

Mathematical models and numerical methods
In order to simulate the complexity of electrohydrodynamic phenomena, a formulation for describing how the 
electric field affects the droplet dynamics is needed. Here, a charge-conservative equation to solve multiphase 
electrohydrodynamic problems is developed by employing the volume of fluid method and Maxwell equations 
as  electroquasistatic36, ignoring the magnetic effects. For the behavior of the phases, a volume of fluid (SVOF) 
method is used to capture the interface, and the iso-advector37 to reconstruct the interface position and curvature. 
For the capillary stress and the electric stress, the continuous surface tension force methodology and Maxwell’s 
equation is coupled with the SVOF and the iso-advector approach since the curvature must be calculated accu-
rately. This section presents the mathematical and numerical models utilized in this work.
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Immiscible two‑phase model
The governing equations for multiphase flow are the momentum equations, with the interface forces incorpo-
rated as a source term, as  in38. The total mass conservation equation, where ρ and u are the density and velocity 
field, respectively, is:

The momentum equations for incompressible, viscous, and immiscible two-fluid systems can be written as:

where g and p are gravitational acceleration and pressure, respectively. ∇ · τ is the viscous force. Fe is the electric 
body force calculated from the Maxwell stress tensor acting at the fluid-fluid  interface39. Fγ is the surface tension 
force which is modeled as a volumetric force using the continuum surface force (CSF):

where γ is the surface tension, α is the fluid volume fraction and κ is the interfacial curvature defined as:

The volume of fluid (VOF) approach uses the volume fraction conservation equation to capture the interface,

The multiphase system thermophysical properties are calculated according to:

where θ is any mixture property, calculated by a weighted average of properties of the pure fluids ( θ1 and θ2 ) with 
respect to their volumetric fractions.

Viscoelastic model
Here, we are interested in viscoelastic fluids. Thus, to predict the viscous force, ∇ · τ , we used the Oldroyd-B 
 model40. This constitutive model describes a polymeric stress tensor (with large deformations), where an exten-
sion of the Upper Convected Maxwell model represents an idealized fluid with elastic bead and spring dumbbells. 
In Oldroyd-B, the viscoelastic part is separated from the Newtonian part as follows:

where τs = µsS is the solvent stress tensor. In this case, S is the deformation rate tensor or rate of strain tensor, 
S =

1

2

[

∇v + (∇v)T
]

 , and µs is the Newtonian viscosity. τp is the viscoelastic stress tensor whose behavior is 
described as:

where µp is the viscoelastic viscosity, � is the relaxation time and τp is the upper-convected time derivative of 
the stress tensor, described by:

Maxwell equations
Herein, the Maxwell equations are approximated as electroquasistatic, ignoring the magnetic  effects36,39. As the 
dynamic currents are small, the electric field is irrotational; thus, we have:

where E is the electric field. After applying Gauss’ law, Eq. (10) can be reduced to:

where ǫ and ρe are the dielectric permittivity and the bulk-free charge density, respectively. The conservation 
equation for the bulk free charge density is based on the assumption that each fluid has different electrical 
properties, yielding:

(1)
∂ρ

∂t
+∇ · (ρu) = 0.

(2)ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p+ ρg +∇ · τ + Fγ + Fe,

(3)Fγ = γ κ∇α,

(4)κ = ∇ ·
(

∇α

|∇α|

)

.

(5)
∂α

∂t
+∇ · (uα) = 0.

(6)θ = θ1α + θ2(1− α),

(7)τ = τs + τp,

(8)τp + �

�

τp = µpS,

(9)
�

τp ≡
∂τp

∂t
+∇ ·

(

uτp
)

− (∇u)T · τp − τp · ∇u.

(10)∇ × E = 0,

(11)∇ · (ǫE) = ρe ,

(12)
∂ρe

∂t
+∇ · (uρe) = −∇ · (σE),
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where σ is the conductivity.
Finally, the Maxwell stress, τ e , neglecting the electrostriction effect, can be expressed as:

where I is the second-order identity tensor. The bulk electric force, present in Eq. (2), can be derived from the 
divergent of Maxwell stress tensor, Eq. (13):

Numerical approach
The electrohydrodynamic multiphase flow framework was implemented and simulated in  OpenFOAM41, a C++ 
open-source project for developing customized numerical solvers specialized in computational fluid dynamics 
(CFD), due to its large number of solvers and utilities. In order to simulate the droplet dynamics in the logic gate 
device, we developed a numerical solver based on an open-source toolbox to simulate the flow of viscoelastic 
fluids called  RheoTool42, based on OpenFOAM-4.0.

The interIsoFoam solver, a VOF method that tracks the fluid-fluid interface, was adapted to include the 
RheoTool viscoelastic library. In interIsoFoam the CSF model calculates the surface tension effects, and the iso-
advector37 algorithm reconstructs the interface position and curvature. To predict the electric force (Eq. 14), 
the charge-conservative equations (Eqs. 11, 12) were implemented as a library in  OpenFOAM41. Then, Eq. (14) 
is included as a source term in Eq. (2). The resulting solver includes three multiphysics models: several viscoe-
lastic fluid models, the electroquasistatic model, and the Two-Phase Immiscible model, based on iso-advector 
interface reconstruction.

The pressure implicit with splitting of operators (PISO) algorithm is used to couple the pressure-velocity in 
the momentum  equation43. The electroquasistatic model (Eqs. 11, 12) is evaluated sequentially after updating 
the pressure equation in the PISO loop, and the electric force (Eq. 14) is included in the momentum equation 
explicitly. Then, the effect of changes in charge density and the electric field is fully incorporated in the pressure-
velocity coupling algorithm, ensuring a global convergence of the system of equations.

The temporal terms are discretized using a second-order implicit Euler scheme. Spatial discretization is 
performed using a second-order upwind scheme for the momentum equation and van Leer limiter to keep the 
phase fraction advection bounded. A linear scheme was applied for the Laplacian operator, which is also second 
order accurate. In order to respect the Courant–Friedrichs–Lewy (CFL) condition, the time step is limited by a 
fixed Courant Number (Co) less than 0.3 for the whole domain and all equations.  Gmsh44, a free mesh generator, 
was used to build the geometries and the meshes. See in Fig. 1 the algorithm proposed for simulatons:

Simulated conditions
In this section, we describe the physical conditions of the simulations used in code verification, in the logic gate 
evaluation under viscoelastic fluid flow and in the training of the Binary Classification ROM.

To verify the multiphysics electrohydrodynamic solver, a circular droplet suspended in an immiscible fluid is 
placed between two parallel eletrodes with a constant electric field. We perform simulations for both Newtonian 
and viscoelastic fluids, and compared the observed deformation against predictions of the Taylor-theory45. The 
distance between the two plates is Hd = 10Rd , where Rd is the initial radius of the droplet. Here, three dimen-
sionless parameters are defined, R = σ1

σ2
 , β = ν1

ν2
 and Q = ǫ1

ǫ2
 , where ν = µ

ρ
 and the subscript denotes fluid one or 

two, dispersed and continuous phase, respectively. As  in46, the simulations were performed in an axisymmetric 
geometry. The computational domain has 200× 200 mesh nodes with Rd = 0.1 cm, leading to a domain physical 

(13)τ e = ǫ

[

EE −
1

2
(E · E)I

]

,

(14)Fe = ∇ ·
(

τ e
)

= ρeE −
1

2
E2∇ǫ.

Figure 1.  Algorithm proposed for the electrohydrodynamic solver.
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size of 1 cm. At the electrode walls, a no-slip velocity condition with constant electric potential was prescribed. 
The potential values were specified based on the capillary number, CaE = ǫ2RdE·E

γ
.

The Newtonian droplet simulation use conditions similar to those used  by46, with varying 2 < R < 14 and 
fixed Q = 10 , Re = URd

ν2
= 0.09 , CaE = ǫ2RdE·E

γ
= 0.18 and β = ν1

ν2
= 1 . According  to45 theory, the deformation 

parameter, D, can be expressed as a function of the fluid properties and the electric field strength,

where H and L are the droplet lengths perpendicular and parallel to the plates, respectively. This can be explained 
by the discretization errors of the three meshes: 100× 100 , 200× 200 and 300× 300 mesh nodes. In these cases, 
the estimated mesh error was between 6% and 8% for D, which can cause a significant effect in the interface 
curvature for cases with static droplets.

In the viscoelastic fluid flow cases, the simulation conditions follow the work  of47. In this case, the viscoe-
lastic parameter was specified based on the Weissenberg number, Wi = U�

Hd
 , where � is the relaxation time. The 

droplet deformation was computed for a range of varying Capillary number ( 0.1 < Ca < 2.5 ) with fixed Wi = 1 , 
� = 1 , R = 2.5 and Q = 2.0 , and the results are compared against the predictions of the Taylor-theory and the 
simulations  of47.

To evaluate the effect of viscoelastic fluids on a logic gate system, a modified geometry version of the system 
proposed  by48 and analyzed  by8,49 was used as a reference to verify our proposed methodology, as shown in Fig. 2. 
As  in8,49, the inlet channels, named Tubes A and B , have width of 50 µ m and length of 500 µ m. Tube A+ B has a 
width of 50 µm and a length of 500 µ m, and Tube A.B has a width of 25 µ m and a length of 500 µ m. Thus, Tube 
A+ B has less hydrodynamic resistance since it has a larger hydraulic diameter than Tube A.B . It is expected 
that droplets coming from A and/or B will flow preferably to branch A+ B due to its lower resistance. However, 
based on the balance between the hydrodynamic resistance and the resistance created by the blockage of an 
existing droplet, the droplet can choose between A+ B or A.B . The droplet logic gate definition of AND and OR 
states takes into account these different dynamics. In our case, O R logic occurs when one droplet comes from 
either A or B and “decides” to go to A+ B . AND happens when two droplets coming from A and B get together 
in a big droplet in the Tube C and eventually is split between tubes A+ B and A.B . If the system respects either 
AND or OR gate, we classify the system as operational.

The boundary conditions for the simulations are Dirichlet boundary conditions for the velocity inlet, with 
different values specified depending on the case studied. For the pressure field, the Neumann boundary condition 
and thus zero gradients are specified. Zero gradients for velocity and constant pressure are set up in the outlet. At 
walls, the no-slip condition is enforced because, in this case, the slip length scale is of the order of magnitude of 
a nanometer, and the size of our geometry is in the micrometer size range. The first step is to obtain the best grid 
size for the simulations. Meshes of 28,918 (mesh 1), 107,888 (mesh 2), and 135,329 (mesh 3) nodes were used in 
the grid independence analysis. To evaluate the mesh convergence, the viscoelastic phase volume fraction along 
the tubes A+ B and A.B in the middle of the tube A.B was compared for each mesh. In order to evaluate the 
worse scenario, the convergence is studied for the case with L/H = 1.4 , Ca = 0.1 and Wi = 4 for the AND at the 
time ( t = 1.5× 10−2 s) when the droplet reaches the connection between tubes C , A+ B and A.B.

Classification model
In binary logic gate applications, one is interested in classifying data between two states. It is straightforward to 
realize that the binary neural network classification model is the right tool to predict the droplet-based logic gate 
state. All classification tasks depend upon labelled datasets; in our case, this dataset is provided by numerical 
simulation that transfers their knowledge to a neural network to learn the correlation between labels and data. 
Here, in order to build a reduced-order model (ROM) to predict operational conditions, several computational 
fluid dynamics simulations were performed to generate the dataset for the neural network, whose input data are 
the relevant physical dimensionless numbers of the problem.

The  TensorFlow50, open-source software library developed by Google was used for the classification model 
training. It provides an interface for expressing machine learning algorithms and an application for executing 

(15)D =
9

16

CaE

(2+ R)2

[

1+ R2 − 2Q +
3

5
(R − Q)

2+ 3β

1+ β

]

=
H − L

L+H
,

Figure 2.  Logic gate geometry. Channels A and B are inlets; and A+ B and A · B are outlets.
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these algorithms. For binary classification, the binary cross-entropy loss’ function and Adam optimization algo-
rithm optimizer were used to build our deep neural network logic gate ROM because it is a robust method to 
solve non-linear multidimensional classification problems, as in our case. Details related to the parameters of 
the dense neural network structure presented in this work will be provided in “Results and discussion” section.

We seek for parameter Ŵ that minimizes the negative binomial log-likelihood (Eq 16).

where Loss(Ŵ) is the loss function to be minimized. The loss function uses yi and G(xi ,Ŵ) as probability distribu-
tions and measures the discrepancy between the neural network and the label, and xi are its input vector. The 
training process happens iteratively by computing loss function, Loss(Ŵ) , and updates the model until conver-
gence. The trained model is then tested to assess metrics like accuracy and precision.

Results and discussion
This section is divided into three parts: in the first part, a code verification is performed for both a Newtonian 
and a viscoelastic droplets in an electric field, by comparing well-known analytical results for the Newtonian case 
and numerical results for the non-Newtonian case. In the second part, the influence of the viscoelastic surface 
and geometric parameters of the logic gate are analyzed. All data generated in the previous step was used to 
produce a binary classification model. Then, in the third part, we propose an electrically induced droplet forma-
tion method to control the logic gates system.

Verification: droplet deformation under electric field
In this section we describe the results obtained for the deformation of a Newtonian and a viscoelastic fluid drop-
let under a fixed electric field. In Fig. 3a, we show the obtained values for the droplet deformation parameter 
D under different R = σ1

σ2
 for a Newtonian fluid droplet. One can see that our numerical results agree with the 

results obtained  by46 and with the theoretical predictions  of45 when we compare the droplet deformation D over 
time. There exists a slight discrepancy between the result presented here  and46. The reason for this discrepancy 
can be interpreted as a result of spurious current present in the volume of fluid approach. We performed a 
mesh convergence analysis for this case by considering three mesh sizes ( 100× 100 , 200× 200 and 300× 300 
discretization nodes), and we concluded that the estimated mesh error was between 6% and 8% for D, which 
can cause a significant effect in the interface curvature for cases with static droplets. Figure 3b shows the the 
droplet deformation parameter D under different CaE in a viscoelastic fluid droplet. It can be observed that the 
results presented here agree very well with the simulation result obtained  by47. However, there is an enormous 
discrepancy between the Taylor theory linear analysis. This result was expected since all Taylor’s theory is based 
on a Newtonian fluid and for a low CaE number. As was also expected, for a low CaE number, the deformation 
experienced by the viscoelastic fluid droplet is similar to a Newtonian fluid droplet because the electric field 
effect is too weak to produce an effective viscoelastic response. As the CaE increases, the difference between the 
analytical and numerical solutions increases.

Microfluidic logic gates
Mesh independency analysis
The mesh independency analysis results performed for the microfluidic logic gates are shown in Fig. 4. From 
Fig. 4a, one observes that meshes 2 and 3 match very well for the viscoelastic phase volume fractions. Figure 4b 

(16)Loss(Ŵ) = −
1

Ntrain

Ntrain
∑

i=0

(

yi log(G(xi ,Ŵ))+ (1− yi) log(G(xi ,Ŵ))
)

Figure 3.  Droplet deformation, D, versus the dimensionless parameter R for a Newtonian fluid for Q = 10 for 
the Newtonian case, specifying the Re = URd

ν2
= 0.09 , CaE =

ǫ2RdE·E
γ

= 0.18 and β =
ν1
ν2

= 1 . (a) Versus the 
capillary number CaE for a viscoelastic fluid for R = 2.5 and Q = 2.0 (b).
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shows the velocity magnitude for meshes 1, 2, and 3, and we verifiy a close match between mesh 2 and 3 also for 
the velocity field. As it displays the best balance between accuracy and computational cost, we concluded mesh 
2 (107,888 nodes) is the most efficient and was used for all the following simulations performed in this paper.

Viscoelastic analysis
In this section, the importance of the viscoelastic effect is investigated. First, from Fig. 5a,b, one can see the dif-
ference between the three rheological models. The ratio of the droplet length and tube width is 2.4 and capillary 
number is 0.1 and 0.01 for Fig. 5a,b, respectively; The red fluid is a viscoelastic fluid with Wi = 4 . The blue fluid 
follows the power-law model, µ = K

(

1
2

√
S : S

)n−1 with K = µs and n = 1.3 ; the green fluid is a Newtonian 
fluid with viscosity equal to µ = K = µs with surface tension of 0.02 N/m, disregarding the contact angle effect. 
Figure 5a,b show the results in the cross-junction between tubes A+ B and A.B for an AND logic gate when 
the droplets should break. One can see from Fig. 5a that the rheological model strongly influences the breakage 
dynamics. When the capillary number is 0.1, the logic gate is always operational. One can also observe that for 
the non-Newtonian fluids (either for viscoelastic or power-law model) there is a long “tail” of the fluid before its 
breaks. This behavior is not present in the Newtonian fluid. Note that for the capillary number is 0.1, the surface 
tension forces acting across the interface are weaker than the case with the capillary number 0.01, which pro-
vokes droplet breakage. In Fig. 5b, it is observed that there is also a longer tail for non-Newtonian fluids, but the 
operational condition is only feasible for a power-law model. In Fig. 5b, the power-law fluid operates correctly 
even for a low capillary number. This occurs because the local capillary number increases due to local viscosity 
increases in regions with shear rate increases (splitting region).

For power-law model the operation regimes were studied  by8. Their research highlighted a fascinating phe-
nomenon: as one increases the droplet length, capillary number, and power-law index, the operating range of 
the AND state expands, while that of the OR state contracts. This qualitative trend becomes evident in our own 
investigation. However, our focus lies in discerning disparities between operational conditions across different 
models, and we have indeed identified scenarios where these models diverge. Since power-law models are solely 

Figure 4.  Comparison of velocity magnitude [m/s] (a) and volume fraction (b) for different mesh sizes on the 
centerline of channel A · B.

Figure 5.  AND logic gate for different fluid models with Wi = 4 and L/H = 2.4 for Ca = 0.1 (a) and Ca = 0.01 
(b). The red fluid is the viscoelastic fluid, green is the Newtonian fluid and blue is the power-law fluid with 
n = 1.3.
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dependent on shear rate, we recognize that the Oldrog-B model can outperform power-law models, especially 
in capturing viscoelastic effects, owing to its fundamental theoretical basis for this class of fluids.

Figure 6a,b compare the influence of the Weissenberg number (Wi) for different capillary numbers. The yellow 
fluid has Wi = 0.01 while the red fluid has Wi = 4 . We can see that for low Ca, the AND logic gate becomes non-
operational for both cases. Figure 6a shows that when the elastic forces are dominant, the fluid tends to deform 
and form a long tail. In Fig. 6b, when the viscous forces are dominant, a tail is formed, but it is very prolonged 
due to the reduction of the capillary numbers. In this case, Ca is 10 times smaller and viscous and elastic forces 
are not able to break the droplets.

The initial size of the droplet is an important parameter in logic gates devices. Figure 7a,b compare the droplet 
initial size for the AND logic gate for Wi = 4 for ratios L/H equal to 2.4 (yellow droplet) and 1.4 (black droplet). 
We can see that the size influences the droplet when it is crossing the cross-junction. As expected, larger droplets 
are more likely to split since they experience a larger deformation, while smaller droplets experience a lower 
deformation and hence are less likely to break.

Figures 8 show the pressure and velocity profiles, respectively, for Wi = 4 and L/H = 2.4 with Ca = 0.01 and 
Ca = 0.1 during the AND breaking (or not) process in the cross-junction. From Fig. 8a, we can see a consider-
ably higher pressure in Tube C for both cases. It was expected since the droplet blocks the connection between 
tubes A+ B and A.B . It is also expected that the pressure will increase as the convective term becomes dominant 
compared to the surface force if one increases the Ca. In Fig. 8b, we can observe the consequences of the higher 
pressure for Ca = 0.1 ; the fluid tends to break easily, as is expected since the energy to break the interface is less 
than for Ca = 0.01 . This result plays an important role in the critical operational condition point. according to 
our result, the Ca is the most important parameter in the logic gate operational condition. This will be further 
described in the next section.

Figure 9 show the pressure and velocity profiles, respectively, for Wi = 4 and L/H = 2.4 with Ca = 0.01 and 
Ca = 0.1 during the O R breaking (or not) process in the cross-junction. Figure 9a,b are the pressure profiles, 
and the results show that if one increases Ca it is more likely to break the droplet. However, in this case, as it is 
a OR logic gate, the breakage is not intended, and therefore, a low Ca number is required.

Electric field effect
An operational condition occurs when a predefined droplet logic gate is performed properly by the droplet, oth-
erwise is a non-operational condition. In order to guarantee operational conditions, here we propose to control a 
droplet-based microfluidic device with an external electrical force. We include two electrodes at the whole walls 

Figure 6.  Influence of the Weissenberg number (Wi) for different capillary numbers of the viscoelastic fluid. 
The yellow fluid has Wi = 0.01 while the red fluid has Wi = 4 . Both fluids have Ca = 0.1 (a) and Ca = 0.01 (b).

Figure 7.  Comparison of the droplet initial size for the AND logic gate for Wi = 4 for ratios L/H equal to 2.4 
(yellow droplet) and 1.4 (black droplet) for Ca = 0.1.
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of the tube A.B to create an additional force (produced by an electric potential difference) that attracts or repels a 
droplet in a 2D cross-junction. For the AND logic gate, this external force should attract the droplet and force it 
to break in two. This task is not straightforward because the potential applied to the electrodes should be strong 
enough to attract the droplet but weak enough to not attract the whole droplet instead of breaking it. For the 
OR logic gate, this external force should repel the droplet. In this last case, this is more straightforward since the 
force should only be strong enough to repel the droplet to avoid a non-operational condition. It is important to 
point out that electric fields is being used to manipulate droplets for different  applications2, such as: elestrospray 
and electrocoalescence. The application of an electric field affects the surface energy of the droplet, enabling 
precise control over its movement and behavior. Moreover, this process induces a non-uniform charge density 
within the droplet (as described in Equation 12) that can be leveraged to exert control over the droplets. In this 
section, we proved that the logic gate regimes can be altered by the electric field.

Figure 10a,b show results for the AND logic gate for Wi = 4 and L/H = 2.4 with Ca = 0.01 , such that the 
logic gate would be non-operational a priori. However, applying an electric force in a fluid with R = 1× 101 , 
Q = 1× 10−1 and CaE = 1× 10−10 , one can see that the droplet is attracted (see Fig. 11a to the electrodes. Fig-
ure 11a shows the result an instant before the droplet breaks, while Fig. 11b shows the droplet after it is already 
broken. Suppose a strong electric force is applied instead of completing the logic gate; in that case, the droplet 
is stuck in the tube A.B . In these electrodes, the boundary conditions is a specified potential (based on the CaE ) 
and with a zero initial charge concentration. In order to avoid trapping the droplet, the application of the external 
force application follows a step function with the frequency of half of the advective time. From Fig. 10a, one 
can see that the negative charge is concentrated near the electrodes with a positive potential (see Fig. 10b), thus 
attracting the droplet. This effect depends on the fluid properties; however, it is beyond the scope of the present 
manuscript to evaluate the fluid properties in the droplet attraction. We only aim to show that an external electric 
force can turn a non-operational system into an operational one.

In Fig. 11, we study an OR logic gate for Wi = 4 and L/H = 2.4 with Ca = 0.01 , where the logic would 
be non-operational in the absence of an electric field. When we applied an electric force, with R = 1× 10−6 , 
Q = 1× 105 and CaE = 3× 10−11 , the droplet was repelled and the system became operational. However, in that 
case, there is no need to apply a periodic potential in the electrodes since the droplet can be stuck. Figure 11c 

Figure 8.  Comparison of the pressure field [Pa] (a,b) and the velocity magnitude fields [m/s] (c,d) for AND 
logic gate with Wi = 4 and L/H = 2.4 with Ca = 0.1 (a,c) and Ca = 0.01 (b,d).
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shows the droplet being “pushed” to tube A+ B . As is expected, the force is more intense near the electrodes. 
When the droplet enters the tube A+ B , the electric force effect reduces drastically, as can be seen in Fig. 11d. 
The negative charge is closer to the electrodes, and the electric force repels the droplet, as can be seen in Figs. 10c 
and 11c due to the electric field effect, see Fig. 10d.

Binary classification ROM
In binary logic gates, the logic is classified into two states. Instead of creating a complex regime map separated by 
logic and parameters as  in8, we modelled the binary logic with a reduced-order model (ROM) based on a binary 
deep neural network. Thus, a general formulation can be based on critical dimensionless parameters. In order 
to produce data for the training, several simulations were performed for AND and OR logic gates, see Table 1. 
The data set has 210 entries for each logic gate, with a total of 420 samples.

TensorFlow was used for the classification model training. We employ the binary cross-entropy loss function 
and Adam optimization algorithm optimizer for binary classification. The binary cross-entropy is very robust 
in solving non-linear multidimensional classification  problems50. Figure 13 shows the deep neural network 
accuracy for the training and validation step for a simple topology with 10 neurons with 3 layers. For the first 
two layers, relu and for the last, sigmoid activation functions were used. For the model generation, we used a 
total of 3000 epochs with a batch size of 500, considering 20% for validation and 10% for testing our classifica-
tion model. Finally, the accuracy in the test (unseen data) evaluation was 92%. If AND or OR logic gates work, 
the classification model would return 1; otherwise, 0 without needing a regime map. This result can be used to 
estimate the viability of a logic gate without expensive simulations. The average computational time for each 
simulation is around 2 h in a computer with an Intel Xeon E5-2640 v4 2.4 GHz but using the classification model 
takes less the 1 s.

In Fig. 12, we analyze how well a classification model performs. The confusion matrix provides a snapshot of 
the model’s predictions versus the actual outcomes, allowing us to calculate different performance metrics based 

Figure 9.  Pressure field [Pa] (a,b) and Velocity magnitude [m/s] (c,d) fields for OR logic gate with Wi = 4 and 
L/H = 2.4 with Ca = 0.1 (a,c) and Ca = 0.01 (b,d).
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on false and true responses. This classification model excels in prediction accuracy, as shown by the dominant 
diagonal in the confusion matrix.

Conclusions
In our study on droplet-based logic gate systems operating with viscoelastic fluids, we investigated the influence 
of viscoelasticity on the operational conditions using the AND/OR system proposed  by48 as a basis. We observed 
that the behavior of viscoelastic fluids, following the power-law model, can significantly impact the dynamics of 
the logic gates compared to Newtonian fluids. Therefore, it is crucial to consider the rheological model to obtain 
realistic results, and simplifications using either a Newtonian or power-law model may lead to unrealistic conclu-
sions. To understand the system dynamics, we studied the Weissenberg number (Wi), the Capillary number (Ca), 
and the geometric droplet parameters. We found that all these parameters can influence the system dynamics, but 
the Capillary number has emerged as the most important factor, which is consistent with the findings reported 
 by8. To improve the prediction of operational conditions and accelerate the process without relying on complex 
simulations, we employed a deep learning (DL) classification algorithm to develop a reduced-order model. This 
DL model enabled us to predict the operational conditions beyond the range of our existing data. Furthermore, 
we demonstrated that non-operating regions can become operational by applying an external force. Although 
we did not specifically analyze the influence of fluid properties in this study, we showed that applying an electric 
field to the outlet tubes using an electrically induced technique can transform the system from non-operational 
to operational conditions. Overall, our research highlights the importance of considering viscoelastic properties 
and the rheological model in droplet-based logic gate systems. The developed DL model provides a valuable tool 
for predicting operational conditions and offers insights into the potential for external interventions to induce 
system operability. Future studies may explore the influence of fluid properties and further optimize the electri-
cally induced technique to enhance the performance and applicability of these systems.

Figure 10.  Electric charge distribution [C/m3 ] (a,c) and the electric potential field [V] (b,d) for AND (a,b) and 
OR (c,d) logic gate for Wi = 4 and L/H = 2.4 with Ca = 0.01 where the logic would be non-operational without 
an electric field.
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Figure 11.  Electric force magnitude field [N/m3]in AND (a,b) and OR (c,d) logic gates for Wi = 4 and 
L/H = 2.4 with Ca = 0.01 where the logic would be non-operational without an electric field, before (a,c) and 
after (b,d) the droplet is pushed to A+ B.

Table 1.  Dimensionless parameters used in the training step (total of 420 data).

Dimensionless parameter Cases

Ca = µU
γ

1× 10
−3 , 2× 10

−3 , 5× 10
−3 , 1× 10

−2 , 2× 10
−2 , 5× 10

−2 , 1× 10
−1

Wi = U�

H
1× 10

−2 , 5× 10
−2 , 1.0, 2.0, 4.0

L
H

1.4, 1.6, 1.8, 2.0, 2.2, 2.4
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