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A concentrated machine 
learning‑based classification 
system for age‑related macular 
degeneration (AMD) diagnosis 
using fundus images
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The increase in eye disorders among older individuals has raised concerns, necessitating early 
detection through regular eye examinations. Age‑related macular degeneration (AMD), a prevalent 
condition in individuals over 45, is a leading cause of vision impairment in the elderly. This paper 
presents a comprehensive computer‑aided diagnosis (CAD) framework to categorize fundus images 
into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories. This is crucial for 
early detection and precise diagnosis of age‑related macular degeneration (AMD), enabling timely 
intervention and personalized treatment strategies. We have developed a novel system that extracts 
both local and global appearance markers from fundus images. These markers are obtained from 
the entire retina and iso‑regions aligned with the optical disc. Applying weighted majority voting on 
the best classifiers improves performance, resulting in an accuracy of 96.85%, sensitivity of 93.72%, 
specificity of 97.89%, precision of 93.86%, F1 of 93.72%, ROC of 95.85%, balanced accuracy of 
95.81%, and weighted sum of 95.38%. This system not only achieves high accuracy but also provides 
a detailed assessment of the severity of each retinal region. This approach ensures that the final 
diagnosis aligns with the physician’s understanding of AMD, aiding them in ongoing treatment and 
follow‑up for AMD patients.

Eye disorders have become a growing concern among older individuals in recent years. Often, these conditions 
progress unnoticed until symptoms appear, emphasizing the importance of regular eye examinations for early 
 detection1. This is especially critical when it comes to Age-related Macular Degeneration (AMD), a prevalent 
condition that affects individuals over 45 and is one of the leading causes of vision impairment in the  elderly2. 
Traditional diagnosis methods like slit-lamp examinations by ophthalmologists have limitations due to skill vari-
ations and record-keeping issues. However, there is a promising avenue for AMD diagnosis and management 
through the use of machine learning (ML) algorithms for classifying fundus  images3.

Located on the outer pole of the retina, the macula plays an important role in sharp color vision. Abnormali-
ties in this region can cause blurred vision, dark circles, and malformations. The exact causes of AMD are not 
well understood, but genetics, chronic light exposure and nutritional imbalances are involved. To better under-
stand AMD progression and effective treatment, it is necessary to classify fundus images into groups such as 
geographic atrophy (GA), intermediate AMD, normal, wet AMD, etc.4,5. GA stands for dry advanced stage with 
progressive retinal pigment epithelium (RPE) cell loss, resulting in distinct atrophic patches and central vision 
loss. Intermediate AMD falls between early and advanced stages, characterized by drusen pigment changes. The 
“normal” category includes images without AMD-related changes, which generally do not show clinical evidence 
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of the disease. Wet AMD, the severe form, involves abnormal blood vessel growth beneath the retina, leading to 
retinal degeneration and, if left untreated, rapid loss of central  vision6–8.

ML techniques hold significant promise in precisely categorizing fundus images into different AMD stages. 
These methods efficiently analyze extensive datasets and acquire intricate patterns and relationships from images, 
allowing for the identification of subtle indicators of various AMD phases. By automating the classification 
process, ML algorithms offer consistent and objective assessments, reducing discrepancies between observers 
and facilitating prompt diagnoses. A range of ML algorithms have been explored for the classification of AMD 
fundus images, as documented  in9.

Traditional ML  methods10 such as random forest (RF), multilevel perceptron (MLP), decision tree (DT), 
logistic regression (LR), support vector machines (SVM), and K-nearest neighbors (KNN) have shown promis-
ing results in previous studies, showing exceptional performance in image classification  tasks11. Reliable ML-
based settings for classifying fundus images into GA, intermediate AMD, normal, wet AMD categories have 
great potential for clinical application. Such systems can help eyesight specialists to provide accurate and timely 
diagnosis, facilitating appropriate treatment options for  patients12. Furthermore, it can play an important role 
in large-scale screening programs, enhancing early detection and intervention, and ultimately improving the 
visual outcome of individuals with  AMD13.

The aim of the present study is to evaluate and investigate the accuracy of ML methods for classifying AMD 
stages from fundus images. Aside from revealing the entire selection process, the analysis also considers the 
metrics employed to examine the developed classification model. The paper further explores the findings, pos-
sible obstacles and future approaches to make the ML-based AMD classification systems more accurate and 
clinically useful. In this regard, this review advances knowledge in this domain and paves the way for better 
patient care and outcomes associated with computer-aided AMD. The following points provide a summary of 
the present study’s contributions:

• Development of a non-invasive CAD system: the study successfully developed a non-invasive CAD system 
for AMD using ML methods, which provides a valuable tool early diagnosis of his disease.

• Improved AMD classification: through extensive research and testing, the study enhanced the accuracy and 
reliability of AMD classification from fundus images. This improvement ensures a more equitable classifica-
tion of AMD within different stages.

• Enhanced patient care: the CAD system, by automating the AMD diagnostic process and bridging gaps 
between caregivers, has the potential to significantly improve patient care. This advancement ensures timely 
and accurate inspections, contributing to enhanced overall healthcare delivery.

Paper organization
The paper is organized as follows: “Related studies” discusses related work for AMD classification. “Materials” 
describes the research materials. “Methodology” presents the proposed approach for AMD classification and its 
phases in details. “Experiments” presents the experimental result and discussion. “Overall discussion” discusses 
the work and experiments. “Limitations” highlight the study’s limitations. Finally, “Conclusions and future direc-
tions” addresses the conclusions and future directions.

Related studies
Recently, several algorithms have been developed to address the challenge of classifying fundus images of age-
related macular degeneration (AMD) by leveraging patterns and features present in the data. These efforts have 
resulted in a significant body of academic work focused on the classification of AMD fundus images. Further-
more, various classification techniques and methodologies have been explored in these studies.

Notable examples include the work of Bhuiyan et al.14, who used convolutional neural networks (CNNs) to 
classify Referable AMD using the AREDS dataset which contains about 116,875 images. The results show that 
the classification for Disease/no disease provides better results with about 0.992 accuracy and for AMD severity 
(4 classes) with about 0.961 accuracy. Zapata et al.15 Proposed a classification approach using CNNs for AMD 
Disease/no disease using the Optretina dataset which contains about 306,302 images. This research achieved an 
accuracy of 0.863 and an AUC of 0.936.

Bulut et al.16 proposed a deep learning approach (i.e., Xception model) for detecting retinal abnormalities 
based on color fundus images. During the analysis, the Xception model containing 50 different parameter com-
binations was trained. The highest accuracy achieved was 82.5%. Gayathri et al.17 proposed an automated binary 
and multiclass classification of diabetic retinopathy. The proposed work focuses on the extraction of Haralick 
and Anisotropic Dual-Tree Complex Wavelet Transform (ADTCWT) features that can perform reliable DR 
classification from retinal fundus images. The evaluation results show that by applying the proposed feature 
extraction method, Random Forest outperforms all the other classifiers with an average accuracy of 99.7% and 
99.82% for binary and multiclass classification, respectively.

Furthermore, Rajagopalan et al.18 proposed a deep convolution neural network (DCNN) architecture for 
the classification and diagnosis of average diabetic macular edema (DME) and drusen macular degeneration 
(DMD) efficiently. Firstly, the despeckling of the input OCT image is executed by the Kuan filters to remove 
inherent speckle noise. Furthermore, the CNN networks are tuned with hyper-parameter optimization methods. 
Moreover, K-fold validations are performed to guarantee full use of the datasets. Chakravorti et al.19 proposed an 
efficient CNN for AMD classification. The network was trained on fundus images to classify them into the four 
AMD categories, achieving high accuracy with reduced computational complexity. Thomas et al.20 developed an 
algorithm for the diagnosis of AMD in retinal OCT images based on the detection of RPE layers and the baseline 
estimate of statistical approaches and randomization.
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Additionally, Zheng et al.21 designed a five-category intelligent auxiliary diagnosis model for common fundus 
diseases. The accuracy rates of the 3 intelligent auxiliary diagnosis models were all above 90%, and the kappa val-
ues were all above 88%. For the 4 common fundus diseases, the best results of sensitivity, specificity, and F1-scores 
were 97.12%, 99.52%, 96.43%, and 98.21%, respectively. Vaiyapuri et al.22 presented a new multi-retinal disease 
diagnosis model using the IDL-MRDD technique to determine different types of retinal diseases. The experimen-
tal values pointed out the superior outcome over the existing techniques with a maximum accuracy of 0.963. Lee 
et al.23 proposed two deep learning models, CNN-LSTM and CNN-Transformer, which use a Long-Short Term 
Memory (LSTM) and a Transformer, respectively with CNN, to capture the sequential information in longitudi-
nal CFPs. The proposed models outperformed the baseline models that utilized only single-visit CFPs to predict 
the risk of late AMD (0.879 vs. 0.868 in AUC for 2-year prediction, and 0.879 vs. 0.862 for 5-year prediction).

Moreover, Kar et al.24 introduced an innovative method for precise retinal blood vessel detection in fundus 
images. Their approach features a generative adversarial network (GAN)25 with a unique architecture, combining 
a multi-scale residual convolutional neural network as the generator and a vision transformer as the discrimina-
tor. The GAN model, employing adversarial learning, achieves state-of-the-art results. Preprocessing involves 
contrast enhancement using a contrast-limited adaptive histogram equalization algorithm. Rigorous evaluations 
on multiple databases confirm the method’s robustness and efficacy, outperforming existing approaches with 
notable accuracy scores on CHASE_DB1, DRIVE, HRF, and ARIA databases.

In addition, Elangovan et al.26 proposed a robust automated glaucoma diagnosis system utilizing a deep 
ensemble model and stacking ensemble learning. The study focuses on the efficiency of thirteen pre-trained 
models, including Alexnet, Googlenet, VGG-16, VGG-19, Squeezenet, Resnet-18, Resnet-50, Resnet-101, Effi-
cientnet-b0, Mobilenet-v2, Densenet-201, Inception-v3, and Xception. The ensemble model, evaluated in 65 
configurations, employs a two-stage ensemble selection technique and a probability averaging approach. The 
final classification integrates an SVM classifier. The method demonstrates exceptional performance on modified 
publicly available databases (DRISHTI-GS1-R, ORIGA-R, RIM-ONE2-R, LAG-R, and ACRIMA-R), achieving 
overall classification accuracies of 93.4%, 79.6%, 91.3%, 99.5%, and 99.6%, respectively.

Furthermore, Haider et al.27 introduced ESS-Net and FBSS-Net for accurate OD and OC segmentation in 
retinal fundus images, addressing challenges like size and pixel variations. Both networks, with 3.02 million 
trainable parameters, demonstrated excellent segmentation on datasets like REFUGE and Drishti-GS, providing 
efficient solutions for computer-assisted glaucoma diagnosis. Additionally, Arsalan et al.28 introduced the vessel 
segmentation ultra-lite network (VSUL-Net) to accurately extract retinal vasculature without image preprocess-
ing. With only 0.37 million trainable parameters, VSUL-Net utilizes a retention block for improved sensitivity, 
eliminating the need for expensive preprocessing schemes. Tested on DRIVE, STARE, and CHASE-DB1 datasets, 
the method achieved robust segmentation with Sensitivity, Specificity, Accuracy, and Area Under the Curve val-
ues of 83.80%, 98.21%, 96.95%, and 98.54% for DRIVE, 81.73%, 98.35%, 97.17%, and 98.69% for CHASE-DB1, 
and 86.64%, 98.13%, 97.27%, and 99.01% for STARE datasets.

Similarly, Singh et al.29 proposed an efficient glaucoma detection system using customized particle swarm 
optimization (CPSO) and four state-of-the-art machine-learning classifiers. The interconnected architecture 
involves pre-processing, segmentation, feature extraction, selection of critical features, and classification using 
CPSO-machine learning. The study focuses on a public dataset, Digital Retinal Images for Optic Nerve Seg-
mentation. Unlike using all 20 extracted features, the system selects critical features based on univariate and 
feature importance methods. The best performance is achieved with a CPSO-K-nearest neighbor hybrid method, 
recording a maximum accuracy of 0.99, specificity of 0.96, sensitivity of 0.97, precision of 0.97, F1-score of 0.97, 
and Kappa of 0.94. Singh et al.30,31 also addressed feature selection challenges in machine learning, focusing on 
glaucoma detection using benchmark datasets. The study introduces a metaheuristics-based feature selection 
technique employing emperor penguin optimization and bacterial foraging optimization, proposing a hybrid 
algorithm. From 36 features extracted from retinal fundus images, the technique minimizes the feature set while 
enhancing classification accuracy. Six machine learning classifiers evaluate smaller subsets provided by the 
optimization techniques. The hybrid optimization technique, paired with random forest, achieves the highest 
accuracy at 0.95410.

In summary, these studies collectively provide valuable insights into the performance of diverse classifica-
tion techniques for AMD fundus image classification. The results highlight the effectiveness of deep learning 
methods and the importance of feature extraction techniques in achieving accurate and reliable classifications. 
While Random Forest and SVM often excel in terms of classification accuracy, it is crucial to consider the data-
set, feature extraction methods, and evaluation metrics when interpreting specific results from these studies.

While previous investigations have provided valuable insights into the performance of diverse classification 
techniques for AMD fundus image classification, there remains a notable gap in the interpretation of the data by 
extracting both local and global features from it. Many of the mentioned studies have focused on the application 
of deep learning and convolutional neural networks (CNNs) for classification, achieving impressive accuracy 
rates. However, these studies have predominantly emphasized the utilization of deep learning methods without 
comprehensive exploration of feature extraction techniques that capture both local and global characteristics 
of fundus images.

The extraction of local features, which pertain to specific regions or structures within the image, can pro-
vide valuable information about subtle abnormalities in the retina. Similarly, global features, which encompass 
broader characteristics of the entire image, can offer insights into overall patterns and structures. Combining 
both types of features can enhance the interpretability of the classification process and potentially lead to more 
robust and explainable results.
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Materials
Patient selection and characteristics
Patient selection required the collection of retinal fundus images from a diverse group of real patients who 
showed symptoms associated with AMD, including different stages and types of disease. The database used in 
this study consists of more than 864 retinal images, including AMD. Each patient’s demographic and clinical 
characteristics, including age, sex, and their specific AMD category, were recorded. The experimental protocols 
were approved by the authors’ and patients’ institutions: University of Louisville and Mansoura University.

Imaging techniques
The retinal imaging techniques used in this study primarily used fundus color imaging. These two-dimensional 
images were obtained by light-reflecting  retina32. Complete data were obtained by performing the left and right 
eyes of each patient. Using state-of-the-art imaging equipment, high-quality, and high-resolution images were 
obtained.

• Fundus color images were taken with standard retinal imaging techniques.
• High quality/resolution imaging equipment was used to ensure image quality and detail.
• Images of the left and right eyes were obtained for each patient for all analyses.

Data collection and analysis
Data collection involved the systematic acquisition of retinal images from the fundus images maintained for this 
study. The collected data were intensively analyzed and subsequently extracted relevant features and attributes 
necessary for an ML-based diagnostic model.

Data categorization
The data used in this study included four distinct types of AMD, namely geographic atrophy (GA), central, 
normal AMD, and wet AMD. Each category represents a different stage or form of AMD. Classification of cases 
was based on clinical evaluation and expert review, which ensured classification accuracy.

Study design and ethical considerations
In the context of this research, a study design was established to investigate the use of ML-based medical diag-
nostic techniques for the classification of AMD using retinal fundus images. Ethical considerations were taken 
into account, and all procedures adhered to the relevant ethical guidelines and regulations. Informed consent 
was obtained from all patients involved in the study. The current study does not contain any studies with human 
participants and/or animals performed by any of the authors.

Consent to participate
All patients have provided informed consent for the present study.

Methodology
A detailed CAD framework for AMD analysis is introduced and shown graphically in Fig. 1. This involves the 
procedures involved in the data acquisition to obtain the necessary information. Pre-processing techniques are 
then applied to improve subsequent data quality. The extraction methods used to extract meaningful patterns 
from the data. The classification stage helps in an accurate classification of AMD cases. Moreover, Tree of Parzen 

… …… … …

… … …

Figure 1.  The proposed framework for AMD diagnosis in the current study comprises distinct stages, 
including data acquisition, pre-processing, feature extraction, classification, and the utilization of Tree of Parzen 
Estimators (TPE) for optimization.
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Estimators (TPE) is used as another tool to enhance the models. This method is reliable and guarantees a precise 
diagnosis of AMD; thus, it offers a viable strategy for improving people’s health.

Data pre‑processing phase
Data preprocessing is the important stage in image analysis consisting of some steps which aim at improving data 
quality and its preparation for further  analysis33,34. The data preprocessing pipeline (Fig. 2) denotes a systematic 
way of preparing a dataset for analysis with an appropriate basis as outlined above. The suggested pipeline is 
split into a set of step where each is designed to enhance the upcoming classification quality and consistency:

• Average CDF calculation: calculate the average CDF for the different classes to understand the pixel intensity 
distribution.

• CLAHE enhancements: apply the CLAHE algorithm to improve image contrast and reducing noise.
• Interpolation: interpolate the individual image CDFs with the mean CDF to standardize the intensity distri-

bution.
• ROI extraction: use masks to extract regions of interest from images, focusing on relevant regions.
• Contour analysis: use contour analysis to adjust ROIs, define object boundaries, and calculate object proper-

ties.

Average Cumulative Distribution Function for Class‑Specific Pixel Intensities
An important concept in data preprocessing is the cumulative distribution function (CDF). An CDF represents 
the cumulative probability distribution of pixel intensities in an image, and provides valuable insight into its 
properties. To prepare our data, we calculate the average CDF (ACDF) for each class within our dataset. This 
average CDF, denoted as ACDFC(x) for class C, is computed by aggregating the individual CDFs of all images in 
that class. The mathematical representation is as follows: ACDFC(x) = 1

NC
×

∑NC
i=0 CDFCi (x) where, ACDFC(x) 

represents the average CDF for class C at pixel intensity x, NC is the total number of images in class C, and 
CDFCi (x) is the CDF of the i-th image in class C. Figure 3 shows the normalized average CDFS for each class.

Contrast limited adaptive histogram equalization (CLAHE)
Histogram equalization is a technique used to enhance image contrast by redistributing pixel intensities. How-
ever, it can inadvertently amplify  noise35. Contrast Limited Adaptive Histogram Equalization (CLAHE) builds on 
this concept by applying histogram equalization locally, in small regions of an image. The theoretical foundation 
of CLAHE involves several key aspects:

• Histogram equalization: traditional histogram equalization stretches the intensity values across 
the entire image, aiming for a uniform distribution. Mathematically, it can be represented as: 
CLAHE(x, y) = CDFclip(I(x, y)) where CLAHE(x, y) denotes the CLAHE-enhanced pixel intensity at coor-
dinates (x, y), and CDFclip(I(x, y)) is the clipped CDF of the pixel intensity I(x, y).

• Adaptive approach: CLAHE adapts the histogram equalization process by dividing the image into smaller 
tiles or regions. Each region is equalized independently, allowing for localized contrast enhancement.

Figure 2.  Image pre-processing steps: illustration of the various stages of image preparation for dataset samples. 
The top row displays the original data. The middle row shows the data after applying CLAHE. The bottom 
row exhibits the resized data following CDF interpolation. On the right side, you can see contours at different 
distances from 0 (representing the original mask) up to 1500.
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• Contrast limiting: to prevent excessive amplification of pixel values, CLAHE limits the slope of the CDF 
within each region. This limitation balances contrast enhancement with noise control.

Interpolate the average CDF with images
Interpolation is a vital step in making the individual images to conform to the average CDF of their classes. 
This guarantees that images in a given class are uniform in terms of intensity distribution and this, there-
fore, ensures ease of comparisons and later analysis. The interpolation operation is defined as follows: 
Ieq(x, y) = InterpolateCDF(I(x, y), targetFreq, targetBins) where Ieq(x, y) represents the equalized pixel intensity 
at coordinates (x, y), and InterpolateCDF(I(x, y), targetFreq, targetBins) is the interpolation function. The goal 
is to adjust pixel values of each image so that they align with the target CDF, effectively normalizing the data.

Extract the ROIs using masks
The ROIs are important to the analysis, since they represent parts of images that contain important 
 information36,37. This is achieved by means of binary masks, where values of 1 represent the region of interest 
and 0 indicates background. The image is multiplied with a binary mask, that is, the pixel-wise product, where 
the areas of interest are selected while the background is set to zero.

Contours handling
Contour analysis is a pivotal step in refining ROIs and identifying object boundaries within  images38,39. Contours 
represent the boundaries of objects and offer valuable properties like area, perimeter, and  centroid40. The cen-
troid (Cx ,Cy) of an object within a contour is calculated using moments, which are mathematical descriptors of 
the shape and spatial distribution of an object. Moments are defined as: Cx = M10

M00 and Cy = M01
M00

 where Cx and 
Cy are the x and y coordinates of the centroid, respectively, and M00 is the zeroth moment (i.e., total area of the 
contour). Contour analysis allows us to precisely locate object boundaries, measure object properties, and define 
buffer regions, essential for various image analysis tasks. The contours are take at different distances from 0 (rep-
resenting the original mask) up to 1500. Figure 4 represents a visualization of the extracted ROIs on a sample.

Features extraction phase
In the field of image processing and texture analysis, feature extraction plays a crucial role in quantifying the 
characteristics of an image. The study worked on extracting both first-order and second-order features using 
GLCM (Gray-Level Co-occurrence Matrix) and GLRLM (Gray-Level Run-Length Matrix) methods for each 
extracted contour resulted from the pre-processing  step41.

GLCM is a statistical method used to capture the spatial relationships between pixel values in an image. It 
is defined based on the co-occurrence of pairs of pixel values at various distances and angles in the  image42. 
GLCM is typically calculated for a given gray-level image I, with discrete gray levels {0, 1, . . . , L− 1} . Second-
order texture features consider the spatial relationships between pixel pairs in an image. These features provide 
information about how pixel intensities are distributed relative to each other. Equations of the first- and second-
order features were presented in the appendix.

Scaling phase
The current study utilized several data scaling techniques to preprocess the dataset effectively, enhancing the 
performance of ML models. These scaling methods are crucial for ensuring that features are on compatible scales 

Figure 3.  Visualization of the normalized average CDFs for each class: GA, Intermediate, Normal, and Wet. 
The x-axis is the intensity while the y-axis is the probability.
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and optimizing the behavior of various algorithms during the  analysis43,44. The study employed four main scaling 
techniques: Standardization (Z-score Scaling), Min-Max Scaling (Normalization), and Max Absolute Scaling.

Standardization (Eq. 1) transforms data to have a mean of 0 and a standard deviation of 1. It is beneficial when 
dealing with features of different units, making them comparable by subtracting the mean and dividing by the 
standard  deviation45. Min-Max scaling (Eq. 2) scales data to a specified range, often between 0 and 1. It maintains 
relative relationships between data points by subtracting the minimum value and dividing by the  range46. Max 
Absolute (Eq. 3) scaling scales data based on the maximum absolute value within each feature, maintaining the 
sign of the data while restricting it within a consistent  range47.

Classification and optimization phase
The present study used advanced classification schemes to locate and analyze the data. These algorithms include 
various methods, such as LightGBM (LGBM), Histogram-based Gradient Boosting (HGB), XGBoost (XGB), 
AdaBoost, Random Forest (RF), Multi-Layer Perceptron (MLP), Decision Tree (DT), logistic regression (LR), 
support vector machine (SVM), and K-nearest neighbor (KNN)48. This wide selection of algorithms was selected 
to evaluate their performance and suitability for the particular classification task at  hand49–51.

(1)Xinew =
Xi − µi

σi
.

(2)Xinew =
Xi − Ximin

Ximax − Ximin

.

(3)Xinew =
Xi

max(|Xi|)
.

Figure 4.  Contours handling: visualization of the extracted ROIs on a sample. It shows the the ROIS at 
distances from 0 (representing the original mask) up to 1500.
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LGBM, known for its speed and accuracy, was used to efficiently handle large data sets by creating unique 
vertical decision trees. Besides, calculating HGB uses histogram-based methods to optimize computing and 
memory usage, particularly useful for data  structure52,53.

XGB, the versatile gradient worsting algorithm was also included because of its ability to handle complex 
data  relationships54. AdaBoost is an ensemble method focusing on combining weak learners and it utilizes an 
iterative approach to improve classification  accuracy55. RF is used for its robustness and flexibility for data types 
for classification and regression  tasks56.

Furthermore, MLP, a neural network with multiple interconnected layers, was used to tackle complex, non-
linear  data57. DT provided a straightforward yet powerful method for data partitioning based on key features, 
offering  interpretability58. LR served as a simple yet effective baseline model, particularly suited for binary and 
multiclass classification  tasks59.

SVM was leveraged for its versatility in handling high-dimensional data and linear or nonlinear classification 
 tasks60. Finally, KNN offered an intuitive approach to classification, considering the majority class among the 
nearest neighbors of data  points61.

The current study utilized Bayesian optimization with the Tree of Parzen Estimators (TPE) to optimize ML 
models, a powerful and efficient approach for hyperparameter tuning. Tree of Parzen Estimators is a probabilistic 
model-based optimization algorithm that effectively navigates the hyperparameter search space to find optimal 
configurations for ML  models62.

TPE is particularly well-suited for hyperparameter optimization because it leverages a probabilistic model to 
make informed decisions about where to explore the hyperparameter space. Its working flow can be summaized 
as  follows62,63:

• Modeling probability distributions: TPE begins by modeling the probability distributions of the hyperpa-
rameters. It maintains two distributions, one for promising configurations (i.e., exploitation) and another 
for less promising ones (i.e., exploration).

• Sampling: the algorithm then samples hyperparameters from these distributions. It does so in a way that 
favors promising regions based on the exploitation distribution but also explores other areas based on the 
exploration distribution.

• Evaluating the objective function: the sampled hyperparameters are used to train and evaluate the ML model 
using a chosen objective function, such as accuracy or loss. The performance of the model is recorded.

• Updating distributions: based on the performance of the sampled configuration, TPE updates the probability 
distributions for both exploitation and exploration. It allocates more samples to regions of the hyperparameter 
space that have shown promise.

• Iterative process: TPE iteratively repeats the process of sampling, evaluating, and updating distributions 
over a predefined number of iterations. This allows it to gradually refine its search and converge towards the 
optimal hyperparameters.

• Final configuration: at the end of the optimization process, TPE provides the best-found hyperparameters, 
which can then be used to train the final ML model.

TPE is known for its efficiency in finding near-optimal hyperparameter configurations with a relatively small 
number of model evaluations. It is particularly valuable when the hyperparameter space is high-dimensional or 
when manual tuning becomes  impractical63. Table 1 presents the different hyperparameters for each ML clas-
sifier in the current study.

Performance evaluation phase
In the present study, different performance metrics were used to evaluate the effectiveness of ML models in the 
AMD classification task. They play an important role in evaluating model quality and in determining decisions 
in model selection and  optimization50,64.

Confusion matrix is a tabular representation of true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN). It is important for evaluating model performance and deriving other metrics such as 
accuracy and  F165–67. Accuracy is a widely used metric that measures the average of correctly classified observa-
tions across all  observations68. This provides a general understanding of the efficiency of the classification model, 
but can be misleading in cases of imbalanced datasets.

Sensitivity indicates how well the model is able to identify good  patterns69. It calculates the proportion of true 
positives out of all actual positives. It is important when reducing false negatives is paramount, such as in clinical 
 research70. Specificity examines how well the model is able to detect negative  cases71. It calculates the proportion 
of true negatives out of all actual negatives. It is important when avoiding false positives is important, as seen in 
applications such as fraud  detection72.

The receiver operating characteristic (ROC) is a graphical representation that illustrates a model’s perfor-
mance across different  thresholds73. It plots the TP rate against the FP rate at various threshold settings, with 
the area under the ROC curve (AUC-ROC) quantifying the model’s ability to distinguish between +ve and −ve 
 instances74,75. BAC is an adjusted accuracy measure that is used for imbalanced datasets. It provides a more reli-
able performance assessment in skewed class distributions. Equations (4) to (10) presents the utilized metrics 
with their equations.
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(4)Accuracy =
TP+ TN

TP+ FP+ FN+ TN

(5)Specificity =
TN

FP+ TN

(6)Recall (or Sensitivity) =
TP

TP+ FN

(7)Precision =
TP

TP+ FP

(8)ROC =
1
√
2
×

√

(Sensitivity2 + Specificity2)

(9)F1-score =
2× (Precision× Recall)

Precision+ Recall

(10)Balanced Accuracy (BAC) =
Recall+ Specificity

2

Table 1.  The different hyperparameters for each utilized ML classifier in the current study.

Classifier Hyperparameters

DT

Max depth (choice from range (1, # Features + 1)),

Splitter (choice from [“Best”, “Random”]),

Criterion (choice from [“Gini”, “Entropy”])

SVM

C (log normal (0, 1.0)),

Kernel (choice from [“Linear”, “RBF”, “Poly”, “Sigmoid”]),

Gamma (choice from [“Scale”, “Auto”]),

Degree (choice from [1, 2, 3, 4, 5])

LR
C (log normal (0, 1.0)),

Solver (choice from [“LibLinear”, “LBFGS”])

RF

Max depth (choice from range (1, # Features + 1)),

# Estimators (choice from range (1, 100)),

Criterion (choice from [“Gini”, “Entropy”])

KNN

# Neighbors (choice from range (1, int(# Samples / 2.0))),

Weights (choice from [“Uniform”, “Distance”]),

Algorithm (choice from [“Ball Tree”, “KDTree”, “Brute”]),

Metric (choice from [“Minkowski”, “Euclidean”, “Manhattan”, “Chebyshev”])

LGBM

# Estimators (choice from range(1, 100)),

Max depth (choice from range (1, # Features + 1)),

Learning rate (log normal (0.01, 1.0))

XGB

Subsample (Uniform(0.1, 1)),

# Estimators (choice from range (1, 100)),

Max depth (choice from range (1, 51)),

Learning rate (log normal (0.01, 1.0))

HGB
Max depth (choice from Range (1, # Features + 1)),

Learning rate (log normal (0.01, 1.0))

AdaBoost
# Estimators (Choice from Range (1, 100)),

Learning rate (log normal (0.01, 1.0))

CatBoost
# Estimators (choice from range (1, 100)),

Early stopping rounds (choice from [2, 5, 8, 10, 50, 200])

MLP

Activation (choice from [“Logistic”, “ReLU”, “TanH”]),

Learning rate (choice from [“Constant”, “Adaptive”, “Invscaling”]),

Solver (choice from [“LBFGS”, “SGD”, “Adam”]),

Hidden layer sizes (choice from range (16, 513, 16))
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To reach a precise decision, a weighted sum metric (WSM) as presented in Eq. (11). It combines the mentioned 
performance metrics into a single comprehensive metric of model performance. This WSM is designed to con-
sider the overall effectiveness of the  models76.

By assigning weights to the individual metrics such as accuracy, sensitivity, and F1, the WSM can be aligned 
with the specific objectives of the classification task. In Eq. (11), w1 to w7 represent the weights assigned to each 
respective performance metric. This WSM provides a clear and interpretable way to balance trade-offs between 
different types of classification  errors77. It enables decision-makers to make informed choices about the model 
performance that align with the study goals.

Experiments
For all experiments, the reported performance metrics for the various ML models are: accuracy, sensitivity, 
specificity, precision, F1, ROC, BAC, and WSM. Also, as mentioned, The experimental protocols were approved 
by the authors’ and patients’ institutions: University of Louisville and Mansoura University.

Table 2 presents the performance results of the implemented framework across different phases, each cor-
responding to a mask positioned at varying distances from 0 to 1500. The distances are measured in units that 
align with the dimensions of the mask. The table provides a detailed overview of various evaluation metrics for 
each configuration, shedding light on the framework’s efficacy under different spatial settings. The “Distance” 
column specifies the distance of the mask from its original position, and the “Combinations” column denotes 
the specific combinations of parameters used in each experiment.

The subsequent columns contain performance metrics, including Accuracy (ACC), Sensitivity (SNS), Specific-
ity (SPC), Precision (PRC), F1 score (F1), Receiver Operating Characteristic (ROC) score, Balanced Accuracy 
(BAC), and Weighted Similarity Metric (WSM). Examining the results, notable trends emerge. For instance, 
as the distance increases, there is a discernible impact on metrics such as accuracy, sensitivity, and specificity.

The table indicates that the performance varies across different combinations of parameters and distances. 
Notably, at 1500 units, the framework achieves impressive results across all metrics, indicating its robust per-
formance when the mask is positioned farther from its original location. Tables 5, 6, 7, 8, 9, 10 and 11 in the 
Appendices present the inner details of each row/distance.

The experiment conducted at a distance of 1500 units stands out as the most noteworthy configuration in 
Table 2. In this setting, the mask is positioned at a considerable distance from its original location, and the 
framework achieves outstanding performance across all evaluated metrics. With an impressive accuracy (ACC) 
of 96.31%, the model demonstrates a high degree of correctness in its predictions. Moreover, the sensitivity 
(SNS) and specificity (SPC) scores, measuring the model’s ability to identify positive and negative instances, are 
notably high at 92.65% and 97.54%, respectively. The Precision (PRC) and F1 score (F1) further highlight the 
framework’s precision and balance between precision and recall. The receiver operating characteristic (ROC) 
score, balanced accuracy (BAC), and weighted similarity Metric (WSM) collectively reinforce the exceptional 
performance of the model in accurately classifying instances when the mask is positioned at this substantial 
distance. This result underscores the model’s resilience and effectiveness, particularly when faced with spatial 
variations in the positioning of the mask.

Majority voting: by applying the weighted majority voting on the best classifiers regarding each polygon dis-
tanced from 0 to 1500, the performance is enhanced with an overall accuracy of 96.85%, sensitivity of 93.72%, 
specificity of 97.89%, precision of 93.86%, F1 score of 93.72%, ROC of 95.85%, BAC of 95.81%, and WSM of 
95.38%. The fact that the performance is enhanced by applying majority voting on the best classifiers regarding 
each polygon distanced from 0 to 1500 suggests that the model is able to learn different patterns for different 
polygon distances. This is important as the model is more likely to be able to generalize to new instances, even 
if the polygon distances in the new instances are different from the polygon distances in the training instances.

Enhancing interpretation through contour overlay: in image analysis and classification, the overlay of contours 
on an image plays an important role in improving the interpretation of the results. This method is particularly 
valuable when dealing with multiple classes, each of which is assigned a specific label.

(11)
WSM = w1 × Accuracy+ w2 × Sensitivity+ w3 × Specificity+ w4 × Precision+ w5 × F1+ w6 × ROC+ w7 × BAC

Table 2.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced from 0 to 1500, which corresponds to the mask itself, are presented.

Distance Combinations ACC SNS SPC PRC F1 ROC BAC WSM

0 Top-7 90.45 80.92 93.62 82.84 81.26 87.63 87.27 86.29

250 Top-10 90.50 81.04 93.65 81.71 81.03 87.70 87.35 86.14

500 Top-7 90.14 80.33 93.42 80.67 80.27 87.24 86.87 85.56

750 Top-8 89.30 78.67 92.86 78.95 78.65 86.17 85.77 84.34

1000 Top-9 90.20 80.45 93.46 82.36 79.68 87.88 86.96 85.86

1250 Top-2 93.22 86.49 95.48 87.09 86.20 91.35 90.98 90.12

1500 Top-3 96.31 92.65 97.54 92.75 92.54 95.21 95.10 94.59
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Figure 5 displays the overlaid contours, where most of them are correctly identified, except for two. The 
Wet class is depicted in red, the GA class in green, and the Normal class in yellow, all with an opacity set to 0.1. 
This visual representation allows for a quick and intuitive assessment of which contours have been inaccurately 
diagnosed. By assigning distinct colors to each class, it becomes evident which specific classes are affected by 
misclassifications.

While the visual identification of incorrectly diagnosed contours is vital, it is also essential to consider the 
broader context. Figure 6 demonstrates an overlaid image with different contours, all correctly diagnosed. This 
comprehensive visualization not only assures the accuracy of individual contours but also provides confidence 
in the overall diagnosis of the entire image.

Figure 5.  Visualization of an image with overlaid contours, where most of them are correctly identified, except 
for two. The Wet class is depicted in red, the GA class in green, and the Normal class in yellow, all with an 
opacity set to 0.1. White contours have been incorporated to enhance the visualization.

Figure 6.  Visualization of an overlaid image featuring the Wet class with accurately diagnosed contours. The 
overlay is in red with an opacity of 0.1. White contours have been incorporated to enhance the visualization.
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Overall discussion
In our study, we have presented a detailed Computer-Aided Diagnosis (CAD) framework for Age-related Macu-
lar Degeneration (AMD) analysis. The CAD system is designed to assist in the diagnosis of AMD through a 
multi-stage process involving data acquisition, pre-processing, feature extraction, scaling, classification, and 
optimization. The entire methodology is encapsulated within a systematic framework, as illustrated in Fig. 1.

The framework begins with the data acquisition phase, where necessary information is obtained. This is fol-
lowed by the pre-processing stage, where various techniques such as Average CDF calculation, CLAHE enhance-
ments, interpolation, ROI extraction, and contour analysis are applied to improve data quality and prepare it 
for analysis. The feature extraction phase involves extracting meaningful patterns from the pre-processed data 
using Gray-Level Co-occurrence Matrix (GLCM) and Gray-Level Run-Length Matrix (GLRLM) methods. This 
step is crucial in quantifying the characteristics of the images.

In our research, the choice of feature extraction methods was driven by a consideration of the unique char-
acteristics of the data and the specific requirements of the AMD diagnosis task. For capturing global appearance 
markers from the entire fundus image, we opted for techniques such as average cumulative distribution function 
(ACDF) calculation and contrast limited adaptive histogram equalization (CLAHE). These methods are adept at 
providing an understanding of pixel intensity distributions and enhancing contrast throughout the entire fundus 
image. This global perspective is essential for ensuring that the diagnostic model considers the overall structure 
and characteristics of the retina.

For local appearance markers, particularly in the optical disc section, we employed techniques such as region 
of interest (ROI) extraction and contour analysis. By focusing on specific regions of interest within the image 
and using binary masks and contour analysis, we aimed to capture detailed local information. This emphasis on 
local features is critical for identifying subtle patterns or abnormalities around the optical disc, contributing to 
a nuanced and accurate AMD diagnosis.

After feature extraction, the data goes through a scaling phase, where different scaling techniques such as 
standardization, min-max scaling, and max absolute scaling are applied to ensure that features are on compatible 
scales, optimizing the behavior of various machine learning (ML) algorithms.

The heart of the CAD system lies in the classification and optimization phase, where a variety of ML algo-
rithms, including LightGBM, Histogram-based Gradient Boosting, XGBoost, AdaBoost, Random Forest, Multi-
Layer Perceptron, Decision Tree, Logistic Regression, Support Vector Machine, and K-nearest neighbor, are 
employed. The Tree of Parzen Estimators (TPE) is used for hyperparameter optimization, ensuring the ML 
models are finely tuned for the specific task.

Finally, the performance evaluation phase employs various metrics such as confusion matrix, accuracy, sensi-
tivity, specificity, ROC, F1-score, and balanced accuracy (BAC) to comprehensively evaluate the effectiveness of 
the ML models in AMD classification. These metrics are not only presented individually but are also combined 
into a Weighted Sum Metric (WSM) to provide an insightful measure of model performance.

Concerning the consideration of using transformers and convolutions for feature extraction, it is important 
to note that our decision was influenced by several factors. In the context of medical imaging, obtaining large 
labeled datasets for training deep learning models can be challenging. Conventional methods remain robust 
and effective even with smaller datasets. Additionally, the interpretability of results is a crucial consideration in 
medical contexts. The use of ACDF, CLAHE, and contour analysis provides transparency and interpretability, 
allowing healthcare professionals to understand the features contributing to a diagnosis. Furthermore, com-
putational efficiency is a key factor, and deep learning models, particularly those involving Transformers and 
convolutions, may demand substantial computational resources. The simplicity of our chosen methods ensures 
computational efficiency without compromising the diagnostic accuracy required for AMD diagnosis. While deep 
learning approaches have shown success in various domains, the specific requirements of our AMD diagnosis 
task, including interpretability, dataset size considerations, and computational efficiency, led us to choose the 
outlined feature extraction methods.

Limitations
Several limitations should be noted in this study. The effectiveness of the CAD system relies on data quality 
and quantity, including variations in image quality and demographic representation, potentially affecting its 
generalizability. Labeling fundus images with AMD stages can introduce inter-observer variability, impacting 
ML model training and evaluation. Additionally, the study primarily focuses on broad AMD stage classifica-
tion, excluding finer subtypes. External validation in diverse clinical settings is necessary to confirm real-world 
applicability. Regulatory approvals, clinical integration, and addressing ethical concerns are essential for the 
CAD system’s responsible deployment. Deep learning models lack transparency, and the CAD system should 
always complement clinical expertise. Long-term follow-up and adaptation to geographic variability are areas 
for future exploration.

Despite these limitations, this research represents a significant step towards enhancing AMD diagnosis 
through ML. Addressing these challenges and conducting further research can contribute to the continued 
improvement and responsible implementation of AI-driven diagnostic tools for AMD.

Conclusions and future directions
This study has critically examined the effective application of ML methods to accurately classify the AMD stage 
from fundus images All aspects of AMD diagnosis are discussed, from data acquisition to preprocessing to fea-
ture extraction and selection of ML algorithms therefore. The goal was to develop a non-invasive CAD system 
that maximizes the accuracy and clinical utility of AMD classification. By applying weighted majority voting 
on the best classifiers, the performance is enhanced with an overall accuracy of 96.85%, sensitivity of 93.72%, 
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specificity of 97.89%, precision of 93.86%, F1 score of 93.72%, ROC of 95.85%, BAC of 95.81%, and WSM of 
95.38%. These results suggest a successful CAD system that can play an important role in the early detection 
and diagnosis of AMD.

One of the noteworthy outcomes of this study is the improvement in the classification of AMD stages. 
Through rigorous experimentation and analysis, an advance in the accuracy and reliability of categorizing AMD 
into geographic atrophy (GA), intermediate AMD, normal, and wet AMD categories has been achieved. This 
enhanced precision is a critical step towards facilitating appropriate treatment strategies for patients. Further-
more, intricate patterns and relationships within fundus images have been illuminated by the study. These 
patterns enable the identification of subtle indicators of different AMD phases, which in turn can aid in early 
intervention and treatment. Through the automation of the AMD diagnosis process and the reduction of inter-
observer discrepancies, enhanced patient care is facilitated by our CAD system.

Looking ahead, several promising directions for future research in this field can be explored. Firstly, further 
optimization of the ML models can be investigated. Techniques like hyperparameter tuning and the integration 
of more advanced techniques such as transformers and deep learning can potentially boost the system’s accuracy 
even further. Additionally, the scalability and applicability of the CAD system to larger datasets and diverse 
populations can be explored. Robustness across different demographic groups and geographic regions can ensure 
its broad clinical utility. Moreover, the performance of the CAD system can be enhanced by the incorporation 
of more extensive image datasets and advanced imaging technologies. This could involve the utilization of 
high-resolution images and multimodal data fusion for a more comprehensive assessment. In terms of clinical 
application, validation studies involving real-world patient data and collaboration with healthcare institutions 
can validate the effectiveness of the CAD system in a clinical setting. Regulatory approval and integration into 
routine clinical practice would be significant milestones. Lastly, ongoing research into the underlying mechanisms 
of AMD, including genetics, biomarkers, and treatment options, can complement the diagnostic capabilities of 
the CAD system. Combining ML-based diagnosis with cutting-edge treatment strategies can usher in a new era 
of precision medicine for AMD.

Data availability
Access to the dataset used in this study is subject to availability and can be made available upon request for study 
and research purposes. Researchers interested in gaining access to the dataset for further research are encouraged 
to contact the authors. The datasets generated during and/or analyzed during the current study are available 
from the corresponding author on a reasonable request. The data, figures, and scripts are licensed under CC-
BY-NC-ND (or Creative Commons Attribution NonCommercial NoDerivs) from the time we start working on 
them until the document is published.

Appendix
First and second‑order features
The first- and second-order features were presented in Tables 3 and 4, respectively. The presented first-order 
features capture essential statistical properties of pixel intensities within ROIs and distance maps. These features, 
including mean, standard deviation, median, and others, provide a comprehensive description of the distribution 
and variation in pixel values. Moving to second-order features, these metrics, based on gray-level run-length 

Table 3.  The equations employed for calculating the first-order-based markers. They are used to quantify 
different aspects of texture patterns in the ROIs and distance maps.

First-order feature Equation

Mean µ = 1
N

∑N
i=1 xi

Standard deviation σ =
√

1
N

∑N
i=1(xi − µ)2

Median x̃ = median(x) (for odd N)

Median x̃L = median(x[: N
2 ]) , x̃U = median(x[ N2 :]) (for even N)

Mean absolute deviation MAD = 1
N

∑N
i=1 |xi − µ|

Robust mean absolute deviation RMAD = median(|xi −median(x)|)
Median absolute deviation MAD = median(|xi −median(x)|)

Root mean square RMS =
√

1
N

∑N
i=1 x

2
i

Variance σ 2 = 1
N

∑N
i=1(xi − µ)2

Minimum Min = min(x1, x2, . . . , xN )

Maximum Max = max(x1, x2, . . . , xN )

Skewness Skew =
1
N

∑N
i=1(xi−µ)3

σ 3

Kurtosis Kurt =
1
N

∑N
i=1(xi−µ)4

σ 4

Shannon entropy H(X) = −
∑N

i=1 p(xi) log2(p(xi))

Interquartile range IQR = Q3 − Q1
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matrices (GLRLM), delve deeper into the spatial relationships between pixel intensities. The energy, entropy, 
contrast, and other measures derived from GLRLM offer insights into the texture patterns of the images.

Detailed experiments
Table 5 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 0. The results show that both LGBM and Top-7 perform very well, with accuracies above 90%. How-
ever, Top-7 slightly outperforms LGBM. Top-7 has a higher accuracy (90.33% vs 90.45%), sensitivity (80.69% 
vs 80.92%), specificity (93.53% vs 93.62%), precision (82.78% vs 82.84%), F1-score (81.08% vs 81.26%), WSM 
(86.14% vs 86.29%), and BAC (87.11% vs 87.27%). Both LGBM and Top-7 achieve ROC-AUC scores above 
0.8, indicating that they are both good classifiers for this task. Both LGBM and Top-7 achieve high BAC scores, 
indicating that they are both robust classifiers.

Table 6 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 250. Both LGBM and Top-10 perform very well, with accuracies above 90%. However, Top-10 out-
performs LGBM. Top-10 has a higher accuracy (90.50% vs 90.20%), sensitivity (81.04% vs 80.45%), specificity 
(93.65% vs 93.46%), precision (81.71% vs 81.48%), F1-score (81.03% vs 80.48%), ROC (87.70% vs 87.35%), BAC 
(86.95% vs 87.35%), and WSM (86.14% vs 85.77%). If you need the highest possible accuracy and robustness, 
then Top-10 is the better choice. The difference in ROC between Top-10 and LGBM is also very small (0.35%). 
The difference in BAC between Top-10 and LGBM is slightly larger (0.40%).

Table 7 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 500. Both XGB and Top-7 perform very well, with accuracies above 90%. However, Top-7 outperforms 
XGB. Top-7 has a higher accuracy (90.14% vs 89.78%), sensitivity (80.33% vs 79.62%), specificity (93.42% vs 
93.18%), precision (80.67% vs 79.85%), BAC (86.40% vs 86.87%), F1-score (80.27% vs 79.62%), ROC (87.24% 
vs 86.74%), and WSM (85.56% vs 85.03%). If you need the highest possible accuracy and robustness, then Top-7 
is the better choice. The difference in ROC between Top-7 and XGB is also very small (0.50%). The difference in 
BAC between Top-7 and XGB is slightly larger (0.47%).

Table 8 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 750. Both HGB and Top-8 perform well, with accuracies above 88%. However, Top-8 outperforms 
HGB. Top-8 has a higher accuracy (89.30% vs 88.53%), sensitivity (78.67% vs 77.13%), specificity (92.86% vs 

Table 4.  The equations employed for calculating the second-order-based GLRLM markers. They are used to 
quantify different aspects of texture patterns in the ROIs and distance maps.

Second-order feature Equation

Energy Energy =
∑N

i=1

∑N
j=1 ×GLCM(i, j)2

Entropy −
∑N

i=1

∑N
j=1 ×GLCM(i, j)× log(GLCM(i, j)+ ǫ)

Contrast ∑N
i=1

∑N
j=1(i − j)2 × GLCM(i, j)

Correlation
∑N

i=1

∑N
j=1(i−µx )(j−µy )×GLCM(i,j)

σxσy

Homogeneity ∑N
i=1

∑N
j=1 ×

GLCM(i,j)
1+|i−j|

Angular second moment (ASM) ∑N
i=1

∑N
j=1 GLCM(i, j)2

Dissimilarity ∑N
i=1

∑N
j=1 |i − j| × GLCM(i, j)

Inverse difference (ID) ∑N
i=1

∑N
j=1

GLCM(i,j)

1+(i−j)2

Cluster shade ∑N
i=1

∑N
j=1(i + j − µx − µy)

3 × GLCM(i, j)

Cluster prominence ∑N
i=1

∑N
j=1(i + j − µx − µy)

4 × GLCM(i, j)

Max. probability max(GLCM(i, j))

SRE (short run emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)

length2

LRE (long run emphasis) ∑N
length=1

∑N
intensity=1 �(length, intensity) · length2

GLN (gray-level nonuniformity) ∑N
length=1

∑N
intensity=1 �(length, intensity)2

RLN (run-length nonuniformity)
∑N

length=1

∑N
intensity=1 �(length,intensity)2

∑N
length=1

∑N
intensity=1 �(length,intensity)

RP (run percentage)
∑N

intensity=1

(

∑N
length=1 �(length,intensity)

length

)

LGLRE (low gray-level run emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)

intensity2

HGLRE (high gray-level run emphasis) ∑N
length=1

∑N
intensity=1 �(length, intensity) · intensity2

SRLGLE (short run low gray-level emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)

length·intensity2

SRHGLE (short run high gray-level emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)

length2 ·intensity

LRLGLE (long run low gray-level emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)·length2
intensity2

LRHGLE (long run high gray-level emphasis) ∑N
length=1

∑N
intensity=1

�(length,intensity)·length2
intensity
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92.35%), precision (78.95% vs 77.28%), F1-score (78.65% vs 77.19%), ROC (86.17% vs 85.13%), BAC (85.77% vs 
84.74%), and WSM (83.19% vs 84.34%). The difference in accuracy between Top-8 and HGB is only 0.77%. This 
is a relatively small difference. The difference in ROC between Top-8 and HGB is also relatively small (1.04%). 
The difference in BAC between Top-8 and HGB is slightly larger (1.03%). The difference in WSM between Top-8 
and HGB is also relatively small (1.15%).

Table 9 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 1000. Both LGBM and Top-9 perform very well, with accuracies above 90%. However, LGBM slightly 
outperforms Top-9 on all metrics except for precision, ROC, and WSM, where Top-9 is slightly better. LGBM has 
a higher accuracy (90.25% vs 90.20%), sensitivity (80.57% vs 80.45%), specificity (93.50% vs 93.46%), F1-score 

Table 5.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 0, which corresponds to the mask itself, are presented.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 90.33 80.69 93.53 82.78 81.08 87.47 87.11 86.14

HGB 90.27 80.57 93.49 82.73 80.93 87.42 87.03 86.06

XGB 89.56 79.15 93.02 81.13 79.55 86.46 86.08 84.99

AdaBoost 79.83 59.72 86.50 64.55 60.19 74.91 73.11 71.26

RF 89.09 78.20 92.72 79.62 78.40 85.88 85.46 84.20

MLP 89.62 79.27 93.08 79.84 79.43 86.46 86.17 84.84

DT 87.19 74.41 91.45 76.27 74.65 83.54 82.93 81.49

LR 82.86 65.76 88.58 65.90 65.70 78.12 77.17 74.87

SVM 81.45 62.91 87.63 63.93 63.08 76.36 75.27 72.95

KNN 80.92 61.85 87.29 62.81 62.01 75.70 74.57 72.16

Top-2 90.33 80.69 93.53 82.78 81.08 87.47 87.11 86.14

Top-3 90.03 80.09 93.33 82.19 80.49 87.09 86.71 85.71

Top-4 90.03 80.09 93.33 82.19 80.49 87.09 86.71 85.71

Top-5 90.09 80.21 93.38 82.33 80.61 87.17 86.80 85.80

Top-6 90.03 80.09 93.34 82.33 80.51 87.10 86.72 85.73

Top-7 90.45 80.92 93.62 82.84 81.26 87.63 87.27 86.29

Top-8 90.27 80.57 93.50 82.56 80.92 87.41 87.04 86.04

Top-9 90.27 80.57 93.50 82.50 80.92 87.39 87.04 86.03

Top-10 90.04 80.09 93.34 82.15 80.42 87.12 86.72 85.70

Table 6.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 250.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 90.20 80.45 93.46 81.48 80.48 87.35 86.95 85.77

HGB 89.79 79.62 93.18 80.90 79.69 86.84 86.40 85.20

XGB 89.61 79.27 93.06 80.40 79.36 86.60 86.16 84.92

AdaBoost 77.80 55.69 85.16 59.26 56.51 72.03 70.43 68.13

RF 89.50 79.03 92.99 79.25 78.90 86.42 86.01 84.58

MLP 88.48 77.01 92.30 77.68 77.13 85.07 84.66 83.19

DT 87.00 74.05 91.32 75.42 74.23 83.30 82.69 81.14

LR 82.07 64.22 88.03 65.29 64.46 77.16 76.13 73.91

SVM 79.88 59.83 86.56 61.41 59.39 75.10 73.20 70.77

KNN 81.49 63.03 87.64 63.48 62.88 76.58 75.34 72.92

Top-2 90.20 80.45 93.46 81.48 80.48 87.35 86.95 85.77

Top-3 90.08 80.21 93.38 81.38 80.28 87.20 86.79 85.62

Top-4 90.20 80.45 93.46 81.36 80.51 87.32 86.95 85.75

Top-5 90.03 80.09 93.34 81.03 80.15 87.10 86.72 85.49

Top-6 90.02 80.09 93.34 81.09 80.17 87.10 86.72 85.50

Top-7 90.38 80.81 93.57 81.80 80.88 87.56 87.19 86.03

Top-8 90.09 80.21 93.38 81.13 80.25 87.18 86.79 85.58

Top-9 90.38 80.81 93.57 81.46 80.79 87.55 87.19 85.97

Top-10 90.50 81.04 93.65 81.71 81.03 87.70 87.35 86.14



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2434  | https://doi.org/10.1038/s41598-024-52131-2

www.nature.com/scientificreports/

(79.97% vs 79.68%), and BAC (87.03% vs 86.96%). Top-9 achieves a slightly higher WSM score than LGBM 
(85.86% vs 85.83%). Overall, LGBM is the better performing algorithm, but the difference in performance 
between LGBM and Top-9 is very small. If you need the highest possible accuracy and robustness, then LGBM 
is the better choice. However, if WSM is more important to you, then Top-9 may be the better choice. The dif-
ference in accuracy between LGBM and Top-9 is only 0.05%. This is a very small difference. The difference in 
ROC between LGBM and Top-9 is also very small (0.07%). The difference in BAC between LGBM and Top-9 is 
slightly larger (0.07%). The difference in WSM between LGBM and Top-9 is also very small (0.03%).

Table 7.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 500.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 89.25 78.55 92.82 78.74 78.48 86.11 85.69 84.23

HGB 89.25 78.55 92.83 78.61 78.47 86.09 85.69 84.21

XGB 89.78 79.62 93.18 79.85 79.62 86.74 86.40 85.03

AdaBoost 80.36 60.78 86.88 63.21 61.43 75.02 73.83 71.64

RF 88.95 77.96 92.63 79.20 77.64 86.01 85.30 83.96

MLP 88.24 76.54 92.15 76.76 76.51 84.80 84.34 82.76

DT 88.01 76.07 92.00 76.23 75.75 84.66 84.03 82.39

LR 81.59 63.27 87.72 63.30 63.23 76.64 75.50 73.03

SVM 81.18 62.44 87.45 62.50 60.99 77.03 74.95 72.36

KNN 81.20 62.44 87.49 61.82 61.78 76.43 74.96 72.30

Top-2 89.78 79.62 93.18 79.85 79.62 86.74 86.40 85.03

Top-3 89.48 79.03 92.98 79.21 78.99 86.39 86.00 84.58

Top-4 89.84 79.74 93.22 79.93 79.69 86.84 86.48 85.11

Top-5 89.78 79.62 93.18 79.83 79.57 86.77 86.40 85.02

Top-6 90.02 80.09 93.34 80.32 80.01 87.10 86.72 85.37

Top-7 90.14 80.33 93.42 80.67 80.27 87.24 86.87 85.56

Top-8 89.84 79.74 93.22 80.01 79.63 86.88 86.48 85.11

Top-9 89.60 79.27 93.06 79.46 79.16 86.57 86.16 84.76

Top-10 89.78 79.62 93.18 79.81 79.55 86.78 86.40 85.02

Table 8.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 750.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 87.64 75.36 91.75 75.59 75.40 84.05 83.55 81.90

HGB 88.53 77.13 92.35 77.28 77.19 85.13 84.74 83.19

XGB 88.36 76.78 92.23 76.85 76.78 84.92 84.50 82.92

AdaBoost 79.29 58.65 86.17 61.88 59.06 74.01 72.41 70.21

RF 88.42 76.90 92.28 77.46 76.71 85.16 84.59 83.07

MLP 87.46 75.00 91.63 75.78 74.80 84.05 83.31 81.72

DT 85.51 71.09 90.34 71.00 70.52 81.72 80.71 78.70

LR 83.85 67.77 89.24 67.44 67.17 79.65 78.51 76.24

SVM 79.75 59.60 86.50 60.69 57.92 75.60 73.05 70.44

KNN 80.94 61.97 87.29 61.91 61.59 76.07 74.63 72.06

Top-2 88.53 77.13 92.35 77.28 77.19 85.13 84.74 83.19

Top-3 88.95 77.96 92.63 77.94 77.91 85.69 85.29 83.77

Top-4 88.83 77.73 92.55 77.71 77.66 85.55 85.14 83.59

Top-5 89.01 78.08 92.66 78.16 78.05 85.77 85.37 83.87

Top-6 89.07 78.20 92.70 78.29 78.17 85.85 85.45 83.96

Top-7 89.07 78.20 92.70 78.40 78.16 85.87 85.45 83.98

Top-8 89.30 78.67 92.86 78.95 78.65 86.17 85.77 84.34

Top-9 89.13 78.32 92.74 78.54 78.20 85.99 85.53 84.06

Top-10 89.07 78.20 92.70 78.36 78.14 85.87 85.45 83.97
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Table 10 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 1250. Both LGBM and Top-2 perform extremely well, with accuracies above 93%. They achieve identical 
results on all metrics, including sensitivity, specificity, precision, F1-score, ROC, BAC, and WSM.

Table 11 shows the performance results obtained using the proposed framework with with a mask at polygon 
distance 1500. Both MLP and Top-3 perform extremely well, with accuracies above 96%. Top-3 outperforms MLP. 
Top-3 has a higher accuracy (96.31% vs 96.08%), sensitivity (92.65% vs 92.18%), specificity (97.54% vs 97.39%), 
precision (92.75% vs 92.32%), F1-score (92.54% vs 91.98%), ROC (95.21% vs 94.94%), BAC (94.78% vs 95.10%), 
and WSM (94.59% vs 94.24%). If you need the highest possible accuracy and robustness, then Top-3 is the better 
choice. The difference in accuracy between Top-3 and MLP is only 0.23%. This is a very small difference, and it 

Table 9.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 1000.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 90.25 80.57 93.50 81.67 79.97 87.81 87.03 85.83

HGB 90.13 80.33 93.42 80.89 79.93 87.48 86.87 85.58

XGB 88.89 77.84 92.60 78.09 77.35 85.90 85.22 83.70

AdaBoost 83.43 66.94 88.95 67.62 66.50 79.25 77.95 75.81

RF 88.25 76.54 92.19 77.94 75.66 85.35 84.36 82.90

MLP 87.81 75.71 91.87 78.54 74.48 85.27 83.79 82.50

DT 88.43 76.90 92.30 78.50 76.24 85.54 84.60 83.22

LR 83.73 67.54 89.16 68.09 65.51 80.41 78.35 76.11

SVM 82.90 65.88 88.59 68.65 62.92 80.05 77.24 75.17

KNN 83.09 66.23 88.75 65.52 65.39 78.85 77.49 75.05

Top-2 90.25 80.57 93.50 81.67 79.97 87.81 87.03 85.83

Top-3 90.19 80.45 93.46 81.10 79.94 87.63 86.95 85.68

Top-4 90.19 80.45 93.46 81.06 79.93 87.63 86.95 85.67

Top-5 89.72 79.50 93.15 80.07 78.94 87.02 86.33 84.96

Top-6 89.84 79.74 93.22 80.65 79.12 87.26 86.48 85.19

Top-7 89.84 79.74 93.22 80.87 79.02 87.33 86.48 85.21

Top-8 89.96 79.98 93.31 81.07 79.30 87.45 86.64 85.39

Top-9 90.20 80.45 93.46 82.36 79.68 87.88 86.96 85.86

Top-10 90.02 80.09 93.34 81.56 79.35 87.62 86.72 85.53

Table 10.  The performance results obtained by implementing the framework phases with the mask positioned 
at a polygon distanced of 1250.

ML Accuracy Sensitivity Specificity Precision F1 ROC BAC WSM

LGBM 93.22 86.49 95.48 87.09 86.20 91.35 90.98 90.12

HGB 92.93 85.90 95.28 86.70 85.59 91.01 90.59 89.71

XGB 92.52 85.07 95.01 85.61 84.73 90.44 90.04 89.06

AdaBoost 82.91 65.88 88.62 67.85 64.92 79.03 77.25 75.21

RF 91.27 82.58 94.17 84.58 82.05 89.08 88.38 87.44

MLP 91.14 82.35 94.09 83.01 81.67 88.91 88.22 87.06

DT 91.21 82.46 94.13 83.79 81.87 88.98 88.30 87.25

LR 87.05 74.17 91.37 74.74 72.57 84.25 82.77 80.99

SVM 87.29 74.64 91.52 77.58 73.53 84.64 83.08 81.75

KNN 87.47 75.00 91.65 75.04 74.37 84.18 83.32 81.58

Top-2 93.22 86.49 95.48 87.09 86.20 91.35 90.98 90.12

Top-3 92.93 85.90 95.28 86.52 85.63 90.96 90.59 89.69

Top-4 92.87 85.78 95.24 86.50 85.50 90.90 90.51 89.61

Top-5 92.75 85.55 95.16 86.52 85.24 90.79 90.35 89.48

Top-6 92.81 85.66 95.20 86.54 85.36 90.85 90.43 89.55

Top-7 92.81 85.66 95.20 86.67 85.32 90.89 90.43 89.57

Top-8 92.93 85.90 95.28 87.00 85.57 91.04 90.59 89.76

Top-9 92.87 85.78 95.24 87.01 85.41 90.99 90.51 89.69

Top-10 92.57 85.19 95.04 86.31 84.80 90.62 90.12 89.24
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is possible that it is due to chance. The difference in ROC between Top-3 and MLP is also very small (0.27%). 
The difference in BAC between Top-3 and MLP is slightly larger (0.32%). The difference in WSM between Top-3 
and MLP is also very small (0.35%).
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