
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3901  | https://doi.org/10.1038/s41598-024-52128-x

www.nature.com/scientificreports

Cross‑talk between disulfidptosis 
and immune check point 
genes defines the tumor 
microenvironment 
for the prediction of prognosis 
and immunotherapies 
in glioblastoma
Yanjun Zhou 1,5*, Xue Qin 2,5, Qunchao Hu 3, Shaolei Qin 2, Ran Xu 4, Ke Gu 1* & Hua Lu 4*

Disulfidptosis is a condition where dysregulated NAPDH levels and abnormal accumulation of 
cystine and other disulfides occur in cells with high SLC7A11 expression under glucose deficiency. 
This disrupts normal formation of disulfide bonds among cytoskeletal proteins, leading to histone 
skeleton collapse and triggering cellular apoptosis. However, the correlation between disulfidptosis 
and immune responses in relation to glioblastoma survival rates and immunotherapy sensitivity 
remains understudied. Therefore, we utilized The Cancer Genome Atlas and The Chinese Glioma 
Genome Atlas to identify disulfidptosis‑related immune checkpoint genes and established an overall 
survival (OS) prediction model comprising six genes: CD276, TNFRSF 14, TNFSF14, TNFSF4, CD40, 
and TNFRSF18, which could also be used for predicting immunotherapy sensitivity. We identified 
a cohort of glioblastoma patients classified as high‑risk, which exhibited an upregulation of 
angiogenesis, extracellular matrix remodeling, and epithelial‑mesenchymal transition as well as an 
immunosuppressive tumor microenvironment (TME) enriched with tumor associated macrophages, 
tumor associated neutrophils,  CD8 + T‑cell exhaustion. Immunohistochemical staining of CD276 in 144 
cases further validated its negative correlation with OS in glioma. Disulfidptosis has the potential to 
induce chronic inflammation and an immunosuppressive TME in glioblastoma.

Glioblastoma, a rapidly progressing grade IV malignant glioma, is the third most common histopathology among 
central nervous system (CNS) tumors, accounting for 14.2% of all primary brain and CNS  tumors1. The relative 
survival rates for glioblastoma patients are significantly low, with only 6.9% of individuals surviving beyond five 
years after diagnosis. Effective treatments for progressive or recurrent glioblastoma remain a challenge, with only 
about 8% of patients showing objective responses to PD-1 immune checkpoint inhibitors (CheckMate 143, NCT 
02017717). Predicting survival outcome for glioblastoma patients with prognostic genes is crucial to develop a 
risk classification strategy and enhance therapy precision, which is currently limited.

Cell death is crucial for maintaining internal homeostasis and regulating biological development. Targeted 
modulation of cell death pathways is a key focus in cancer therapy to effectively eliminate malignant  cells2. In a 
recent study by Liu et al., a novel form of cell death called disulfidptosis was  identified3. Nicotinamide adenine 
dinucleotide (NADPH) depletion and abnormal accumulation of cystine and disulfides in glucose-deficient, 
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solute carrier family 7 member 11 (SLC7A11) high-expressing cells disrupt the formation of disulfide bonds 
in cytoskeletal proteins. This destabilizes histone skeletons and triggers cellular apoptosis, a process known as 
disulfidptosis. However, the role of disulfidptosis in glioblastoma is not well understood.

The interaction between tumor cells and the tumor microenvironment (TME) plays a critical role in tumor 
progression and treatment  response4. Cancer cells express inhibitory ligands that suppress T cell function, leading 
to tumor tolerance and immune  evasion5. In recent years, immune checkpoint therapies, specifically monoclonal 
antibodies targeting PD-1 and CTLA-4, have emerged as promising immunotherapeutic approaches for cancer 
 treatment6. Building upon the early success of immune checkpoint therapy, targeting additional coinhibitory 
and costimulatory molecules to activate the antitumor immune response holds great promise as a therapeutic 
 strategy7. Understanding and characterizing the TME is crucial for identifying novel therapeutic targets in 
glioblastoma.

Complex crosstalk between cell death and immune cells is  observed8. The relationship between disulfidptosis 
and antitumor immunity has not been explored. Investigating the coexpression of disulfidptosis-related genes 
and immune checkpoint genes can provide insights into the correlation between disulfidptosis and the immune 
response.

This research aims to investigate the impact of disulfidptosis-related immune checkpoint genes (DICR genes) 
on glioblastoma patients. A risk score model based on DRIC genes was constructed to assess the prognostic value 
and immunotherapy sensitivity in glioblastoma. The study aims to uncover molecular mechanisms underlying 
the role of DRIC genes in glioblastoma and propose a new prediction model for glioblastoma immune therapy.

Results
Construction and validation of disulfidptosis related immune checkpoint prognostic signature
The DRIC genes were identified with an absolute correlation coefficient > 0.3 and a p-value < 0.05 (Fig. 1A and 
Supplementary Table 1). The results of univariate Cox analysis showed that increased expression of CD276 (HR 
1.47, 95% confidence interval (CI) 1.10–1.97, p = 0.011), TNFRSF14 (HR 1.39, 95% CI 1.09–1.78, p = 0.009), 
TNFSF14 (HR 1.29, 95% CI 1.07–1.55, p = 0.007), TNFRSF9 (HR 1.60, 95% CI 1.11–2.31, p = 0.013), TNFSF4 
(HR 1.48, 95% CI 1.20–1.84, p < 0.001), CD70 (HR 1.17, 95% CI 1.02–1.34, p = 0.025), CD40 (HR 1.39, 95% CI 
1.07–1.79, p = 0.013), TNFRSF18 (HR 1.34, 95% CI 1.10–1.63, p = 0.003), and CD96 (HR 1.59, 95% CI 1.11–2.28, 
p = 0.012) were associated with poor prognoses of glioblastoma (Fig. 1B). To address multicollinearity among 
DRIC genes derived from the univariate Cox and simplify the prognostic model, we performed LASSO-Cox 
analysis. Figure 1C displays the optimal tuning parameter λ, which was determined to be 0.038, resulting in the 
minimum partial likelihood deviance. The Lasso-Cox analysis identified six DRIC genes with non-zero coeffi-
cients, which constitute the prognostic model (Fig. 1D). The expression values and coefficients of the DRIC genes 
in the prognostic model can be found in Supplementary Table 2. The risk score for each patient was calculated 
using the formula: Risk Score = CD276 × 0.175 + TNFRSF14 × 0.032 + TNFSF14 × 0.120 + TNFSF4 × 0.199 + CD
40 × 0.068 + TNFRSF18 × 0.036. The TCGA glioblastoma cohort was then divided into low-risk and high-risk 
groups based on the median risk score (Fig. 1E). A positive correlation was observed between the risk score 
and the occurrence of death events, indicating an increase in death events with higher risk scores (Fig. 1F). The 
expression of the 6 DRIC genes according to the risk score is depicted in Fig. 1G. The disulfidptosis score was 
calculated using ssGSEA, and a strong relationship was observed between the risk score and the disulfidptosis 
score (R = 0.57, p < 0.001, Fig. 1H). Moreover, the risk score exhibited a significant increase in patients older than 
60 years compared to patients aged 60 years or younger (p = 0.044, Supplementary Fig. 1A). Notably, the risk 
score showed a significant increase in IDH wild-type (IDH WT) compared to IDH mutant patients (p < 0.001, 

Figure 1.  Construction and validation of disulfidptosis related immune checkpoint prognostic signature. (A) 
Correlation analysis demonstrates the significant association of immune checkpoint genes with genes involved 
in disulfidptosis, with an absolute correlation coefficient exceeding 0.3 and a p-value below 0.05 in the TCGA-
glioblastoma dataset. (B) Forest plot representing the significant association with overall survival of 9 immune 
checkpoint genes identified through univariate Cox regression analysis in the TCGA-glioblastoma dataset. (C) 
This figure shows the relationship between the partial likelihood deviance and different levels of regularization 
for the Lasso model. The y-axis represents the partial likelihood deviance, which measures the goodness-of-fit 
of the Lasso model. A lower value indicates a better fit. The x-axis corresponds to the log λ, which controls the 
amount of regularization applied in the Lasso analysis. Higher values of log λ result in greater regularization. 
The dashed vertical line refers to the optimal λ value. (D) The coefficients obtained from Lasso-Cox analysis. 
The y-axis represents the coefficients, while the x-axis represents the log λ. Genes with non-zero coefficients 
are used to establish of prognostic prediction model. (E) The scatter plot shows the relationship between the 
patients (x-axis) and their risk score (y-axis). Red points indicate deceased patients, while blue points represent 
surviving patients. The dashed line represents the division of the TCGA-glioblastoma cohort into high- and 
low- risk groups based on the median value of the risk score (F) The scatter plot with the x-axis representing the 
patients with increasing risk score and the y-axis representing survival time. Red points indicate cases of death, 
while blue points represent cases of survival. (G) The heat map illustrates the expression patterns of six modeling 
genes based on their risk scores. (H) The correlation between risk score and disulfidptosis score calculated using 
single sample gene set enrichment analysis. Kaplan–Meier survival curves illustrating the overall survival of 
high- and low-risk groups in both the TCGA-glioblastoma cohort (I) and CGGA cohort (J). The ROC curves 
for years 1, 2, 3, and 4 in the TCGA-glioblastoma cohort (K) and CGGA cohort (L) were displayed. HR, Hazard 
Ratio; CI, Confidence Interval; CGGA, Chinese Glioma Genome Atlas; TCGA, The Cancer Genome Atlas; 
ROC, Receiver Operating Characteristic.
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Supplementary Fig. 1C). The risk score did not exhibit any differences across different ethnicities and genders 
(Supplementary Fig. 1B, D). Furthermore, patients classified in the high-risk group exhibited a significantly 
poorer OS than those assigned to the low-risk group in the TCGA glioblastoma cohort (HR 0.67, 95% CI 
0.47–0.96, p = 0.02, Fig. 1I) and the Chinese Glioma Genome Atlas (CGGA) cohort (HR 0.43, 95% CI 0.35–0.52, 
p < 0.001, Fig. 1J). In addition, both primary glioblastoma and recurrent glioblastoma subgroups exhibit signifi-
cantly worse OS in the high-risk group compared to the low-risk group in the CGGA cohort (Supplementary 
Fig. 2A). Moreover, the treatment to survival outcome in the high-risk group was significantly worse compared 
to the low-risk group in GSE13041 (Supplementary Fig. 2C). To assess the predictive performance of the model, 
Receiver Operating Characteristic (ROC) curves were generated. In the TCGA-glioblastoma cohort, the AUC 
values were 0.701 at 1 year, 0.641 at 2 years, 0.714 at 3 years, and 0.851 at 4 years (Fig. 1K). Similarly, in the testing 
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CGGA cohort, the model demonstrated AUC values of 0.661 at 1 year, 0.732 at 2 years, 0.700 at 3 years, 0.701 at 
4 years (Fig. 1L). The AUC was about 0.6 in the CGGA-glioblastoma cohort (Supplementary Fig. 2B). The AUC 
was 0.702 in the GSE13041 cohort (Supplementary Fig. 2D). Moreover, to compare the OS between the high- and 
low-expression groups, gene expression levels of CD40, CD276, TNFRSF14, TNFRSF18, TNFSF4, and TNFSF14 
were used for classification (Supplementary Fig. 3A–F). In the TCGA cohort, high expression of CD40, CD276, 
TNFRSF14, TNFRSF18, TNFSF4, and TNFSF14 was associated with a worse prognosis. Similar associations were 
observed in the CGGA-glioblastoma cohort for CD40, CD276, TNFRSF14, and TNFSF14, except for TNFSF4 
and TNFRSF18 (Supplementary Fig. 4). These findings highlight the robust nature and applicability of the model 
in predicting the OS of glioblastoma patients across various time intervals.

Construction and validation of a nomogram
To confirm the independent relationship between the risk score and OS, univariate and multivariate Cox regres-
sion analyses were performed. The risk score and IDH status (WT) were independently associated with OS in 
the univariate Cox analysis (HR: 3.40, 95% CI: 1.98–5.87, p < 0.001; HR: 3.89, 95% CI: 1.68–8.97, p = 0.002, 
respectively, Fig. 2A). Moreover, in the multivariate Cox regression analysis, the risk score exhibited a signifi-
cant association with OS (HR: 2.36, 95% CI: 1.27–4.37, p = 0.007, Fig. 2B). Collectively, our findings suggest 
that the risk score holds comparable prognostic value to conventional clinicopathological variables, such as 
IDH status, and can independently predict OS in glioblastoma patients. Based on these results, we developed a 
feasible nomogram (Fig. 2C). For instance, a male glioblastoma patient of white ethnicity with WT IDH status, 
aged above 60 years, and a risk score of 2.0 would accumulate a total of 185 points. Using the nomogram, this 
patient’s estimated probabilities of OS were approximately 0.803 at 0.5 years, 0.664 at 1 year, and 0.275 at 2 years 
(Fig. 2C). A calibration plot was generated to assess the coherence prediction of the nomogram model and the 
observed outcomes (Fig. 2D). Moreover, the practicality of the nomogram in a clinical setting was assessed by 
DCA plots (Fig. 2E–G). The nomogram exhibited superior net benefit in predicting 1-year OS compared to the 
conventional model (Fig. 2F).

Identification of differential expression genes and functional enrichment analysis
To explore the mechanisms underlying the poorer prognosis in the high-risk group, DEGs and functional enrich-
ment were performed (Fig. 3A). A total of 11 genes were downregulated and 19 genes showed elevated expression 
levels in the high-risk group (Fig. 3A and Supplementary Table 3). Hub genes were identified among DEGs by 
“GOSemSim” analysis (Fig. 3B) and by the algorithm “closeness” in Cytoscape CytoHubba in the PPI network 
(Fig. 3C). The genes MARCO, MMP1, MMP9, CCL18, CXCL3, CXCL5, THBS1, PTX3, and Leukemia inhibi-
tory factor (LIF) have been identified as Hub genes using two different computational methods. Notably, both 
CXCL3 and CXCL5 were identified as hub genes, indicating the significant involvement of the CXCR2 signaling 
pathway in the progression of glioblastoma. CXCL3 was found to be a critical cytokine necessary for the growth 
and proliferation of  CD44 +  CD24- breast cancer cells with stem cell-like  properties9. CXCL5 is upregulated in 
different tumor types and plays a role in promoting angiogenesis, lymphangiogenesis, attracting neutrophils 
and myeloid-derived suppressor cells (MDSCs), and facilitating primary tumor  growth10. CXCR2, the receptor 
for CXCL3 and CXCL5, has been associated with promoting cellular processes such as tumor cell proliferation, 
migration, invasion, angiogenesis, lymphangiogenesis, and cellular  senescence11. N2-type neutrophils, which 
exhibit protumoral characteristics, demonstrate higher expression of CXCR2 than N1-type  neutrophils12. Moreo-
ver, CCL18 production in glioblastoma is primarily attributed to tumor-associated macrophages (TAMs) and 
cancer-associated fibroblasts (CAFs), with a remarkably elevated level observed in glioblastoma compared to 
healthy brain tissue, exceeding it by more than 100-fold13,14. CCL18 serves as a marker of the M2 macrophage 
phenotype, which is associated with suppressive TME and tumor immune  evasion14. Additionally, CCL18 is 
involved in the recruitment and differentiation of Treg  cells14. CCL18 can induce proliferation, invasion, and 
epithelial-to-mesenchymal transition (EMT) in various tumor  cells14. MMP9 is capable of degrading structural 
proteins and remodeling the ECM, enabling cancer cells to breach the basement membrane barrier and invade 
adjacent  tissues15. Moreover, MMP9 participates in cell proliferation, angiogenesis, and immune inflammation 
by interacting with diverse  substrates15. THBS1 encodes thrombospondin-1, a secreted protein in the tumor 
microenvironment, which is upregulated in response to lactate, leading to increased secretion of TGF-β2 and 
enhanced migration of glioma  cells16. Furthermore, the enriched KEGG pathways included the IL-17 signal-
ing pathway, TNF signaling pathway, cytokine-cytokine receptor interaction, chemokine signaling pathway, 
and other related pathways (Fig. 3D). In addition to the enrichment of cytokine activity and immune response 
(Fig. 3E), the biofunctions related to the cytoskeleton and filament in the cells (Fig. 3F) were also enriched in 
the GO enrichment, which might correlate with disulfidptosis.

Evaluation of the tumor microenvironment
The TME’s cellular composition was estimated using eight algorithms from the IOBR package. The impact of 
infiltrating cells and risk score on survival, as determined by Cox regression analysis, is summarized in Sup-
plementary Table 3. Except for the score of  CD8 + naive T cells by xCell and SC_IPS, the score of Epithelial cells 
by xCell, keratinocytes by xCell, MSCs by xCell,  CD8 + Tem cells by xCell, dendritic cells (DCs) by xCell, B cells 
by EPIC, resting DCs by CIBERSORT, EC_IPS, T cells by MCPcounter, class-switched memory B cells by xCell, 
 CD4 + naive T cells by xCell,  CD8+ T cells by TIMER, and macrophages by TIMER were negatively associated 
with the risk score and OS (Fig. 4A and Supplementary Table 4).
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Figure 2.  Development and validation of a nomogram. (A) Univariate Cox regression analysis of the impact 
of clinical and pathological factors, as well as risk score, on overall survival in the TCGA-glioblastoma cohort. 
(B) Multivariate Cox regression analysis of the impact of clinical and pathological factors, as well as risk score, 
on overall survival in the TCGA-glioblastoma cohort. (C) Nomogram for predicting overall survival at 0.5, 
1, and 2 years based on the age, gender, race, risk score and IDH status in the TCGA-glioblastoma cohort. 
(D) The calibration curves of the nomogram model for predicting overall survival at 0.5, 1, and 2 years. The 
x-axis represents the predicted probability of survival, while the y-axis shows the actual observed probability of 
survival. The Decision Curve Analysis shows the net benefit of each model at different time points: 0.5 years (E), 
1 year (F), and 2 years (G). The new model represents a nomogram that includes a risk score, while the standard 
model represents a model without a risk score.
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Evaluation of the adaptive immune response
Based on the previous  research17,18, we assessed the correlation between Th1 score and Th2 score in the tumor 
microenvironment with our risk score. We observed a positive correlation between Th1 score and risk score 
(R = 0.27, p < 0.001, Fig. 4B), as well as a strong positive correlation between Th2 score and risk score (R = 0.36, 
p < 0.001, Fig. 4C). Comparison of the expression profiles of Th1 and Th2 marker genes between high and low-risk 
groups is depicted in the Supplementary Fig. 5. The association between low Th2 score and favorable prognosis 

Figure 3.  Identification of differential expression genes and functional enrichment analysis. (A) Volcano plot 
illustrating Differentially Expressed Genes (DEGs) using a significance threshold of adjusted p value < 0.05 and 
an absolute log2 fold change exceeding 1.5. The hub genes among the DEGs identified by "GOSemSim" analysis 
(B) and "closeness" in Cytoscape CytoHubba (C). (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis based on DEGs in the TCGA-glioblastoma cohort. (E, F) Gene set enrichment analysis 
(GSEA) analysis in the TCGA-glioblastoma cohort.
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Figure 4.  Evaluation of the tumor microenvironment and the adaptive immune response. (A) The circle 
plot illustrates the correlations between risk scores and cellular components as well as scoring in the tumor 
microenvironment (TME) using different algorithms. The blue line represents a negative correlation, while the 
red line represents a positive correlation. The circle plot also demonstrates the correlations between cellular 
components of the TME assessed by various algorithms and overall survival (OS). The size of the circle 
represents the p-value indicating the correlation between cellular components or scores and OS in Cox analysis. 
The correlation between risk score and Th1 score (B), as well as Th2 score (C). Evaluation of the functionality 
of  CD8 + T cells (D), Treg cells (E), and anergy  CD4 + (F) based on differentially expressed genes using Gene 
Set Enrichment Analysis through the R Package clusterProfiler version 4.2.2. The analysis incorporated the 
reference gene set obtained from MSigDB 7.0 (https:// www. gsea- msigdb. org/ gsea/ downl oads. jsp). (G) The heat 
map illustrates the evaluation of different immunological processes through the expression of key genes.

https://www.gsea-msigdb.org/gsea/downloads.jsp
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as well as decreased activity of the PD-L1/PD-1 axis indirectly confirms the predictive ability of our risk score for 
 prognosis17. Notably, the high-risk group demonstrated an enrichment of  CD8 + T cells displaying an exhausted 
phenotype (Fig. 4D). Furthermore, Treg cell enrichment was identified in the high-risk group (adjusted p = 0.03, 
Fig. 4E). Moreover, GSEA demonstrated that  CD4 + T cells did not reach an anergic signature in the high-risk 
group (adjusted p = 0.09, Fig. 4F). The defective T cells may indicate that long-term antigen exposure leads to 
persistent T-cell activation and upregulation of inhibitory signals. Therefore, based on the expression levels of 
key genes, we inferred the changes in immunological processes between the high-risk and low-risk groups. As 
depicted in Fig. 4G, several typical activators, costimulatory factors, and inhibitors were found to be upregulated 
in the high-risk group, indicating the occurrence of intricate immunological processes.

Evaluation of the innate immune response and extracellular matrix remodelling
Therefore, we performed a comprehensive analysis of innate immune cell-specific marker expression patterns in 
the high-risk and low-risk groups within the TME. First, TAMs represent the major cellular component within 
the glioblastoma TME. To assess TAM abundance, TAM scores were calculated for each sample using ssGSEA, 
considering a set of 36 upregulated genes associated with  TAMs19. A notable positive correlation was found 
between the TAM scores and the risk scores (R = 0.55, p < 0.001, Fig. 5A, Supplementary Fig. 6)19. Since TAMs 
are derived from both microglia (MG) and macrophage-derived cells (MDMs) in glioblastoma, we conducted 
a comprehensive evaluation of marker gene expression in MG and MDMs from high and low-risk groups. In 
the high-risk group, there was no significant upregulation observed in TMEM119, an established marker of 
MG (Fig. 5B). Meanwhile, activation markers for MDMs, including FCGR2B and CLEC10A, showed increased 
expression in the high-risk group (Fig. 5B). Furthermore, genes associated with phagocytic and antigen presen-
tation capabilities in MDMs, such as CD1C and CD209, exhibited enhanced expression in the high-risk group 
(Fig. 5B). Furthermore, the TAM polarization-related factors were also assessed. Significantly, GPNMB and 
ANXA1, known to promote TAM polarization and suppress T cell  activation20, exhibited heightened expres-
sion in the high-risk group (Fig. 5B). MDK, its receptor SDC4, and ITGA4 were elevated in the high-risk group 
(Fig. 5B), enhancing the polarization of TAMs toward an M2-like  phenotype20. Moreover, genes associated with 
promoting monocyte migration, survival, and phagocytic activity were also depicted in Fig. 5B. The receptors 
CD300E and BST1, high in the high-risk group, promote the migration and survival of  monocytes21,22 (Fig. 5B). 
The actin-associated regulatory protein CNN2 upregulated in the high-risk group, negatively regulates the motil-
ity and phagocytic activity of  macrophages23. (Fig. 5B). Moreover, the high-risk group exhibited upregulation of 
LILRB2 and LILRB3, which are known to suppress myeloid cell  activation24 (Fig. 5B). In addition, the inflam-
matory genes were also evaluated in the high and low-risk groups. RETN, which was increased in the high-risk 
group, mediates inflammatory  responses25 and is upregulated in brain metastasis. The high-risk group showed 
increased expression of the TREM1 receptor, which plays a crucial role in modulating proinflammatory responses 
during neuroinflammation in both MGs and MDMs (Fig. 5B)26,27.

Notably, several MHC II molecules were elevated in the high-risk group (Fig. 5C). Consistent with these find-
ings, the gene sets linked to antigen processing and presentation were also enriched in the high-risk group (Sup-
plementary Fig. 7). Persistent activation of the IFN signaling pathway, which has been associated with immune 
suppression and resistance to immune checkpoint blockade, was also observed to be enriched in the high-risk 
group (Fig. 5D)28,29. The high-risk group showed enrichment of the proinflammatory cytokine Interleukin 6 (IL-
6) signaling pathway (Fig. 5E), which may potentially be associated with impairing T-cell functionality, promot-
ing immune suppression, and conferring resistance to immune checkpoint blockade  therapy30. Furthermore, the 
high-risk group exhibited the activation of  EMT31 and IL-2 STAT2 signaling, while oxidative phosphorylation, 
G2M checkpoint, and DNA repair processes were suppressed (Fig. 5E).

Moreover, we identified several neutrophil-related genes enhanced in the high-risk group (Fig. 5F), which 
may indicate a potent immunosuppressive  TME32. The elevated expression of CXCL8, an important chemotac-
tic factor for neutrophils, and the increased expression of ITGA3 were found in the high-risk group (Fig. 5F), 
which facilitates the recruitment of neutrophils to tissues during  sepsis33. Furthermore, we noted the increased 
expression of the adenosine receptor ADORA2A in the high-risk group (Fig. 5F), known to suppress the proin-
flammatory phenotype of  neutrophils34. ALOX5 was also upregulated in the high-risk group (Fig. 5F), which can 
enhance the production of LBT4 in neutrophils, promoting tumour cell  metastasis35. The heightened expression 
of ARG1 in the high-risk group (Fig. 5F) orchestrated the neutrophil-mediated suppression of antitumor immune 
 responses36. Additionally, the differentially expressed cytokines are presented in the Supplementary Fig. 8.

Interestingly, ECM and ECM-associated genes are significantly elevated in the high-risk group, remodeling the 
ECM, regulating angiogenesis, and influencing tumor  immunity37 (Fig. 5G). LUM exhibits both pro-metastatic 
and anti-metastatic  properties38 (Fig. 5G). CTSB and CTSW are highly expressed in the high-risk group and 
participate in invasion and metastasis in tumor progression (Fig. 5G)39. Additionally, GSVA revealed enrichment 
of EMC remodeling-related gene sets in the high-risk group, including “NABA COLLAGENS”, “NABA ECM 
GLYCOPROTEINS”, “NABA ECM REGULATORS”, and so on (Fig. 5H).

Prediction of sensitivity of immunotherapy
Based on the aforementioned findings, which include the dysfunctional states of T cells, suppressive TAMs, 
suppressive neutrophils, and remodeled EMC within the TME of the high-risk group, these factors represent 
significant impediments to cancer treatment. Therefore, we utilized our scoring system to predict the efficacy 
of immunotherapy. Firstly, the high-risk group was significantly associated with innate anti-PD1  resistance40 
(Fig. 6A,B). Furthermore, the high-risk group exhibited an elevated TIDE (Tumor Immune Dysfunction and 
Exclusion) score, suggesting the presence of an immune escape phenotype and potential resistance to cancer 
immunotherapies (Fig. 6C). In the high-risk group, in addition to a higher TIDE score, there was enhanced 
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Figure 5.  Evaluation of the innate immune response and extracellular matrix remodelling. (A) A scatter plot 
illustrates the correlation between the risk score and TAM score calculated using ssGSEA. Comparison of the 
expression profiles of monocyte-derived macrophage markers (B) and HLA molecules (C) in high-risk and 
low-risk groups of glioblastoma. (D) The heatmap represents the comparison of the levels of the IFN signaling 
pathway between the high-risk and low-risk groups using GSVA. (E) GSEA results using the Hallmarker gene 
set collection. Comparison of the expression profiles of neutrophil markers (F) and genes related to extracellular 
matrix remodeling (G) in high-risk and low-risk groups of glioblastoma. (H) The heatmap represents the 
comparison of the levels of the extracellular matrix remodeling between the high-risk and low-risk groups using 
GSVA. TAM, tumor-associated macrophage; ssGSEA, single-sample gene set enrichment analysis; GSEA, gene 
set enrichment analysis; GSVA, gene set variation analysis; *, 0.01 < p < 0.05; **, 0.001 < p < 0.01; ***p < 0.001.
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expression/score of CD274, Merck 18, IFNG, CAFs, and T-cell dysfunction (Fig. 6D–H). Overall, our model’s 
effectiveness in predicting immunotherapy sensitivity was confirmed through two independent evaluation 
methods.

Validation the inverse association between survival and CD276 expression in glioma patients
We employed 144 cases of glioma patients from 2008 to 2010 and the expression of CD276 was assessed using 
immunohistochemistry (IHC). The mean follow-up duration was 72 months. Figure 7A illustrates low expres-
sion of CD276 (upper panel) and high expression of CD276 (lower panel). We observed elevated expression of 
CD276 in patients with shorter OS (HR 0.32, 95% CI 0.19–0.56, p < 0.001) and DFS (HR 0.48, 95% CI 0.31–0.75, 
p = 0.001) (Fig. 7B,C). Moreover, the expression of CD276 exhibited a positive correlation with the expression 
of PD-L1, indicating a potential association between these two molecules (p = 0.009, Fig. 7D). In addition, we 
obtained representative IHC staining images of CD276, TNFSF4, TNFRSF14, CD40, TNFSF14, and TNFRSF18 
in both normal tissues and glioblastoma samples from the Human Proteome Atlas (Supplementary Fig. 9).
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Figure 6.  Prediction of sensitivity to immunotherapy. (A) GSVA analysis of innate resistance to anti-PD1 
therapy gene set collection in high- and low-risk Groups. (B) GSEA analysis of innate resistance to anti-PD1 
therapy gene set collection in high- and low-risk Groups. The violin plot depicts the comparison of TIDE 
score (C), CD274 (D), Merck 18 (E), IFNG (F), CAFs (G), and T-cell dysfunction (H) in both the high- and 
low-risk groups. GSEA, gene set enrichment analysis; GSVA, gene set variation analysis; TIDE, tumor immune 
dysfunction and exclusion.
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Discussion
Our results demonstrate an intense crosstalk between disulfidptosis and immune responses. We identified sig-
nificant correlations between genes involved in disulfidptosis and immune checkpoint genes. Based on these 
findings, we established a risk signature comprised of CD276, TNFRSF14, TNFSF14, TNFSF4, CD40, and 
TNFRSF18 to predict OS and response to immune checkpoint blockade in glioblastoma patients. Validation in the 
CGGA cohort confirmed the impact of DRIC genes. Additionally, high expression levels of CD276, TNFRSF14, 
TNFSF14, TNFSF4, and TNFRSF18 have been previously reported to be associated with poor prognosis in 
 glioblastoma41. Our risk signature showed an association with the release of inflammatory cytokines, including 
IL6, IL2, IFN-γ, CCL18, CXCL3, and CXCL5, which may be involved in immune suppression. Therefore, we 
further evaluated the immune cell infiltration. Our findings revealed that the risk signature was significantly 
associated with Th2 score, TAM score, enrichment of exhausted CD8 T cells, and enrichment of Treg cells. Addi-
tionally, our findings suggest that the high-risk group in glioblastoma exhibits an upregulation of angiogenesis, 
ECM remodeling and  EMT31.

While elevated PD-L1 expression is often associated with an antitumor immune response, it does not consist-
ently predict immunotherapy response. Therefore, there is a pressing need to explore biomarkers for predicting 
treatment response.

Our model genes are also associated with immune therapy response in glioblastoma, including T cell co-
stimulatory molecules like TNFRSF18 and TNFSF4. TNFRSF18, also known as GITR, is constitutively expressed 

Figure 7.  Validation the inverse association between survival and CD276 expression in glioma patients. (A) 
The representative images depicting high expression of CD276 (upper panel) and low expression of CD276 
(lower panel) by IHC. Kaplan–Meier analysis for OS (B) and DFS (C) based on CD276 expression status. (D) 
The boxplot illustrates the comparison of CD276 expression levels in two groups classified based on the median 
PDL1 expression. IHC, immunohistochemistry; OS, Overall Survival; DFS, Disease-Free Survival; HR, Hazard 
Ratio; CI, Confidence Interval.
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at basal levels on naïve or quiescent  CD4 + and  CD8 + T cells. Upon T-cell activation, GITR expression is upregu-
lated. Notably, Treg cells demonstrate elevated levels of GITR  expression42. The GITR receptor predominantly 
serves as a costimulatory molecule for T cells, facilitating their proliferation and augmenting the functionality 
of effector T cells. However, it has been reported that GITR/GITRL signaling can inhibit the antitumor activity 
of NK  cells43. Similar to our findings, Nielsen et al. reported that high expression of GITR on breast cancer cells 
was associated with lower recurrence-free survival  rates44. Increased expression of GITR on malignant pleural 
mesothelioma cells was observed after radiotherapy, and patients with high GITR expression had poorer OS in 
nonepithelioid malignant pleural  mesothelioma45. During the chronic stage of LCMV infection, GITR expres-
sion is sustained above baseline  levels46, which further confirms the presence of chronic antigen exposure in the 
high-risk glioblastoma TME.

TNFSF4 (OX40L), a crucial costimulatory signal for T-cell activation and survival, is expressed by activated 
APCs, endothelial cells, and DCs upon various APC maturation  factors47. After antigen recognition, OX40, the 
receptor for OX40L, is induced and upregulated on T cells. However, upon antigen clearance, the expression of 
OX40 is  downregulated42. The OX40-OX40L signaling pathway acts as a crucial costimulatory signal, promoting 
the proliferation and differentiation of tumor antigen-specific T cells. This pathway contributes to the generation 
of effector and memory T cell populations. In vitro studies have shown that OX40L/OX40 signaling can make 
 CD4 + T cells resistant to suppression by  Tregs48 and block  Foxp3 + or IL-10 + Treg  induction49. Recent studies have 
revealed the diverse functional role of OX40/OX40L signaling in tumor contexts. In breast cancer, the expression 
of OX40 has been associated with antiapoptotic and tumor-promoting factors, as well as an immune-inhibitory 
 phenotype50. While OX40 is not a natural survival factor for Tregs, signaling through OX40 can promote the 
proliferation or survival of  Tregs51. These mechanisms may indicate an association between OX40 and an unfa-
vorable prognosis in glioblastoma patients.

In our model, the genes TNFRSF14 and TNFSF14 are also associated with a poorer prognosis in glioblastoma 
through complex interaction networks. TNFRSF14, also known as HVEM (Herpesvirus Entry Mediator), has a 
dual functional role as both a receptor and a ligand. As a receptor, HVEM interacts with canonical TNF-related 
ligands like LIGHT and lymphotoxin-α. Additionally, HVEM acts as a ligand for BTLA (B and T lymphocyte 
attenuator) and CD160, two immunoglobulin superfamily  proteins52,53. HVEM, being part of a complex immune 
regulatory network, can have dual roles in promoting and suppressing immune responses. It is highly expressed 
on naïve or resting  CD4 + and  CD8 + T cells, as well as Tregs. LIGHT-HVEM signaling activates the NF-kB tran-
scription program, providing T cells with survival signals and promoting proliferative  responses54. Furthermore, 
LIGHT-HVEM signaling enhances IFNγ production in NK  cells55. However, the induction of tumor-specific 
T cells by LIGHT alone is insufficient to achieve complete tumor  regression56. On the other hand, HVEM 
exhibits immunosuppressive effects. Following binding to HVEM, BTLA undergoes tyrosine phosphorylation 
and interacts with the TCR complex, as well as phosphatases SHP-1 and SHP-2. This interaction is proposed 
to attenuate downstream signaling pathways of TCR and dampen T-cell  responses57. The interaction between 
BTLA and HVEM plays a negative regulatory role in the homeostatic expansion of memory  CD4 + and  CD8 + T 
 cells58, and inhibits B-cell responses in vivo59. Furthermore, CD160 inhibits the activity of immune cells by 
binding to  HVEM60. Moreover, the interaction between BTLA and HVEM has been documented to contribute 
to T-cell  survival61.

Another molecule in our risk signature is TNFSF14, also known as LIGHT. LIGHT is expressed on activated 
lymphoid cells, including subsets of APCs and T cells, in both its membrane-bound and soluble  forms42. In 
addition to its role in T cell activation, the LIGHT signal exerts more complex effects on other  cells61, including 
inducing HIF2α and Cyclin D1 expression in tumor  cells62 and promoting inflammatory responses in adipose 
tissue by combining with  HVEM63. The evidence presented suggests a potential correlation between TNFRSF14 
and TNFSF14 with poorer prognosis in glioblastoma. However, further research is required to establish these 
associations conclusively.

CD40, a member of the TNFR superfamily, exhibits distinct effects on different cell types. It is ubiquitously 
expressed on the surface of APCs. CD40 plays a significant role in various essential functions, including B-cell 
proliferation, differentiation, production of high-affinity antibodies, isotype switching, memory response, and 
costimulatory  activity64,65. Furthermore, the interaction between CD40 and its ligand CD40L plays a critical role 
in controlling the maturation, survival, cytokine production, costimulatory activity, and antimicrobial function 
of mast cells (MCs), macrophages, DCs, and  neutrophils66. Interestingly, CD40 regulates endothelial cell survival, 
proliferation, migration, and angiogenesis through the activation of the PI3K/Akt signaling  pathway67.

We confirmed the role of CD276 in promoting tumor progression and reducing survival outcomes in glioma 
through immunohistochemical analysis. CD276, also known as B7-H3, contributes to an immunosuppressive 
microenvironment characterized by increased secretion of IL-10 and TGF-β168, along with the inhibition of 
 CD4 + T cells,  CD8 + T cells, NK cells, macrophages, neutrophils, and DCs. This immunosuppressive effect is also 
accompanied by the suppression of IFN-γ, IL-2, perforin, and granzyme B  secretion69. B7-H3 plays a crucial role 
in regulating the differentiation of TAMs, promoting polarization towards the type 2 phenotype and facilitating 
the transition from an M1 to an M2  phenotype70. Additionally, the expression of B7-H3 is positively correlated 
with FOXP3 + regulatory T cells, contributing to the establishment of an immunosuppressive microenvironment 
within the  tumor71. B7-H3 exerts an inhibitory effect on the activity of NK cells, impairing their ability to induce 
cell lysis in neuroblastoma and glioma cell  lines72,73. Consistent with our IHC findings, elevated levels of CD276 
expression were found in glioblastoma, which might be associated with its role in facilitating immune  evasion74,75.

In conclusion, our model can be employed in predicting patient outcomes and response to immune check-
point blockade in glioblastoma. It also provides insights into the role of disulfidptosis and immune crosstalk, 
as well as the potential involvement of inflammatory cytokines, immune cell infiltration, angiogenesis, ECM 
remodeling, and EMT in glioblastoma progression.
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Methods
Data source and gene compilation
Transcriptomic data and clinicopathological information were acquired from The Cancer Genome Atlas (TCGA) 
database (https:// portal. gdc. cancer. gov/), encompassing a total of 154 patients with glioblastoma. In addition, 
expression profiles of Chinese Glioma Genome Atlas (CGGA) comprising 657 cases with available overall survival 
(OS) data were also obtained (http:// www. cgga. org. cn/). In the CGGA cohort, there were 249 cases of primary 
and recurrent glioblastoma. GSE13041 (GPL570) were downloaded from https:// www. ncbi. nlm. nih. gov/ geo/. 
The disulfidptosis-related genes were collected  from3, and the immune checkpoint genes were obtained  from76.

Construction and validation of a disulfidptosis related immune checkpoint prognostic 
signature
The correlation between disulfidptosis-related genes and immune checkpoint genes was explored within the 
expression profile datasets from TCGA and was calculated using the "cor.test" function in R. DRIC genes with 
an absolute correlation coefficient > 0.3 and p value < 0.05 were utilized for univariate Cox regression analyses. 
The R packages "survival" and "survminer" were employed to identify nine DRIC genes that exhibited signifi-
cant associations with OS through univariate Cox regression analyses. Hazard ratios (HRs) and 95% confidence 
intervals (CIs) were calculated for these 9 DRIC genes, and a forest plot was constructed to visualize the results. 
To address multicollinearity in gene expression analysis, the the least absolute shrinkage and delection operator 
(LASSO)-Cox method was employed. Then, a prognostic model was developed for glioblastoma by incorporating 
the expression levels of six DRIC genes, utilizing the following formula:

Exp(x) stands for the mRNA level of each gene in the prognostic model, and the regression coefficient 
(Coef(x)) represents the specific coefficient assigned to each gene in the model. Subsequently, the risk score 
was calculated utilizing the same formula in the CGGA cohort. Based on the median value of the risk score, 
the cohorts were stratified into high- and low-risk groups. The comparison of OS between these groups was 
conducted using Kaplan–Meier analysis, implemented with the R package "survival". Furthermore, the R pack-
age "timeROC" was employed for assessing the operating characteristic curve (ROC) and calculating the area 
under the curve (AUC) to compare 1-year, 3-year, 4-year, and 5-year survival rates between the high-risk and 
low-risk groups. A univariate Cox regression analysis was conducted to examine the influence of sex, race, age, 
risk score, and IDH status on the survival outcome for OS. HRs along with their corresponding 95% CIs were 
utilized to assess the significance of these variables. Furthermore, a multivariate Cox regression analysis was 
performed to assess the independent impact of the risk score on OS, while adjusting for other relevant vari-
ables. A user-friendly and clinically adaptable nomogram based on the risk score was then constructed with 
additional clinicopathologic features including race, isocitrate dehydrogenase (IDH) status, and age, utilizing the 
"rms" package in R. This nomogram enabled the estimation of OS probabilities for patients with glioblastoma at 
0.5 years, 1 year, and 2 years. To validate the nomogram-based prediction model, calibration curves across 0.5, 
1, and 2 years with 1000 bootstrap resamplings were generated utilizing the "rms" package in R. Furthermore, 
decision curve analysis (DCA) was performed utilizing the "stdca" function in R to assess the clinical utility of 
nomograms in guiding clinical decision-making77.

Detection of differentially expressed genes and analysis of functional enrichment
The identification of differentially expressed genes (DEGs) for the high-risk and low-risk groups was per-
formed utilizing the "limma" package in R. DEGs were identified based on a significance threshold of adjusted p 
value < 0.05 and the absolute value of log2 fold change > 1.5. Volcano plots were generated to visually represent 
the DEGs. To explore the functional implications of the risk score, an assessment of Gene Ontology (GO) terms 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was performed using the "GSEA" package in 
R. Additionally, gene set variation analysis (GSVA) was conducted using the "GSVA" package in R. The gene set 
variation analysis (GSVA) was conducted using the C2: curated gene sets and C7: immunologic signature gene 
sets from the MsigDB as reference molecular signature databases. Statistical significance was determined at an 
adjusted p value < 0.05. Additionally, the single-sample gene set enrichment analysis (ssGSEA) was employed to 
assess both the disulfidptosis score and the score of tumor-associated macrophages (TAM). The TAM-related 
genes were obtained  from19.

Discovery of hub genes and regulatory networks
The "GOSemSim" package was utilized to determine the central genes within the group of DEGs. Protein–protein 
interactions (PPIs) among the DEGs were investigated using the STRING database (https:// cn. string- db. org/).

Analysis of immune infiltration
To assess the TME, the Immuno-Oncology Biological Research (IOBR)  package78 was used which includes 
the algorithms CIBERSORT, MCPCOUNTER, EPIC, xCELL, ESTIMATE, quanTIseq, TIMER, and IPS. Sub-
sequently, the association between the components and scoring of the TME with the risk score and OS was 
evaluated by the Pearson method.

risk score (x) =

n
∑

x

(

Exp(x) ∗ Coef(x)
)

.

https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/
https://www.ncbi.nlm.nih.gov/geo/
https://cn.string-db.org/
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Immunohistochemistry analysis
Immunohistochemistry analysis (IHC) assays were performed to assess the expression of CD276 using a Rabbit 
monoclonal [EPR20115] antibody against CD276 (1:80,000, Abcam, ab219648) on 144 cases of glioma patho-
logical sections. The assays were conducted using a biotin assay system (Beijing Zhongshan Jinqiao, China, Cat. 
No. PV-9001, PV-9002), following the manufacturer’s instructions. For IHC analysis, the grading system utilized 
the following criteria: absence of staining denoted a score of 0, yellow staining denoted a score of 1, and brown 
staining denoted a score of 2. Based on the percentage of positively stained tumor cells in the visual field, a score 
of 0 was assigned for < 1% cells, a score of 1 for 1–25%, a score of 2 for 25–75%, and a score of 3 for 75–100%. 
The overall score was determined as the product of the intensity score and the percentage of positive cells.

Statistical analysis
The data analysis was performed using R statistical software (version 4.1.3). Descriptive statistics, including 
the mean and standard deviation, were computed for continuous variables. For comparing means between two 
groups, Student’s t-test was applied, while one-way analysis of variance (ANOVA) followed by post hoc Tukey’s 
test was used for multiple group comparisons. Logistic regression analysis was conducted to assess the association 
between categorical variables, with adjustments made for potential confounders including age, sex, and disease 
stage. A p-value of less than 0.05 was considered statistically significant, and all tests were two-sided.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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