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Anoikis related genes may be novel 
markers associated with prognosis 
for ovarian cancer
Chen Yang 1,2, LuChao Zhu 1,2 & Qin Lin 1*

The aim of this study was to determine the prognostic significance of anoikis related genes (ARGs) 
in ovarian cancer (OC) and to develop a prognostic signature based on ARG expression. We analyzed 
cohorts of OC patients and used nonnegative matrix factorization (NMF) for clustering. Single-sample 
gene-set enrichment analysis (ssGSEA) was employed to quantify immune infiltration. Survival 
analyses were performed using the Kaplan–Meier method, and differences in survival were determined 
using the log-rank test. The extent of anoikis modification was quantified using a risk score generated 
from ARG expression. The analysis of single-cell sequencing data was performed by the Tumor 
Immune Single Cell Hub (TISCH). Our analyses revealed two distinct patterns of anoikis modification. 
The risk score was used to evaluate the anoikis modification patterns in individual tumors. Three hub-
genes were screened using the LASSO (Least Absolute Shrinkage and Selection Operator) method and 
patients were classified into different risk groups based on their individual score and the median score. 
The low-risk subtype was characterized by decreased expression of hub-genes and better overall 
survival. The risk score, along with patient age and gender, were considered to identify the prognostic 
signature, which was visualized using a nomogram. Our findings suggest that ARGs may play a novel 
role in the prognosis of OC. Based on ARG expression, we have developed a prognostic signature for 
OC that can aid in patient stratification and treatment decision-making. Further studies are needed to 
validate these results and to explore the underlying mechanisms.

Ovarian cancer (OC) is a common gynecologic malignancy that is highly prone to recurrence, metastasis, and 
drug  resistance1,2. Despite the recent advancements in high-throughput sequencing technology and transcrip-
tomic research, OC still lacks effective early tumor markers and diagnostic  methods3,4. To address this issue, 
there is a pressing need to identify additional key driver genes, especially those that may impact the recruitment 
of the tumor microenvironment (TME) and immune infiltration in OC.

Anoikis is a process that occurs when cells detach from the correct extracellular matrix, disrupting integrin 
ligation and leading to cell death. This mechanism is crucial in preventing dysplastic cell growth and maintain-
ing tissue homeostasis and  development5. Anoikis related genes (ARGs) have been linked to a range of cancers, 
and their expression may serve as biomarkers for such  diseases6–9. Several studies have shown that the onset of 
anoikis depends on both intrinsic and extrinsic  pathways10. Multiple intracellular signals such as DNA damage 
and endoplasmic reticulum stress trigger apoptosis, and mitochondria play a central role in controlling  anoikis11. 
This anoikis execution disorder may be a feature of cancer cells that contributes to tumor invasion and migration, 
the formation of distant organ metastases, and the development of drug  resistance12–14. Anoikis is also correlated 
with the immune infiltration. Anoikis was found as an epigenetic driver of lymphocyte mimicry in aggressive 
cancers that links immune cell (IC) development to metastatic  behavior15. What’s more, anoikis resistance may 
reshape the tumor microenvironment, resulting in immune evasion and induces  chemoresistance16,17. However, 
previous studies exploring the relationship between OC and anoikis have only examined a limited number of 
 genes18–20. Therefore, a comprehensive analysis of the association between OC and ARGs is necessary.

In this study, OC samples were collected from the Cancer Genome Atlas (TCGA) and the Gene-Expression 
Omnibus (GEO) to evaluate the role of anoikis in OC. The immune infiltration characteristics were evaluated 
by grouping patients into different patterns. A scoring system, constructed based on ARGs, was used to assess 
patients with different types and risk scores. The study’s flowchart is illustrated in Fig. 1. The role of each dataset 
was shown in Table 1.
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Materials and methods
Dataset acquisition and preprocessing
In order to identify differentially expressed anoikis related genes (DEARGs) between normal and OC tissues, the 
 GSE1852021 dataset was analyzed using the “limma”  package22. The criteria for DEARGs was set as |logFC| > 1 
and adjusted P-value < 0.05. A total of 640 anoikis regulated genes (ARGs) were identified from Genecards with 
a relevance score > 0.2 and from Gilmore’s  study23. The genes we focused were the intersection of ARGs from 
GSE18520 and Genecards and 320 ARGs were eventually screened. The gene expression and corresponding 
clinical characteristics of 571 OC samples from the TCGA dataset and 126 OC samples from the GSE138866 
dataset were integrated and analyzed, after controlling for batch effects using the “limma” package. Finally, after 
excluding samples without necessary survival and clinical labels, 697 OC patients were included in the study 
and the baseline characteristics was shown in Table 2.

Figure 1.  Flow chart of this study.

Table 1.  Information about datasets. ARGs anoikis related genes.

ID Dataset Role Histological sources

1 GSE18520 ARGs screening Epithelium

2 TCGA-OV Modal construction Epithelium

3 GSE138866 Modal construction Epithelium

4 GSE151214 Validation Epithelium

Table 2.  Baseline clinical characteristics of patients for model construction. OC ovarian cancer.

Characteristics

OC samples (n = 697)

TCGA-OV (n = 571) GSE138866 (n = 126)

Age

 ≤ 65 394 72

 > 65 177 54

Grade

 G1 6 0

 G2 69 0

 G3 495 126

 G4 1 0
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Construction of anoikis modification patterns and functional annotation
The “Consensus Cluster Plus”24 package was used to identify different modification patterns of anoikis in OC 
patients using Nonnegative Matrix Factorization (NMF) clustering. To examine the differences in biological 
processes among different anoikis modification patterns, Gene Set Variation  Analysis25 package was used to 
identify different modification patterns of anoikis in OC patients using Nonnegative Matrix Factorization (NMF) 
clustering. To examine the differences in biological processes among different anoikis modification patterns, 
Gene Set Variation  Analysis26.

Estimation of immune infiltration
To quantify IC infiltration into the TME of OC, we used single-sample gene-set enrichment analysis (ssGSEA) 
to estimate the immune infiltration between different anoikis modification patterns. The dataset for the types of 
ICs, containing 23 types, was obtained from Charoentong’s  research27. The CYBERSORTx tool was then used to 
calculate the correlation between the differentially expressed anoikis related genes (DEARGs) and ICs.

Establishment of risk score and nomograms
The 697 OC patients were randomly divided into a training set and a testing set in a 1:1 ratio. The gene expres-
sion of DEARGs and survival labels were first obtained. Then, the LASSO algorithm was applied to the training 
set to screen for hub genes and reduce overfitting in the prognostic model. Finally, by performing multivariate 
Cox regression, the coefficients of the hub genes were determined and a risk score was calculated using the fol-
lowing formula.

where  Ci presented the coefficient of corresponding ARG and ARG i presented the expression of certain ARG.
Patients were divided into two risk categories, low-risk and high-risk, based on their median score. To evalu-

ate the effect of clinical features and risk scores on prognosis, multivariate analysis was performed for each risk 
group. The results were then represented and quantified using a nomogram, which calculated the probability 
of survival in patients with OC at 1, 3, and 5 years. The overall clinical benefit was determined using Decision 
Curve Analysis (DCA), which compared the net benefit provided by the risk scores and clinical characteristics.

Validation of hub-genes by single-cell sequencing
A single-cell sequencing dataset  (GSE15121428) consisting of 12 OC samples was used to confirm the expression 
of key genes in immune cells (ICs). The Tumor Immune Single Cell Hub (TISCH, http:// tisch. comp- genom ics. 
org)29 was utilized to perform various data quality checks, remove batch effects, cluster the cells, annotate cell 
types, classify malignant cells, and perform differential expression analysis.

Statistical analysis
One-way ANOCA and Kruskal–Wallis tests were used to compare differences among groups. Subgroups were 
defined using the “survminer” package based on the relationship between risk  factors30. Correlation between the 
expression of immune cells in the tumor microenvironment (TME) and ARGs was determined using Spearman 
and distance correlation analysis. The optimal parameters were identified by iteratively testing all potential cut 
points using the “surv-cutpoint” function. The Kaplan–Meier method was applied for prognostic analysis, and 
the significance was confirmed using log-rank tests. The prognostic analysis for OC patients was visualized using 
the “forestplot” package. The “timeROC”31 package was used to plot Receiver Operating Characteristic (ROC) 
curves and calculate the area under the curve (AUC). A significance level of P < 0.05 was used for all statistical 
tests. The analyses were performed and figures were generated using R 4.0.3  software32.

Ethics approval and consent to participate
All data in our research was acquired from public datasets and did not require ethical review or informed consent. 
All humans were not directly involved in the study.

Results
Determination of DEARGs
The GSE18520 dataset, which contained 10 normal samples and 53 OC samples, was analyzed, and 8,073 dif-
ferentially expressed genes (DEGs) were identified using the criteria of |logFC| > 1 and adjusted P-value < 0.05 
(Fig. 2A). By overlaying the anoikis gene set, 320 differentially expressed anoikis-related genes (DEARGs) were 
finally selected for further study (Fig. 2B). Univariate Cox regression analysis indicated that 25 DEARGs were 
significantly related to the overall survival (OS) of patients with OC (Fig. 2C), and the potential interactions 
among 31 DEARGs were revealed in Fig. 2D.

Construction of anoikis modification patterns
Based on the expression of the anoikis regulators, patients were divided into two distinct anoikis modification 
patterns using the “ConsensusClusterPlus”24 package, referred to as ARG cluster A and ARG cluster B, respec-
tively (Fig. 3A). The OC samples could be separated into two clusters based on principal component analysis 
(PCA) (Fig. 3B). The survival analysis revealed that ARG cluster A showed a significantly better survival outcome 
compared to ARG cluster B (Fig. 3C). Further analysis of both ARG clusters and the clinical features of patients 
was conducted using a heatmap, which showed that distinct immune cell (IC) clusters had a significant differ-
ence in transcriptional profiles (Fig. 3E). As ARG cluster A was characterized by decreased expression of ARGs, 

risk score = C1 ∗ ARG1 + C2 ∗ ARG2 + C3 ∗ ARG3 + · · · + Cn ∗ ARGn

http://tisch.comp-genomics.org
http://tisch.comp-genomics.org
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this suggested that high expression of ARGs might be a risk factor for patients with OC. The investigation of 
the innate IC infiltration in the tumor microenvironment (TME) (Fig. 3D) also showed significant differences 
in infiltration levels, including Activated B Cells, Activated Dendritic Cells, Eosinophils, Immature B Cells, 
Immature Dendritic Cells, and myeloid-derived suppressor cells (MDSCs) among the two ARG clusters. Most 
ICs were found to be universally enriched, indicating that IC enrichment in OC may be associated with a poor 
prognosis. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) were conducted to 
investigate the biological behavior of the two ARG clusters. As shown in Fig. 3F,G, both ARG clusters showed 
differences in the enrichment of biological pathways.

Biological features of risk score
The LASSO algorithm was employed to analyze ARG modification patterns based on differentially expressed 
genes (DEGs) and to construct a risk score (see Fig. 4A,B). Additionally, the LASSO algorithm was utilized to 

Figure 2.  Landscape of ARGs in OC. (A) Visualization of gene expression in GSE18520. Blue dots represent 
genes with logFC descending greater than 1. Red dots represent genes with logFC ascending greater than 1. 
Black dots represent genes with logFC between − 1 and 1. (B) The Venn plot of intersection between .GSE18520 
and anoikis gene set. Red for the number of DEGs identified from GSE18520. Green for the anoikis gene set. 
The number of intersected genes is 320. (C) The correlation between m6A regulators in OC. The lines linking 
regulators showed their interactions and red represent positive correlation while blue represents negative 
correlation. The erasers, readers and writers are colored red, orange, and grey, respectively. Green and purple 
dots in the circle represent protective and risk factors respectively the size of each circle represented the 
statistical P-value P < 0.0001, P < 0.001, P < 0.01, P < 0.05, respectively. (D) Visualization of impact of anoikis 
genes. The left part represents the gene symbol, P value and hazard ratio. The right part is the visualization of 
hazard ratio of anoikis genes. The dotted line represents that the hazard ratio equals 1. The boxes on the right 
of dotted line represents hazard ratio > 1 and on the right of dotted line represents hazard ratio < 1. The top and 
bottom of the boxes represents maximum to minimum values. Red lines in the boxes show the median value.
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assess ARG modification patterns based on DEGs and derive a risk score (Fig. 4C,E). Subsequently, a survival 
analysis was conducted on the training, testing, and entire patient cohorts, revealing a higher survival rate among 
patients in the low-risk group (see Fig. 4D–F).

Figure 3.  Construction of ARG clusters and characteristics of TME-infiltrated ICs. (A) Identification of OC 
modification patterns by nonnegative matrix factorization. (B) Transcriptome analysis of distinct ARG clusters 
with PCA. Blue for ARG cluster A and yellow for ARG cluster B. (C) Survival analyses of both ARG clusters. 
Blue for ARG cluster A and yellow for ARG cluster B. The number of alive patients along with time in both 
clusters is at the bottom of the picture. Kaplan–Meier curves show significant survival differences among both 
anoikis modification patterns, while arg cluster A exhibits a significant survival advantage. (D) ICs of TME 
infiltrating of distinct ARG clusters. Blue for ARG cluster A and yellow for ARG cluster B. The top and bottom 
of the boxes represents maximum to minimum values. Black dots represent outliers. Lines in the boxes show the 
median value. The asterisks represent the statistical P value (*P < 0.05; **P < 0.01; ***P < 0.001). (E) Visualization 
of patients’ characteristics and ARGs in distinct ARG clusters. In the heatmap, red represents increased 
expression of ARGs; blue represents decreased expression of ARGs. (F) Activation of biological pathways 
analysis in two ARG clusters with GSVA. The heatmap was a visualization of these biological processes. Red, 
activated pathways; blue, inhibited pathways. (G) Activation of biological pathways analysis in two ARG clusters 
with GSEA. ARG cluster B are found enriched in these pathways.



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1564  | https://doi.org/10.1038/s41598-024-52117-0

www.nature.com/scientificreports/

To further evaluate the performance of the hub genes, Receiver Operating Characteristic (ROC) curves and 
Area Under the Curve (AUC) values were utilized. The results demonstrated strong predictive capabilities for 
survival at 1, 3, and 5 years across all three patient groups (see Fig. 4G–I).

Immune characteristics of risk score
To explore the association between hub genes and immune cell (IC) infiltration, we applied the CIBERSORTx 
algorithm to assess the proportion of immune cells. Additionally, we conducted an in-depth analysis of the cor-
relation between immune cells and hub genes, as illustrated in Fig. 5A–D. Remarkably, we observed a notewor-
thy positive correlation between the risk score and CD4 memory resting T cells, underscoring a potential link 
between risk assessment and the presence of this specific T cell population. Conversely, a negative correlation was 
identified with M1 macrophages and follicular helper T cells, suggesting a potential immunological mechanism 
underlying the risk score (Fig. 5E–G).

Validation of hub-genes by single-cell sequencing
To meticulously validate the expression profiles of the hub genes, we conducted a rigorous analysis employing a 
single-cell sequencing dataset (GSE151214). Subsequently, this dataset underwent a comprehensive assessment 

Figure 4.  Construction of anoikis phenotype-related genes signatures. (A,B) Seek for optimal regularization 
coefficient of LASSO via Gradient descent. (C) Visualization of the expression of hub-genes in both risk groups. 
Red represents increased expression. Blue represents decreased expression. (D–F) Survival analyses of different 
risk groups in training cohort, testing cohort and all-patients cohort. Blue for low risk group and red for high 
risk group. The number of alive patients along with time in three clusters was at the bottom of the picture. 
Kaplan–Meier curves showed significant survival differences among the three ARG modification patterns, while 
ARG cluster A exhibits a significant survival advantage. (G) Training cohort; (H) Testing cohort; (I) All-patients 
cohort. (G–I) ROC curve of ARG modes for 1 year, 3 years and 5 years in training, testing and all-patients 
cohort. Green for 1 year, blue for 3 years and red for 5 years. (C) Training cohort; (D) Testing cohort. E.All-
patients cohort.
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utilizing TISCH, a robust tool adept at batch effect correction, clustering, and precise cell-type annotation, as 
illustrated in Fig. 6A–C. Notably, MDM2 exhibited the highest abundance within the epithelial cell group, while 
TIMP1 demonstrated prominent prevalence within the mono/macro cell group. Additionally, CPT1A emerged 
as the most abundantly expressed gene in myofibroblasts.

The detailed evaluation of the relative abundance of hub genes across diverse cell types is visually presented 
in Fig. 6D–I. These findings provide compelling evidence indicating that the hub genes may wield a substantial 
influence on the composition and dynamics of the TME.

Figure 5.  Construction of risk score. (A) ICs of TME infiltrating of distinct risk groups. Green for low risk 
group and yellow high risk group. The top and bottom of the boxes represents maximum to minimum values. 
Dots in the boxes show the median value. (B) Visualization cells infiltration in each OC samples. Each column 
represents an OC sample. The length of each box in each single sample represents the proportion of infiltration 
of the cell. (C) The correlation between ICs. Blue for negative correlations and Red for positive correlations of 
the two corresponding ICs. (D) The correlation hub-genes, risk score and ICs. Each row represents one IC. The 
columns are three hub-genes and risk score from left to right. (E–G) The relevance between risk scores and ICs.
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Figure 6.  Establishment of prognosis model. (A) The distribution of cells in each sample in GSE151214. Each 
column represents a single OC case. The ordinate is the proportion of cells. The box in each column represents 
the proportion of this cell. (B) Visualization of percentage of absolute cell number in all OC cases. (C) Clusters 
and cell annotation for OC cases. (D) The expression of MDM2 in cells. The background represents cell and 
blue dots represent MDM2 expressed in this cell. (E) The relative expression of MDM2 in each kind of cells. The 
abscissa is each cell and the coordinate is the relative expression quantity. (F) The expression of TIMP1 in cells. 
The background represents cell and blue dots represent TIMP1 expressed in this cell. (G) The relative expression 
of TIMP1 in each kind of cells. The abscissa is each cell and the coordinate is the relative expression quantity. 
(H) The relative expression of CPTA1 in each kind of cells. The abscissa is each cell and the coordinate is the 
relative expression quantity. (I) The relative expression of CPT1A in each kind of cells. The abscissa is each cell 
and the coordinate is the relative expression quantity.
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Establishment of prognostic signature
A comprehensive multivariate analysis was conducted to assess the impact of clinical features, including grade, 
age, and risk score, on the prognosis of OC. The survival outcomes of OC patients were vividly presented and 
quantified using a nomogram plot, as exemplified in Fig. 7A. The cumulative score from each covariate provides 
a valuable tool for predicting individual patient survival rates at 1, 3, and 5 years. Furthermore, the cumulative 
hazard analysis, illustrated in Fig. 7B, demonstrated the effectiveness of the risk stratification approach. Addition-
ally, the calibration curve in Fig. 7C showcased that the signature’s performance was well-controlled to prevent 
overfitting. In addition, the decision curve analyses (DCAs) at 1 year (Fig. 7D), 3 years (Fig. 7E), and 5 years 
(Fig. 7F) underscored that the nomogram yielded a substantially higher net clinical benefit, further affirming 
its utility as a prognostic tool.

Discussion
The role of anoikis in regulating the biological behavior and heterogeneity of tumor cells has been well 
 established33. For example, IQGAP1 has been reported to activate the Src/FAK pathway, enhancing cell viability 
and inhibiting anoikis in hepatocellular carcinoma, making it a valuable indicator of metastasis and  prognosis34. 
Additionally, the activation of CPT1A has been shown to facilitate metastasis and confer anoikis resistance in 
colorectal  cancer35. Furthermore, CCN2 has been demonstrated to block lung cancer development by inhibit-
ing the anoikis pathway related to  DAPK36. Thus, investigating the prognostic value of ARGs may lead to the 
discovery of new treatment targets and markers for multiple cancers.

In our study, we identified three hub genes, TIMP1, MDM2, and CPT1A, as potential risk factors for OC. 
Our findings suggest that the increased expression of these hub genes is associated with an increased risk of OC.

TIMP1 (Tissue Inhibitor of Metalloproteinases 1), which is overexpressed in OC, has been shown to affect 
the tumor microenvironment (TME) by altering the behavior of both tumor and endothelial cells, leading to 
drug resistance, particularly in advanced OC  patients37. TIMP1 is a protein that belongs to a family of proteins 
known as tissue inhibitors of metalloproteinases. These proteins play a crucial role in regulating the activity of 
matrix metalloproteinases (MMPs), which are enzymes responsible for degrading the extracellular matrix. The 
extracellular matrix is a complex network of proteins and carbohydrates that provides structural support to 
cells and helps in various cellular processes. Studies have shown that TIMP1 expression can be altered, and its 
dysregulation has been associated with the progression and metastasis of  OC38. Elevated levels of TIMP1 have 
been observed in OC tissues and in the serum of OC patients. This suggests that TIMP1 may play a role in tumor 
invasion, angiogenesis, and metastasis in OC. Additionally, TIMP1 in combination with VEGF has been linked 
to tissue invasion and angiogenesis in  OC39.

MDM2 (Mouse Double Minute 2 homolog), on the other hand, has been shown to be a critical regulator of 
OC metastasis. MDM2 is a critical cellular protein that plays a central role in regulating the activity of the tumor 
suppressor protein  p5340. MDM2 primarily functions as an E3 ubiquitin ligase, targeting p53 for degradation 
by the proteasome. This interaction is part of a negative feedback loop that helps to tightly control p53 levels in 
normal cellular processes. MDM2 has been found to be overexpressed in some cases. Elevated levels of MDM2 
can lead to decreased p53 activity, as MDM2 promotes the degradation of p53, thereby reducing its tumor-
suppressive functions. This dysregulation of the p53 pathway can contribute to uncontrolled cell growth and the 
development or progression of cancer. Chen demonstrated that MDM2 activated the Smad pathway and drives 
OC metastasis. Targeting the N-terminal of MDM2 has the potential to re-program epithelial-mesenchymal 
transition (EMT) and prevent cancer cells from  migrating41.

CPT1A (Carnitine Palmitoyltransferase 1A) is an enzyme that plays a crucial role in fatty acid metabolism. 
It is responsible for the transport of long-chain fatty acids into the mitochondria, where they can be oxidized to 
generate energy. This process is essential for providing energy to cells, particularly in situations where glucose 
availability is limited. Research has shown that CPT1A expression may be altered. Some studies suggest that 
elevated levels of CPT1A may be associated with more aggressive forms of  OC42. This is thought to be related to 
the increased demand for energy and biosynthetic building blocks that cancer cells require for their rapid growth 
and proliferation. Additionally, CPT1A may play a role in modulating cellular responses to stress and nutrient 
availability. CPT1A has been identified as a potential therapeutic target in OC through multiomic analysis. This 
is believed to be due to its ability to regulate cell cycle progression by repressing FoxO transcription factors in 
OC, as demonstrated by  Shao43. These findings highlight the potential value of CPT1A as a prognostic marker 
for OC, making it a promising target for further investigation.

This study has several limitations that should be acknowledged. First, the origins of OC are diverse and we 
merely included epithelial originated OC samples in the study which means it is hard to be positive when apply-
ing the model on other types of OC. Second, only age and grade were included as clinical characteristics factors 
in constructing the prognostic model due to a lack of available information. What’s more, we did not conduct 
functional experiments in vitro or in vivo, which limits our understanding of the precise mechanism of action 
of these hub genes. Additionally, the sample size used in our study was relatively small, which may impact the 
robustness and stability of our model. It is also important to note that this study was retrospective in nature and 
did not utilize prospective data to test the model’s performance. As a result, it is essential to validate the signatures 
identified in this study with larger, prospective datasets in order to increase their precision and reliability. Future 
studies could also explore the specific characteristics and genetic features of those subtypes, which would help 
build a more comprehensive understanding of the heterogeneity within OC as a whole to extend the applicabil-
ity to different types of OC.
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Figure 7.  Immune characteristics of risk score. (A) Visualization of multivariate analysis for age, grade, and 
risk. Significant correlation is found between prognosis with age and risk score. (B) Cumulative analysis of 
nomogram. Red for high risk group and green for low risk group. The abscissa represents the survival time 
and the ordinate represents the Cumulative hazard. (C) The calibration curves for overall survival in 1 year, 
3 years and 5 years. Green for 1 year, blue for 3 years and red for 5 years. (D–F) Clinical decision curve for 
prognostic model in training cohort, testing cohort and all-patients cohort. Orange represents the nomogram. 
Purple represents risk. Green represents age. Wathet represents grade. Dark blue represents all factors. Pink line 
represents model without any genes.
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Conclusions
Our study aimed to examine the effects of anoikis modification on the regulation mechanisms of OC. Our find-
ings suggest that different patterns of anoikis modification can result in heterogeneity within the tumor micro-
environment (TME), creating varying outcomes in OC progression. Through the exploration of these patterns, 
we aim to enhance our understanding of the role of the TME and immune infiltration in OC. This, in turn, could 
lead to the development of more personalized treatment approaches for patients with OC.

Data availability
All data in our research can be acquired from TCGA datasets (https:// portal. gdc. cancer. gov/) and GEO datasets 
(https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE18 520, https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE13 8866 and https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE15 1214). All figures were 
generated by an open source software R.
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