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Memory type Max‑EWMA control 
chart for the Weibull process 
under the Bayesian theory
Muhammad Noor‑ul‑Amin 1, Imad Khan 2, Javed Iqbal 1, Zahid Rasheed 3, Emad A. A. Ismail 4 & 
Bakhtyar Ahmad 5*

The simultaneous monitoring of both process mean and dispersion, particularly in normal processes, 
has garnered significant attention within the field. In this article, we present a new Bayesian 
Max‑EWMA control chart that is intended to track a non‑normal process mean and dispersion 
simultaneously. This is accomplished through the utilization of the inverse response function, 
especially in cases where the procedure follows a Weibull distribution. We used the average run length 
(ARL) and the standard deviation of run length (SDRL) to assess the efficacy of our suggested control 
chart. Next, we contrast our suggested control chart’s performance with an already‑existing Max‑
EWMA control chart. Our results show that compared to the control chart under consideration, the 
proposed control chart exhibits a higher degree of sensitivity. Finally, we present a useful case study 
centered around the hard‑bake process in the semiconductor manufacturing sector to demonstrate 
the performance of our Bayesian Max‑EWMA control chart under different Loss Functions (LFs) for a 
Weibull process. The case study highlights how flexible the chart is to various situations. Our results 
offer strong proof of the outstanding ability of the Bayesian Max‑EWMA control chart to quickly 
identify out‑of‑control signals during the hard‑bake procedure. This in turn significantly contributes to 
the enhancement of process monitoring and quality control.

In statistical quality control, distributions such as the Weibull are commonly used for the analysis of reliability 
data, which frequently involves failure times or life-test experiments. There are two primary categories of vari-
ations in processes that follow these distributions: assignable cause and common cause. Despite common cause 
variation occurring naturally and arbitrarily within the process, it is still considered under control. Assignable 
cause variation, on the other hand, denotes an out-of-control departure from the typical process state. Walter A. 
 Shewhart1 pioneered control charts (CCs) and initially concentrating on using current sample data to identify 
changes in production processes, serve as tools to detect and address such deviations. Memory-type control 
charts like cumulative sum (CUSUM) and exponentially weighted moving average (EWMA), introduced by 
 Page2 and  Roberts3, have significantly improved sensitivity by incorporating both current and historical data. 
This advancement has been crucial in identifying subtle to moderate shifts in process parameters. Industries 
relying on precision, such as chemicals and manufacturing, extensively use CUSUM and EWMA control charts 
to promptly detect variations and maintain high product quality standards.  Gen4 evaluated control-charting 
methods for monitoring process mean and variance concurrently, revealing limitations in some individual 
schemes. They proposed a combined scheme using two-sided EWMA charts for mean and variance, effectively 
identifying out-of-control situations. This study not only offers methods to estimate average run length (ARL) 
and run-length distribution percentages for this combined EWMA scheme but also provides a design procedure. 
Chen et al.5 introduced a novel EWMA control chart that integrates monitoring of process mean and variability 
into a single chart. This innovation enables the detection of both increases and decreases in mean and/or variabil-
ity. BC Khoo et al.6 introduces the Max-DEWMA chart, an extension of the Max-EWMA, utilizing statistics 
derived from two DEWMA statistics for mean and variance, demonstrating superior performance in detecting 
small to moderate shifts in mean and/or variance. Huei Sheu et al.7 studied the Max-GWMA CC, detecting mean 
and/or variability changes simultaneously, outperforming the Max-EWMA chart in sensitivity through compre-
hensive simulations and diagnostic assessments. Sheu et al.7 developed the Max-GWMA CC, excelling in 
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detecting changes in mean and variability. Simulations demonstrate its heightened sensitivity compared to the 
Max-EWMA chart, rendering it a valuable tool for monitoring process variations. Sanusi et al.8 presents four 
EWMA schemes for joint monitoring of Gaussian process mean and variance, comparing ’max’ and ’distance’ 
combining functions, revealing the superiority of distance-type schemes in detecting shifts with faster identifica-
tion from industrial datasets. Arif et al.9 introduced a novel CC combining EWMA and generalized likelihood 
ratio test for simultaneous mean and dispersion monitoring using double RSS. Comparative simulations showcase 
its superior performance in simultaneous shift detection compared to RSS and PRSS charts, with real data appli-
cations demonstrating practical utility. Noor-ul-Amin et al.10 introduced a Max-EWMA CC for joint mean and 
dispersion monitoring in Weibull-distributed processes using the inverse response function. Their evaluation, 
using ARL and SDRL, demonstrated higher sensitivity compared to an existing Max-EWMA CC, illustrated 
through practical examples.  Yang11 introduced an enhanced Qpm MQCAC method, aiming for efficient product 
quality optimization by addressing excessive or inadequate quality issues. This approach monitors process mean 
and standard deviation shifts, identifies influential factors, and minimizes resource consumption according to 
GM objectives. A practical demonstration using a steering knuckle pin example is provided, along with insights 
into potential future research directions. Chatterjee et al.12 extended the Max-EWMA CC to develop a single 
Max-GWMA CC for concurrent process mean and variability monitoring. Comparative analysis with Max-
EWMA and Max-DEWMA charts revealed the efficiency of the Max-GWMA chart in detecting small shifts in 
both parameters, demonstrated through practical implementations using real and simulated datasets. Saemian 
et al.13 addressed concurrent process mean and variability monitoring in SPM with the Max-HEWMAMS CC, 
mitigating measurement imprecision due to gauge inaccuracies. Employing multiple measurements to reduce 
measurement errors’ impact on chart detection, they highlighted benefits through various out-of-control sce-
narios, showcasing the negative effect of gauge imprecision using real data. Abbas et al.14 presented Bayesian 
CUSUM CCs for statistical process control profile monitoring, proving their superiority over rival techniques 
in an extensive comparative analysis. This highlighted the benefits of Bayesian methods and demonstrated their 
superiority with case studies and simulations that needed in-depth process parameter data. Erto et al.15 carried 
out a simulation study assessing semi-empirical Bayesian CCs for tracking Weibull distribution data. They uti-
lized Weibull contour plots and reference data to provide real-world examples to illustrate the effects of changing 
Weibull parameters through Monte Carlo analysis. Erto et al.16 reported a new Bayesian CC technique that 
compares two processes by monitoring the ratio of the independent Weibull-distributed quality characteristics’ 
percentiles. This graph demonstrated its performance using extensive simulations and real-world applications 
in the wood industry, taking into account variables such as shift magnitude, training data quality, and prior 
information quality. A Bayesian modified EWMA CC with four LFs and a conjugate prior was introduced by 
Aslam and  Anwar17, who found that it was very effective at detecting small to moderate process shifts. Validation 
included monitoring the mechanical industry’s reaming process and assessing sports industry golf ball perfor-
mance. Lin et al.18 introduced a Bayesian procedure constructing an EWMA CC for monitoring the variance of 
a distribution-free service process, capable of handling non-normal and time-varying distributions. Demonstra-
tions with bank service time displayed its efficacy in quickly detecting variance shifts. Noor-ul-Amin and  Noor19 
proposed an AEWMA CC integrating Shewhart and EWMA approaches to detect various shifts in process mean. 
Bayesian theory with LFs and informative priors was employed, validated through Monte Carlo simulations and 
real-data examples. Yazdi et al.20 developed Bayesian CCs for monitoring multivariate linear profiles using regres-
sion models, outperforming non-Bayesian counterparts based on ARL criteria. They introduced a historical 
data-driven informative prior method, demonstrating applicability through extensive simulations. Khan et al.21 
introduced a novel Bayesian AEWMA CC incorporating RSS designs, SELF, LLF, and an informative prior. Monte 
Carlo simulations validated its sensitivity in detecting mean shifts, exemplified in a semiconductor fabrication 
process. Furthermore, Khan et al.22 introduced a Bayesian HEWMA CC using RSS schemes with informative 
priors and various LFs, showing enhanced sensitivity in detecting out-of-control signals. The article uniquely 
focuses on Bayesian methods for joint monitoring of mean and variance, specifically for lifetime data. It intro-
duces a Bayesian Max-EWMA CC for simultaneous monitoring of mean and variance in Weibull processes, 
evaluated through Monte Carlo simulations.. The article is structured with sections dedicated to Bayesian theory 
and various LFs in “Bayesian approach”, the proposed Bayesian Max-EWMA CC method in “Proposed Bayesian 
Max-EWMA CC for joint monitoring of the Weibull distribution”, comprehensive discussions in “Results and 
discussion”, “Main findings” contain the key findings, practical applications using real-life data in “Real data 
application”, and concluding remarks in “Conclusion”.

Bayesian approach
The Bayesian approach uses probability theory to model and analyze uncertainty, treating model parameters as 
random variables with associated probability distributions. It incorporates prior beliefs and updates them with 
observed data, resulting in posterior probability distributions. The key steps include defining prior distributions, 
likelihood functions for data generation, combining priors and likelihoods for posteriors, and Bayesian inference. 
This reiterative method provides a coherent outline, is robust to outliers and small samples, is flexible, integrates 
prior knowledge, allows for continuous improvement with new data, and quantifies uncertainty. Although it 
can be computationally exhaustive for complex models and requires prior assumptions, it is widely used in 
areas such as scientific research, data science, and machine learning. Consider a random variable denoted as V, 
representing lifetimes, and assume that it follows a Weibull distribution characterized by the shape parameter 
( � ) and scale parameter ( α ), both of which are greater than zero (a > 0, k > 0). The probability density function 
(pdf) and cumulative distribution function (cdf) are mathematically described as follows:
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Squared error loss function
To assess the discrepancy between expected and actual values, the squared error loss function—also called mean 
square error or MSE—is essential in Bayesian methodology. It is essential to both Bayesian inference and decision 
theory. Predictions or parameter estimates are represented as probability distributions in Bayesian modeling. 
The squared error loss measures the cost of differences by squaring them mathematically, which penalizes larger 
discrepancies more severely. The primary goal of Bayesian practice is to minimize the expected squared error loss 
by averaging it under the posterior distribution, resulting in point estimates or predictive distributions. This loss 
function is widely used in Bayesian applications, especially for continuous variables, and is closely related to the 
mean squared error. Ultimately, it helps assess the quality of predictions and parameter estimates by considering 
both estimate uncertainty and their proximity to actual values. The SELF is endorsed by Gauss 23, incorporat-
ing both the variable of interest, denoted as X, and the estimator θ̂ used for estimating an unknown population 
parameter θ , denoted as theta. Its mathematical expression is as follows:

And the Bayes estimator using SELF is mathematized.

Linex loss function
The Linex loss function employed in Bayesian analysis measures the cost of prediction errors by balancing linear 
and exponential components. It assesses the difference between predicted and true values and is valuable in vari-
ous Bayesian applications, allowing flexibility in quantifying asymmetric losses and adapting to scenarios with 
varying consequences of overestimation and underestimation errors. Varian 24 proposed LLF to mitigate risks 
in Bayes estimation. The LLF is mathematically described

Under LLF, the Bayesian estimator θ̂ is mathematizied as

Proposed Bayesian Max‑EWMA CC for joint monitoring of the Weibull distribution
We have a series of random samples, denoted as Vi1, Vi2, …, Vin, drawn from a Weibull distribution denoted as 
W(α, �) at different time points, i.e., i = 1, 2, 3. Typically, the Weibull distribution’s parameters ( α and � ) are not 
known in advance and need to be estimated using available historical data. To estimate these parameters, an 
appropriate method is employed, usually with the consideration that the process is under control. Letus denote 
the estimated scale and shape parameters as α0 and �0 , respectively. These parameter estimates are derived by 
leveraging a relationship between the Weibull and standard normal distributions, as given by Faraz et al. 25 in 
Eq. (7) as follows:

where the mean and variance are given by

And

Equations (8) and (9) provides insights into how shifts in the parameters of a Weibull distribution influ-
ence the mean and variance of a random variable following a standard normal distribution. Essentially, they 
quantify the impact of changing Weibull distribution parameters on the characteristics of the standard normal 
distribution.
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Consider random samples: zi1 = W(Vi1,α0, �0) , zi2 = WN (Vi2,α0, �0) , …, zin = WN (Vin,α0, �0) . Each of 
these samples has a size of n and is transformed from a Weibull to a normal distribution. After this transforma-
tion, we introduce the Max-EWMA Control Chart, which leverages Bayesian theory to concurrently monitor 
the mean and variance of a normally distributed process.

In a Bayesian framework, when both the likelihood function and prior distribution are normally distributed, 
the resulting posterior distribution also follows a normal distribution characterized by a mean (θ) and variance 
(σ). The pdf is as follows:

where θn = nzδ20+δ2θ0

δ2+nδ20
 and δ2n = δ2δ20

δ2+nδ20
 respectively.

To create a Max-EWMA chart using Bayesian methodology, we begin by selecting a sample of n values for 
a quality characteristic Z from the production process. Subsequently, we compute transformed statistics under 
SELF for both the mean and variance as follows

and

where θ̂(SELF) = nxδ20+δ2θ0

δ2+nδ20
 and δ̂2(SELF) =

δ2δ20
δ2+nδ20

 are the Bayesian estimators using SELF for the population mean 
and variance, respectively, while using LLF, the Bayesian estimators for the population mean and variance are 
given as θ̂(LLF ) =

nzδ20+δ2θ0

δ2+nδ20
− C′

2 δ
2
n and δ̂2(LLF) =

δ2δ20
δ2+nδ20

 , the transform statistic under LLF for both the process 
mean and variance is mathematically discribed as:

and

where H(n, ν) is a chi-square distribution characterized by ν degrees of freedom, and φ−1 denotes the inverse of 
the standard normal distribution function. The computations for EWMA EWMA statistics regarding both the 
process mean and variance are outlined as follows:

In this context, P0 and Q0 represent the initial values for the EWMA sequences Pt and Qt, respectively, with � 
(a constant within the range [0, 1]) denoting the smoothing constant. Pt and Qt are also mutually independent 
because of the independence of Pt and Qt. When considering an in-control process, both Pt and Qt follow nor-
mal distributions, each with a mean of zero and variances of δ2Pt and δ2Qt

 , respectively. This is defined as follows

The plotting statistics, Bayesian Max-EWMA for jointly monitoring using Pt(LF) and Qt(LF) is mathematically 
defined
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As the Bayesian Max-EWMA statistic is a positive value, we required to plot only the upper control limit for 
jointly monitoring the process mean and variance. If the plotting statistic At within the UCL, then the process 
is in control and if the At cross the UCL, the process is out of control.

Results and discussion
In this analysis, Tables 1, 2, 3 and 4 serve as a central platform for presenting the outcomes derived from the 
application of the Bayesian Max-EWMA CC for the Weibull process. This study undertakes a rigorous exami-
nation, specifically focusing on the influence of two distinct LFs designed to emphasize the significance of the 
posterior distribution. Importantly, these assessments are conducted within the framework of informative priors, 
introducing prior knowledge and beliefs into the analytical process. To ensure the reliability and robustness of 
our statistical conclusions, a substantial replication of 50, 000 replicates is employed for the calculation of both 
the ARL and SDRL. Furthermore, we exercise precision by carefully selecting smoothing constants, namely λ 
values of 0.10 and 0.25, which fine-tune our analysis and enable us to evaluate the performance of the Bayesian 
Max-EWMA CC method under diverse conditions. Furthermore, this study expands its scope and examines an 
extensive range of combinations with variance shift values (b) covering values from 0.25 to 3.00 and mean shift 
values (a) ranging from 0.00 to 3.00. This comprehensive analysis allows us to evaluate the performance of the 
Bayesian Max-EWMA CC approach, which specifically aims to comprehensively monitor process variance and 
mean simultaneously. The results of our study clearly show how sensitively the method can detect deviations from 
the standard within production processes. This demonstrates its enormous potential as a useful and trustworthy 
tool for continuous quality control and monitoring in a variety of industrial environments. It is important to 
ensure that the calculated plot statistic Si remains below the UCLi at all times. Each trial ends when the plot 
statistic exceeds the UCLi, indicating a significant change in the process mean and standard deviation. Changes 
in the parameters of the Weibull distribution are related to these variations. In particular, we analyze shifts in 
scale parameters ranging from 0.0 to 5.00 and shifts in shape parameters ranging from 0.25 to 4.00The process 
initially follows a normal distribution N(0, 1) and remains within the control limits when it comes to the Weibull 
distribution with parameters W(1, 1.5). The ARL under control conditions (ARL0) for the two different cases of 
the smoothing constant λ = 0.10 and 0.25 was found to be 370. The results shown in Tables 1 and 2 provide strong 
evidence for the effectiveness of the Bayesian Max-EWMA CC, particularly when used in conjunction with the 
SELF for the posterior distribution. Maintaining process stability and product quality depends on the combined 
approach’s exceptional ability to simultaneously detect shifts in both process mean and variance. The results show 
a remarkable trend: the ARLs continuously decrease as the magnitude of the mean shift increases. Similarly, ARLs 
decrease when variance shifts occur. These recurring trends strongly suggest that the Bayesian Max-EWMA CC 
has the important ability to detect process changes in a timely manner and indicate what is needed for process 
control and early intervention. Due to these properties, it is an extremely valuable tool for thorough monitoring 
of production processes and ensures timely detection and correction of deviations from established standards. 
Ultimately, the use of these CCs improves process effectiveness and product quality, making them a valuable asset 
in a variety of industries. For example, if you look at the ARL results. The resulting ARL values for these shifts 
are as follows: 369.15, 80.19, 24.05, 13.71, 10.14, 8.16, 7.12, 4.88, and 4.13. Interestingly, the corresponding ARL 
values noticeably decrease with increasing displacement magnitude. This result shows the extent to which the 
proposed Bayesian Max-EWMA CC can be used to quickly identify changes in the shape parameter. The ability 
of the CC to quickly detect even small deviations from the process mean suggests that it is very sensitive. This 
means that these changes can be responded to quickly, which is critical to maintaining the consistency and quality 
of the process. The effects of changing the value of the shape parameter from a = 1.50 to 4.00 while maintaining 
the scaling parameter values  are similar. The resulting ARL values are as follows: 369.15, 24.91, 16.92, 7.06, 5.80, 
3.60, 2.60, 2.11, and 1.50. These ARL values show a clear trend: the ARL values sharply decline as the shape 
parameter deviates from the baseline value of 1. This pattern highlights how well the suggested Bayesian Max-
EWMA CC performs in quickly identifying changes in process variance. Moreover, it is noteworthy that when 
examining the performance of the proposed Bayesian Max-EWMA CC in Table 2, we find that the CC becomes 
less effective as the smoothing constant increases. This observation suggests that in specific scenarios, opting for 
a lower smoothing constant might be more advantageous in achieving optimal performance. Similarly, Tables 3 
and 4 present the ARL outcomes of the Bayesian Max-EWMA CC using the LLF with a consistent λ = 0.25 and 
n = 5. Across various trials involving shifts in the shape parameter ranging from 1.50 to 5.00 and corresponding 
shifts in the scale parameter fixed at 1.0, the resulting ARL values were 370.09, 20.34, 6.34, 2.81, 1.99, 1.57 and 
1.17. These findings highlight a clear trend: as the magnitude of process shifts increases, the ARL values exhibit 
a rapid decrease, underscoring the exceptional accuracy of the proposed Max-EWMA CC in swiftly detecting 
shifts in both process mean and variance. Moreover, it is essential to note that the efficiency of the proposed CC 
for the simultaneous monitoring of the process mean and variance is influenced by the sample size. Across all 
the tables, a consistent pattern emerges: as the sample size increases, the corresponding ARL values decrease, 
indicating the enhanced effectiveness of the suggested CC in promptly identifying deviations from the expected 
process parameters. The following simulation steps have been considered for the calculations of ARLs and SDRLs.

Step 1: Establishing the control limits

 i. To commence, establish the initial control limits by computing the values for UCL and λ.
 ii. Generate a random sample of size n to depict the in-control process, utilizing normal distributions.
 iii. Calculate the statistic required for the suggested control chart.

Verify whether the plotted statistic lies within the UCL; if so, proceed to steps (iii–iv) once more.
Step 2: Assessing the out-of-control average run length (ARL)
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Table 2.  Run length profile of Bayesian Max-EWMA control chart as a result of a shift in Weibull parameters 
W(1, 1.5) with γ=0.25 and considering subgroup size as 3, 5, and 7.

α n

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

0.25

(µ, σ) (−1.51, 
2.04)

(−1.49, 
0.89)

(−1.45, 
0.72)

(−1.42, 
0.61)

(−1.40, 
0.53)

(−1.38, 
0.47)

(−1.36, 
0.42)

(−1.35, 
0.38)

(−1.33, 
0.35)

(−1.32, 
0.32)

(−1.29, 
0.25)

(−1.28, 
0.20)

3 2.46 (1.17) 2.74 (0.79) 2.79 (0.71) 2.84 (0.65) 2.87 (0.58) 2.93 (0.54) 2.98 (0.53) 2.99 (0.43) 3.03 (0.39) 3.05 (0.37) 3.05 (0.31) 3.01 (0.27)

5 1.87 (0.77) 2.10 (0.46) 2.12 (0.39) 2.12 (0.34) 2.12 (0.33) 2.11 (0.32) 2.12 (0.33) 2.11 (0.32) 2.12 (0.33) 2.12 (0.32) 2.09 (0.29) 2.03 (0.19)

7 1.60 (0.62) 1.84 (0.42) 1.90 (0.33) 1.95 (0.25) 1.97 (0.17) 1.99 (0.10) 1.99 (0.07) 1.99 (0.04) 1.99 (0.03) 1.99 (0.02) 1.99 (0.05) 1.98 (0.10)

0.50

(µ, σ) (−0.68, 
3.16)

(−0.87, 
1.11)

(−0.84, 
0.90)

(−0.81, 
0.76)

(−0.78, 
0.66)

(−0.76, 
0.58)

(−0.74, 
0.53)

(−0, 72, 
0.48)

(−0.71, 
0.44)

(−0.70, 
0.40)

(−0.66, 
0.31)

(−0.64, 
0.25)

3 1.96 (1.00) 5.74 (2.99) 6.22 (2.92) 6.78 (3.04) 7.28 (3.18) 7.58 (3.02) 7.89 (3.09) 7.92 (3.01) 7.67 (2.80) 7.19 (2.54) 5.61 (1.82) 4.52 (1.22)

5 1.48 (0.63) 3.97 (1.66) 4.15 (1.55) 4.38 (1.69) 4.52 (1.39) 4.57 (1.28) 4.54 (1.19) 4.44 (1.10) 4.18 (1.00) 3.85 (0.91) 3.09 (0.65) 2.65 (0.53)

7 1.25 (0.46) 3.18 (1.19) 3.29 (1.07) 3.42 (0.99) 3.54 (0.93) 3.52 (0.82) 3.49 (0.75) 3.37 (0.71) 3.16 (0.66) 2.93 (0.60) 2.36 (0.49) 2.06 (0.26)

0.75

(µ, σ) (0.01, 4.18) (−0.42, 
1.30)

(−0.39, 
1.05)

(−0.36, 
0.88)

(−0.34, 
0.77)

(−0.32, 
0.68)

(−0.29, 
0.61)

(−0.28, 
0.56)

(−0.26, 
0.51)

(−0.25, 
0.47)

(−0.21, 
0.37)

(−0.18, 
0.30)

3 1.51 (0.71) 13.13 (9.90) 26.32 
(22.10)

45.30 
(39.60)

59.18 
(53.36)

50.09 
(43.58)

32.10 
(26.23)

22.55 
(17.06)

15.92 
(10.83) 12.31 (7.34) 7.35 (3.11) 5.45 (1.79)

5 1.17 (0.40) 8.49 (5.55) 15.71 
(11.85)

22.41 
(17.22)

23.19 
(17.42)

16.22 
(10.93) 10.61 (5.99) 7.91 (3.78) 6.18 (2.50) 5.22 (1.83) 3.67 (0.91) 3.01 (0.62)

1.07 (0.26) 6.49 (3.69) 11.26 (7.79) 14.61 (9.95) 13.90 (8.94) 9.54 (5.13) 6.59 (2.87) 4.23 (1.32) 4.25 (1.31) 3.69 (0.99) 2.75 (0.60) 2.29 (0.46)

1.0

(µ, σ) (0.61, 5.00) (−0.05, 
1.47)

(−0.03, 
1.18) (0.00, 1.00) (0.03, 0.87) (0.05, 0.77) (0.07, 0.69) (0.09, 0.63) (0.11, 0.58) (0.12, 0.54) (0.16, 0.41) (0.19, 0.34)

3 1.31 (0.55) 12.51 (9.61) 61.46 
(57.13)

370.87 
(367.43)

348.36 
(344.16)

142.09 
(138.02)

73.03 
(66.94)

39.54 
(33.40)

25.911 
(20.49)

19.30 
(13.62) 8.89 (4.45) 6.42 (2.41)

5 1.09 (0.29) 7.58 (4.94) 39.57 
(35.42)

370.89 
(365.34)

173.67 
(170.29)

47.57 
(42.11)

20.20 
(14.96) 12.35 (7.48) 8.89 (4.60) 7.14 (3.19) 4.17 (1.20) 3.36 (0.77)

10 1.02 (0.15) 5.56 (3.14) 28.26 
(24.46)

370.87 
(364.22)

105.35 
(100.46)

25.09 
(19.74) 11.31 (6.90) 7.48 (3.61) 5.68 (2.26) 1.94 (0.22) 3.06 (0.71) 2.57 (0.55)

1.25

(µ, σ) (1.17, 5.69) (0.28, 1.65) (0.29, 1.31) (0.32, 1.11) (0.35, 0.96) (0.37, 0.86) (0.39, 0.77) (0.41, 0.70) (0.43, 0.64) (0.45, 0.60) (0.49, 0.46) (0.52, 0.38)

3 1.21 (0.45) 7.12 (4.76) 17.29 
(13.83)

31.77 
(27.64)

40.80 
(35.39)

43.02 
(37.31)

22.66 
(16.88)

36.07 
(30.02)

28.31 
(22.21)

23.14 
(16.89) 11.16 (6.11) 7.56 (3.23)

5 1.05 (0.21) 4.61 (2.54) 10.81 (7.48) 20.05 
(16.16)

21.90 
(17.12)

21.10 
(15.69)

17.50 
(12.17) 13.62 (8.24) 10.41 (5.50) 8.67 (4.10) 4.97 (1.61) 3.09 (0.65)

10 1.01 (0.10) 3.56 (1.70) 8.01 (5.09) 14.35 
(10.79)

15.09 
(10.87) 13.52 (8.89) 10.94 (6.17) 8.55 (4.07) 6.74 (2.70) 5.71 (2.06) 3.56 (0.92) 2.82 (0.62)

α N

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

1.50

(µ, σ) (1.67, 6.26) (0.58, 1.86) (0.58, 1.44) (0.61, 1.21) (0.64, 1.05) (0.66, 0.94) (0.68, 0.84) (0.70, 0.77) (0.72, 0.71) (0.74, 0.65) (0.79, 0.51) (0.82, 0.41)

3 1.16 (0.39) 4.40 (2.52) 7.48 (4.96) 9.34 (6.31) 9.79 (6.21) 9.76 (5.90) 9.46 (5.33) 9.04 (4.81) 8.52 (4.23) 8.07 (3.67) 6.87 (2.38) 5.98 (1.69)

5 1.03 ( 0.18) 3.10 (1.47) 5.16 (2.85) 6.29 (3.53) 6.20 (3.27) 6.10 (2.96) 5.75 (2.48) 5.46 (2.16) 5.22 (1.86) 4.88 (1.57) 3.62 (0.78) 3.64 (0.73)

7 1.00 (0.07) 2.51 (1.05) 4.10 (1.96) 4.97 (2.47) 4.82 (2.17) 4.60 (1.92) 4.41 (1.62) 4.17 (1.35) 3.95 (1.18) 3.75 (1.00) 3.24 (0.64) 2.85 (0.51)

2.00

(µ, σ) (2.57, 7.16) (1.16, 2.43) (1.11, 1.70) (1.13, 1.41) (1.15, 1.23) (1.18, 1.09) (1.20, 0.98) (1.23, 0.89) (1.25, 0.82) (1.26, 0.76) (1.32, 0.59) (1.36, 0.48)

3 1.10 (0.32) 2.42 (1.22) 3.49 (1.76) 3.82 (1.88) 2.99 (1.14) 3.70 (1.51) 3.60 (1.32) 3.47 (1.16) 3.40 (1.06) 3.33 (0.97) 3.11 (0.70) 2.98 (0.54)

5 1.01 (0.13) 1.80 (0.77) 2.59 (1.09) 2.84 (1.16) 2.81 (1.03) 2.71 (0.90) 2.64 (0.80) 2.55 (0.70) 2.49 (0.63) 2.58 (0.64) 2.27 (0.46) 2.15 (0.36)

7 1.00 (0.04) 1.52 (0.60) 2.19 (0.83) 2.36 (0.84) 2.33 (0.76) 2.27 (0.66) 2.21 (0.58) 2.14 (0.49) 2.11 (0.44) 2.09 (0.39) 2.01 (0.21) 1.99 (0.11)

2.50

(µ, σ) (3.33, 7.82) (1.74, 3.18) (1.59, 2.05) (1.59, 1.61) (1.62, 1.39) (1.64, 1.23) (1.67, 1.11) (1.69, 1.01) (1.72, 0.93) (1.73, 0.86) (1.80, 0.67) (1.84, 0.55)

3 1.07 (0.26) 1.70 ( 0.81) 2.34 (1.09) 2.59 (1.10) 2.56 (0.99) 2.51 (0.87) 2.46 (0.77) 2.41 (0.69) 2.34 (0.61) 2.32 (0.56) 2.18 (0.41) 2.10 ( 0.31)

5 1.00 (0.08) 1.30 (0.50) 1.82 (0.73) 1.97 (0.73) 1.96 (0.60) 1.95 (0.59) 1.91 (0.53) 1.89 (0.48) 1.87 (0.43) 1.86 (0.41) 1.85 (0.35) 1.86 (0.34)

7 1.00 (0.02) 1.14 (0.36) 1.54 (0.59) 1.68 (0.61) 1.90 (0.69) 1.65 (0.53) 1.62 ( 0.51) 1.60 (0.50) 1.57 (0.49) 1.57 (0.49) 1.47 (0.49) 1.40 (0.49)

3.00

(µ, σ) (4.00, 8.33) (2.35, 4.00) (2.08, 2.58) (2.03, 1.86) (2.04, 1.55) (2.07, 1.37) (2.10, 1.24) (2.12, 1.13) (2.15, 1.04) (2.17, 0.96) (2.24, 0.75) (2.29, 0.61)

3 1.05 (0.23) 1.36 (0.60) 1.77 (0.81) 2.01 (0.83) 2.02 (0.75) 2.00 (0.68) 1.95 (0.60) 1.93 (0.54) 1.90 (0.50) 1.90 (0.46) 1.88 (0.36) 1.89 (0.31)

5 1.00 (0.07) 1.18 (0.40) 1.39 (0.55) 1.57 (0.61) 1.57 (0.57) 1.55 (0.54) 1.52 (0.53) 1.51 (0.51) 1.47 (0.50) 1.45 (0.49) 1.35 (0.47) 1.25 (0.43)

7 1.00 (0.01) 1.04 (0.19) 1.21 (0.42) 1.34 (0.49) 1.33 (0.48) 1.29 ( 0.45) 1.24 (0.43) 1.22 (0.41) 1.17 (0.38) 1.14 (0.35) 1.04 (0.21) 1.01 (0.12)

4.00

(µ, σ) (5.12, 9.07) (3.61, 5.53) (3.15, 3.99) (2.93, 2.81) (2.86, 2.07) (2.86, 1.68) (2.88, 1.48) (2.91, 1.35) (2.94, 1.24) (2.96, 1.15) (3.04, 0.89) (3.10, 0.73)

3 1.03 (0.19) 1.16 (0.39) 1.26 (0.49) 1.42 (0.59) 1.48 (0.59) 1.47 (0.55) 1.43 (0.51) 1.41 (0.50) 1.38 (0.49) 1.36 (0.48) 1.27 (0.44) 1.19 (0.39)

5 1.00 (0.04) 1.02 (0.16) 1.08 (0.27) 1.16 (0.38) 1.19 (0.40) 1.15 ( 0.36) 1.12 (0.33) 1.09 (0.29) 1.06 (0.25) 1.05 (0.21) 1.00 (0.09) 1.00 (0.03)

7 1.00 (0.01) 1.00 (0.06) 1.02 (0.14) 1.05 (0.23) 1.06 (0.25) 1.04 (0.20) 1.02 (0.16) 1.01 (0.11) 1.00 (0.08) 1.00 (0.05) 1.27 (0.47) 1.00 (0.00)
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Table 3.  The ARL results of Bayesian Max-EWMA control chart as a result of a shift in Weibull parameters 
W(1, 1.5) with γ = 0.10 and considering subgroup size as 3, 5, and 7 under LLF.

α N

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

0.25

(µ, σ) (−1.51, 
2.04)

(−1.49, 
0.89)

(−1.45, 
0.72)

(−1.42, 
0.61)

(−1.40, 
0.53)

(−1.38, 
0.47)

(−1.36, 
0.42)

(−1.35, 
0.38)

(−1.33, 
0.35)

(−1.32, 
0.32)

(−1.29, 
0.25)

(−1.28, 
0.20)

3 3.24 (1.24) 3.46 (0.75) 3.53 (0.66) 3.59 (0.60) 3.62 (0.56) 3.68 (0.53) 3.76 (0.49) 3.79 (0.47) 3.85 (0.42) 3.89 (0.37) 3.96 (0.24) 3.95 (0.23)

5 2.53 (0.80) 2.70 (0.56) 2.77 (0.50) 2.84 (0.43) 2.90 (0.36) 2.94 (0.29) 2.97 (0.22) 2.98 (0.17) 2.99 (0.13) 3.00 (0.10) 2.99 (0.09) 2.96 (0.17)

7 2.17 (0.64) 2.27 (0.45) 2.29 (0.45) 2.33 (0.47) 2.35 (0.47) 2.39 (0.48) 2.46 (0.49) 2.49 (0.49) 2.57 (0.49) 2.61 (0.48) 2.68 (0.46) 2.44 (0.49)

0.50

(µ, σ) (−0.68, 
3.16)

(−0.87, 
1.11)

(−0.84, 
0.90)

(−0.81, 
0.76)

(−0.78, 
0.66)

(−0.76, 
0.58)

(−0.74, 
0.53)

(−0.72, 
0.48)

(−0.71, 
0.44)

(−0.70, 
0.40)

(−0.66, 
0.31)

(−0.64, 
0.25)

3 2.65 (1.14) 6.41 (2.40) 6.70 (2.17) 6.91 (1.96) 7.21 (1.82) 7.41 (1.67) 7.50 (1.57) 7.53 (1.50) 7.32 (1.40) 7.03 (1.36) 8.38 (1.89) 5.19 (0.91)

5 1.94 (0.71) 4.75 (1.50) 4.92 (1.31) 5.07 (1.22) 5.24 (1.09) 5.47 (1.47) 5.30 (0.90) 5.20 (0.86) 4.96 (0.82) 4.68 (0.78) 3.87 (0.61) 3.10 (0.36)

7 1.64 (0.57) 3.94 (1.11) 4.06 (0.98) 4.18 (0.88) 4.34 (0.83) 4.35 (0.72) 4.35 (0.67) 4.21 (0.63) 3.99 (0.62) 3.72 (0.59) 3.09 (0.39) 2.83 (0.37)

0.75

(µ, σ) (0.01, 4.18) (−0.42, 
1.30)

(−0.39, 
1.05)

(−0.36, 
0.88)

(−0.34, 
0.77)

(−0.32, 
0.68)

(−0.29, 
0.61)

(−0.28, 
0.56)

(−0.26, 
0.51)

(−0.25, 
0.47)

(−0.21, 
0.37)

(−0.18, 
0.30)

3 1.99 (0.87) 13.27 (7.54) 19.93 
(12.35)

24.68 
(15.17)

25.30 
(14.43)

21.44 
(10.98) 16.99 (7.88) 13.86 (5.75) 11.28 (4.02) 9.75 (3.09) 7.15 (2.87) 5.87 (1.16)

5 1.47 (0.57) 9.32 (4.39) 13.42 (6.97) 15.43 (7.74) 14.67 (6.20) 11.85 (4.34) 9.16 (2.94) 7.61 (7.67) 6.46 (1.61) 5.73 (1.28) 4.42 (0.78) 3.79 (0.59)

7 1.25 (0.44) 7.47 (3.07) 10.52 (4.92) 11.77 (4.98) 9.65 (3.16) 8.69 (2.66) 6.80 (1.85) 5.72 (1.36) 4.95 (1.04) 4.43 (0.86) 3.50 (0.57) 3.04 (0.37)

1.0

(µ, σ) (0.61, 5.00) (−0.05, 
1.47)

(−0.03, 
1.18) (0.00, 1.00) (0.03, 0.87) (0.05, 0.77) (0.07, 0.69) (0.09, 0.63) (0.11, 0.58) (0.12, 0.54) (0.16, 0.41) (0.19, 0.34)

3 1.66 (0.73) 13.61 (8.24) 54.88 
(46.29)

369.33 
(367.12)

173.35 
(160.14)

57.52 
(45.17)

29.07 
(18.42)

19.61 
(10.19) 15.23 (6.89) 12.76 (5.05) 8.05 (2.16) 6.53 (1.46)

5 1.27 (0.46) 8.47 (4.08) 31.78 
(23.77)

370.89 
(366.45)

79.18 
(67.14)

24.21 
(14.68) 13.64 (6.01) 10.17 (3.64) 8.21 (2.46) 7.13 (1.93) 4.89 (0.94) 4.14 (0.68)

7 1.11 (0.32) 6.52 (2.76) 23.51 
(15.64)

369.87 
(360.22)

49.61 
(38.56) 15.99 (7.87) 9.67 (3.48) 7.42 (2.17) 6.17 (1.59) 5.39 (1.23) 3.83 (0.65) 3.28 (0.49)

1.25

(µ, σ) (1.17, 5.69) (0.28, 1.65) (0.29, 1.31) (0.32, 1.11) (0.35, 0.96) (0.37, 0.86) (0.39, 0.77) (0.41, 0.70) (0.43, 0.64) (0.45, 0.60) (0.49, 0.46) (0.52, 0.38)

3 1.47 (0.64) 8.56 (4.48) 17.12 
(10.83)

25.07 
(16.79)

25.43 
(16.08)

23.33 
(13.86)

20.32 
(10.33) 17.52 (7.75) 15.06 (5.84) 13.33 (4.67) 10.08 (3.00) 7.28 (1.75)

5 1.17 (0.38) 5.67 (2.38) 11.37 (5.86) 16.89 
(10.07) 16.33 (8.78) 14.76 (6.96) 12.62 (4.85) 10.71 (3.48) 9.05 (2.55) 8.12 (2.13) 5.55 (1.17) 4.55 (0.82)

7 1.05 (0.22) 4.50 (1.68) 8.83 (4.01) 13.31 (7.06) 12.58 (5.94) 11.15 (4.44) 9.70 (3.18) 8.19 (2.26) 6.99 (1.74) 6.22 (1.43) 4.33 (0.82) 3.60 (0.59)

α n

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

1.50

(µ, σ) (1.67, 6.26) (0.58, 1.86) (0.58, 1.44) (0.61, 1.21) (0.64, 1.05) (0.66, 0.94) (0.68, 0.84) (0.70, 0.77) (0.72, 0.71) (0.74, 0.65) (0.79, 0.51) (0.82, 0.41)

3 1.36 (0.56) 5.68 (2.59) 8.58 (4.26) 9.80 (4.77) 9.54 (9.54) 9.19 (3.63) 8.77 (3.12) 8.38 (2.65) 8.09 (2.35) 7.73 (2.00) 6.91 (1.33) 6.36 (1.01)

5 1.11 (0.31) 3.98 (1.47) 6.23 (2.54) 7.05 (2.87) 6.80 (2.50) 6.56 (2.16) 6.29 (1.88) 6.02 (1.58) 5.81 (1.37) 5.54 (1.17) 5.20 (1.16) 4.47 (0.64)

7 1.02 (0.16) 3.30 (1.10) 5.08 (1.84) 5.78 (2.14) 5.57 (1.86) 5.34 (1.56) 5.13 (1.33) 4.93 (1.15) 4.75 (1.00) 4.56 (0.86) 4.07 (0.59) 3.66 (0.52)

2.00

(µ, σ) (2.57, 7.16) (1.16, 2.43) (1.11, 1.70) (1.13, 1.41) (1.15, 1.23) (1.18, 1.09) (1.20, 0.98) (1.23, 0.89) (1.25, 0.82) (1.26, 0.76) (1.32, 0.59) (1.36, 0.48)

3 1.24 (0.46) 2.20 (0.44) 4.51 (1.83) 4.68 (1.78) 4.63 (1.57) 4.49 (1.35) 4.38 (1.19) 4.25 (1.04) 4.14 (0.92) 4.12 (0.87) 3.88 (0.65) 3.74 (0.54)

5 1.05 (0.23) 2.41 (0.82) 3.40 (1.13) 3.61 (1.16) 3.55 (1.02) 3.43 (0.89) 3.35 (0.78) 3.25 (0.69) 3.19 (0.62) 3.17 (0.57) 3.02 (0.40) 2.96 (0.29)

7 1.01 (0.10) 1.62 (0.48) 2.10 (0.35) 2.44 (0.56) 2.79 (0.69) 3.15 (0.83) 3.51 ( 1.00) 3.50 (1.01) 4.20 (1.36) 4.53 (1.51) 5.64 (2.13) 2.46 (0.49)

2.50

(µ, σ) (3.33, 7.82) (1.74, 3.18) (1.59, 2.05) (1.59, 1.61) (1.62, 1.39) (1.64, 1.23) (1.67, 1.11) (1.69, 1.01) (1.72, 0.93) (1.73, 0.86) (1.80, 0.67) (1.84, 0.55)

3 1.18 (0.41) 2.29 (0.95) 3.14 (1.17) 3.31 ( 1.13) 3.27 (1.01) 3.20 (0.88) 3.12 (0.79) 3.08 (0.71) 3.02 (0.64) 2.98 (0.60) 2.87 (0.51) 2.84 ( 0.39)

5 1.05 (0.22) 1.75 (0.64) 2.45 ( 0.78) 2.58 ( 0.75) 2.55 (0.67) 2.50 (0.60) 2.43 (0.55) 2.39 (0.52) 2.34 (0.48) 2.31 (0.47) 2.17 (0.38) 2.08 (0.27)

7 1.00 (0.07) 1.17 (0.38) 2.09 (0.60) 2.24 (0.58) 2.65 (0.77) 2.72 (0.80) 2.91 (0.89) 3.08 (0.96) 3.19 ( 1.02) 2.04 (0.23) 2.00 (0.08) 2.00 (0.01)

3.00

(µ, σ) (4.00, 8.33) (2.35, 4.00) (2.08, 2.58) (2.03, 1.86) (2.04, 1.55) (2.07, 1.37) (2.10, 1.24) (2.12, 1.13) (2.15, 1.04) (2.17, 0.96) (2.24, 0.75) (2.29, 0.61)

3 1.14 (0.37) 1.76 (0.75) 2.40 (0.93) 2.63 (0.88) 2.63 (0.78) 2.58 (0.68) 2.51 (0.62) 2.48 (0.57) 2.43 (0.53) 2.39 (0.51) 2.27 (0.45) 2.17 (0.38)

5 1.02 ( 0.15) 1.36 (0.51) 1.88 (0.63) 2.22 (0.70) 2.48 (0.79) 2.33 (0.86) 2.06 (0.47) 2.03 (0.32) 2.01 (0.27) 2.01 (0.22) 1.99 (0.12) 1.99 (0.06)

7 1.00 (0.05) 1.17 (0.38) 1.63 (0.54) 1.83 (0.52) 1.86 (0.46) 1.85 (0.41) 1.84 (0.38) 1.85 (0.36) 1.85 (0.35) 1.85 (0.35) 1.86 (0.33) 1.99 ( 0.01)

4.00

(µ, σ) (5.12, 9.07) (3.61, 5.53) (3.15, 3.99) (2.93, 2.81) (2.86, 2.07) (2.86, 1.68) (2.88, 1.48) (2.91, 1.35) (2.94, 1.24) (2.96, 1.15) (3.04, 0.89) (3.10, 0.73)

3 1.10 (0.31) 1.33 (0.53) 1.59 (0.66) 1.88 (0.71) 1.98 (0.62) 1.98 (0.52) 1.97 (0.45) 1.96 ( 0.39) 1.95 ( 0.35) 1.94 (0.31) 1.96 (0.21) 1.97 (0.16)

5 1.01 (0.12) 1.09 (0.30) 1.27 (0.46) 1.48 (0.54) 1.59 (0.53) 1.59 (0.50) 1.58 (0.49) 1.58 (0.49) 1.55 (0.51) 1.53 (0.49) 1.48 (0.49) 1.42 (0.49)

7 1.00 (0.03) 1.02 (0.16) 1.12 (0.32) 1.28 ( 0.45) 1.34 (0.47) 1.32 (0.46) 1.27 (0.44) 1.23 (0.42) 1.21 (0.40) 1.17 (0.38) 1.07 (0.26) 1.02 (0.16)
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Table 4.  The ARL results of Bayesian Max-EWMA control chart as a result of a shift in Weibull parameters 
W(1, 1.5) with γ = 0.25 and considering subgroup size as 3, 5, and 7 under LLF.

α n

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

0.25

(µ, σ) (−1.51, 
2.04)

(−1.49, 
0.89)

(−1.45, 
0.72)

(−1.42, 
0.61)

(−1.40, 
0.53)

(−1.38, 
0.47)

(−1.36, 
0.42)

(−1.35, 
0.38)

(−1.33, 
0.35)

(−1.32, 
0.32)

(−1.29, 
0.25)

(−1.28, 
0.20)

3 2.47 (1.17) 2.75 (0.80) 2.78 (0.70) 2.83 (0.64) 2.88 (0.58) 2.92 (0.53) 2.97 (0.49) 3.00 (0.42) 3.03 (0.40) 3.05 (0.36) 3.05 (0.31) 3.01 (0.27)

5 1.88 (0.77) 2.11 (0.47) 2.13 (0.39) 2.13 (0.36) 2.12 (0.33) 2.12 (0.32) 2.12 (0.32) 2.11 (0.31) 2.13 (0.33) 2.11 (0.32) 2.09 (0.29) 2.03 (0.19)

7 1.60 (0.61) 1.84 (0.42) 1.90 (0.33) 1.94 (0.25) 1.97 (0.17) 1.99 (0.11) 1.99 (0.06) 1.99 (0.05) 1.99 (0.03) 1.99 (0.03) 1.99 (0.05) 1.98 (0.11)

0.50

(µ, σ) (−0.68, 
3.16)

(−0.87, 
1.11)

(−0.84, 
0.90)

(−0.81, 
0.76)

(−0.78, 
0.66)

(−0.76, 
0.58)

(−0.74, 
0.53)

(−0.72, 
0.48)

(−0.71, 
0.44)

(−0.70, 
0.40)

(−0.66, 
0.31)

(−0.64, 
0.25)

3 1.96 (1.01) 5.70 (2.94) 6.25 (3.06) 6.72 (3.00) 7.27 (3.10) 7.61 (3.09) 7.84 (3.01) 7.95 (2.98) 7.68 (2.81) 7.24 (2.59) 5.62 (1.82) 4.54 (1.23)

5 1.46 (0.61) 3.97 (1.69) 4.15 (1.56) 4.34 (1.48) 4.52 (1.42) 4.55 (1.25) 4.57 (1.18) 4.44 (1.09) 4.20 (1.00) 3.88 (0.90) 3.09 (0.65) 2.65 (0.53)

7 1.24 (0.45) 3.19 (1.17) 3.28 (1.07) 3.41 (1.00) 3.52 (0.93) 3.52 (0.80) 3.49 (0.77) 3.36 (0.71) 3.16 (0.65) 2.92 (0.62) 2.36 (0.49) 2.06 (0.25)

0.75

(µ, σ) (0.01, 4.18) (−0.42, 
1.30)

(−0.39, 
1.05)

(−0.36, 
0.88)

(−0.34, 
0.77)

(−0.32, 
0.68)

(−0.29, 
0.61)

(−0.28, 
0.56)

(−0.26, 
0.51)

(−0.25, 
0.47)

(−0.21, 
0.37)

(−0.18, 
0.30)

3 1.49 (0.69) 13.20 
(10.09)

23.99 
(20.21)

45.10 
(39.36)

59.07 
(52.32)

49.75 
(42.61)

32.81 
(27.26)

22.31 
(16.65)

15.80 
(10.53) 12.26 (7.33) 7.34 (3.14) 5.43 (1.76)

5 1.18 (0.41) 8.48 (5.46) 15.52 
(11.75)

22.41 
(17.77)

23.30 
(17.46)

16.24 
(10.92) 10.63 (6.13) 7.90 (3.76) 6.19 (2.49) 5.20 (1.77) 3.66 (0.92) 3.02 (0.62)

7 1.07 (0.26) 1.06 (0.25) 11.24 (7.46) 14.63 
(10.05) 13.77 (8.68) 9.61 (5.19) 6.55 (2.84) 5.14 (1.87) 4.23 (1.28) 3.68 (1.00) 2.76 (0.59) 2.29 (0.46)

1.0

(µ, σ) (0.61, 5.00) (−0.05, 
1.47)

(−0.03, 
1.18) (0.00, 1.00) (0.03, 0.87) (0.05, 0.77) (0.07, 0.69) (0.09, 0.63) (0.11, 0.58) (0.12, 0.54) (0.16, 0.41) (0.19, 0.34)

3 1.31 (0.56) 12.59 (9.60) 62.01 
(57.77)

370.68 
(367.77)

342.12 
(338.03)

141.43 
(133.84)

66.40 
(60.28)

38.90 
(32.79)

26.38 
(20.91)

22.65 
(17.18) 8.89 (4.28) 6.40 (2.44)

5 1.09 (0.29) 7.57 (4.99) 39.35 
(35.73)

370.09 
(368.89)

178.01 
(172.69)

47.26 
(41.65)

20.19 
(14.80) 12.40 (7.76) 8.85 (4.72) 7.15 (3.18) 4.15 (1.19) 3.37 (0.77)

7 1.02 (0.15) 5.58 (3.17) 28.08 
(24.05)

370.89 
(366.23)

103.09 
(96.58)

24.88 
(19.76) 11.43 (6.92) 7.46 (3.57) 5.69 (2.26) 4.75 (1.61) 3.05 (0.71) 2.56 (0.55)

1.25

(µ, σ) (1.17, 5.69) (0.28, 1.65) (0.29, 1.31) (0.32, 1.11) (0.35, 0.96) (0.37, 0.86) (0.39, 0.77) (0.41, 0.70) (0.43, 0.64) (0.45, 0.60) (0.49, 0.46) (0.52, 0.38)

3 1.32 (0.56) 7.08 (4.74) 17.28 
(13.83)

31.99 
(27.51)

40.31 
(35.12)

35.71 
(30.64)

42.15 
(36.38)

36.27 
(29.78)

28.51 
(22.04)

23.20 
(17.39) 11.22 (6.17) 7.63 (3.39)

5 1.04 (0.21) 4.58 (2.49) 10.78 (7.52) 20.34 
(16.36)

22.16 
(17.43)

21.14 
(16.01)

17.36 
(12.27) 13.67 (8.39) 10.44 (5.59) 8.70 (4.17) 4.93 (1.60) 3.77 (0.98)

7 1.01 (0.10) 3.59 (1.71) 8.08 (5.08) 14.32 
(10.43)

15.03 
(10.69) 13.55 (8.81) 11.07 (6.33) 8.55 (4.09) 6.75 (2.75) 5.71 (2.06) 3.54 (0.92) 2.83 (0.62)

α N

Shape parameter = �

0.50 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 4.00 5.00

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

ARL 
(SDRL)

1.50

(µ, σ) (1.67, 6.26) (0.58, 1.86) (0.58, 1.44) (0.61, 1.21) (0.64, 1.05) (0.66, 0.94) (0.68, 0.84) (0.70, 0.77) (0.72, 0.71) (0.74, 0.65) (0.79, 0.51) (0.82, 0.41)

3 1.15 (0.39) 4.44 ( 2.58) 7.41 (4.76) 9.51 (6.17) 9.74 (6.22) 9.69 (5.88) 9.36 (5.20) 9.04 (4.82) 8.59 (4.23) 8.17 (3.69) 6.86 (2.36) 6.01 ( 1.67)

5 1.06 ( 0.24) 3.08 ( 1.48) 5.16 ( 2.83) 6.34 ( 3.55) 6.24 ( 3.27) 6.04 ( 2.88) 5.75 ( 2.54) 5.52 ( 2.23) 5.17 ( 1.85) 4.93 ( 1.66) 4.33 ( 1.17) 3.62 ( 0.73)

7 1.00 ( 0.08) 4.39 ( 2.15) 4.04 ( 1.92) 4.95 ( 2.47) 4.79 ( 2.18) 4.58 ( 1.89) 4.86 ( 1.91) 4.19 ( 1.41) 3.98 ( 1.21) 3.77 ( 1.01) 3.24 ( 0.65) 2.35 ( 0.48)

2.00

(µ, σ) (2.57, 7.16) (1.16, 2.43) (1.11, 1.70) (1.13, 1.41) (1.15, 1.23) (1.18, 1.09) (1.20, 0.98) (1.23, 0.89) (1.25, 0.82) (1.26, 0.76) (1.32, 0.59) (1.36, 0.48)

3 1.10 ( 0.31) 2.44 (1.25) 3.50 (1.79) 3.84 (1.84) 3.81 (1.69) 2.26 (0.65) 3.61 (1.34) 3.49 (1.17) 3.39 (1.09) 3.34 ( 0.96) 3.11 (0.70) 2.98 (0.55)

5 1.01 ( 0.12) 1.79 ( 0.77) 2.58 ( 1.09) 2.81 ( 1.12) 2.80 ( 1.05) 2.72 ( 0.91) 2.63 ( 0.79) 2.55 ( 0.69) 2.49 ( 0.63) 2.45 ( 0.58) 2.09 ( 0.29) 2.15 ( 0.36)

7 1.00 ( 0.04) 1.52 ( 0.60) 2.18 ( 0.83) 2.06 ( 0.71) 2.34 ( 0.76) 2.26 ( 0.66) 2.21 ( 0.58) 2.14 ( 0.49) 2.10 ( 0.43) 2.08 ( 0.39) 2.00 ( 0.22) 1.99 ( 0.11)

2.50

(µ, σ) (3.33, 7.82) (1.74, 3.18) (1.59, 2.05) (1.59, 1.61) (1.62, 1.39) (1.64, 1.23) (1.67, 1.11) (1.69, 1.01) (1.72, 0.93) (1.73, 0.86) (1.80, 0.67) (1.84, 0.55)

3 1.05 (0.23) 1.68 (0.80) 2.35 (1.08) 2.58 (1.10) 2.57 (0.96) 2.52 (0.88) 2.44 (0.76) 2.40 (0.69) 2.34 (0.61) 2.32 (0.56) 2.18 (0.42) 2.10 ( 0.31)

5 1.00 ( 0.07) 1.32 ( 0.52) 2.04 (1.09) 1.99 ( 0.75) 1.98 ( 0.67) 1.94 ( 0.60) 1.91 ( 0.54) 1.89 ( 0.49) 1.91 ( 0.31) 1.86 ( 0.41) 1.85 ( 0.35) 1.86 ( 0.34)

7 1.00 ( 0.03) 1.15 ( 0.36) 1.55 ( 0.60) 1.68 (0.61) 1.66 ( 0.56) 1.66 ( 0.53) 1.62 ( 0.51) 1.60 ( 0.50) 1.57 ( 0.49) 1.57 ( 0.49) 1.47 ( 0.49) 1.38 ( 0.48)

3.00

(µ, σ) (4.00, 8.33) (2.35, 4.00) (2.08, 2.58) (2.03, 1.86) (2.04, 1.55) (2.07, 1.37) (2.10, 1.24) (2.12, 1.13) (2.15, 1.04) (2.17, 0.96) (2.24, 0.75) (2.29, 0.61)

3 1.05 (0.23) 1.36 (0.58) 1.78 (0.82) 2.01 (0.83) 2.01 (0.75) 2.00 ( 0.67) 1.95 (0.61) 1.94 (0.55) 1.91 (0.50) 1.90 (0.44) 1.88 (0.35) 1.89 (0.31)

5 1.00 ( 0.09) 1.12 ( 0.34) 1.39 ( 0.55) 1.57 ( 0.60) 1.58 ( 0.58) 1.55 ( 0.54) 1.52 ( 0.52) 1.50 ( 0.51) 1.46 ( 0.50) 1.48 ( 0.56) 1.45 ( 0.54) 1.26 ( 0.44)

7 1.00 ( 0.02) 1.03 ( 0.19) 1.21 ( 0.42) 1.41 ( 0.53) 1.59 ( 0.62) 1.67 ( 0.65) 1.72 ( 0.67) 1.21 ( 0.41) 1.17 ( 0.38) 1.14 ( 0.35) 1.05 ( 0.23) 1.01 ( 0.11)

4.00

(µ, σ) (5.12, 9.07) (3.61, 5.53) (3.15, 3.99) (2.93, 2.81) (2.86, 2.07) (2.86, 1.68) (2.88, 1.48) (2.91, 1.35) (2.94, 1.24) (2.96, 1.15) (3.04, 0.89) (3.10, 0.73)

3 1.04 (0.20) 1.13 (0.36) 1.27 ( 0.51) 1.41 (0.59) 1.48 (0.59) 1.46 (0.55) 1.44 (0.52) 1.41 (0.50) 1.39 (0.49) 1.36 (0.48) 1.27 (0.44) 1.18 (0.38)

5 1.00 ( 0.06) 1.02 ( 0.16) 1.07 ( 0.27) 1.17 ( 0.38) 1.19 ( 0.40) 1.15 ( 0.36) 1.12 ( 0.33) 1.09 ( 0.29) 1.07 ( 0.25) 1.05 ( 0.22) 1.01 ( 0.10) 1.00 ( 0.04)

7 1.00 ( 0.01) 1.00 ( 0.06) 1.02 ( 0.14) 1.06 ( 0.25) 1.07 ( 0.26) 1.04 ( 0.21) 1.02 ( 0.16) 1.01 ( 0.11) 1.00 ( 0.08) 1.00 ( 0.08) 1.00 ( 0.01) 1.0 (0.0)
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 i. Generate a random sample reflecting a shifted process.
 ii. Calculate the statistic required for the suggested control chart.
 iii. Should the plotted statistic fall within the UCL, iterate through steps (i–ii). Otherwise, document the 

count of generated points, signifying a single out-of-control run length.
 iv. Iterate through the aforementioned process (i–iii) 50, 000 times to ascertain the out-of-control  ARL1 and 

 SDRL1.

Main findings
The main findings of the current study are given below:

• The effectiveness of the proposed Max-EWMA CC using the Weibull process for simultaneously monitoring 
both process mean and variance, especially in identifying subtle to moderate shifts, becomes apparent when 
analyzing the run length profiles provided in all four tables related to this CC. These profiles showcase how 
the CC performs over a range of scenarios, and the consistent trend across these tables indicates that the CC 
is adept at promptly detecting deviations in both process mean and variance, making it a valuable tool for 
maintaining process quality and consistency.

• The simulation results clearly demonstrate that the performance of the proposed Bayesian CC for simul-
taneous monitoring of processes improves as the smoothing constant decreases. In other words, when the 
smoothing constant is reduced, the CC becomes more sensitive and effective at promptly identifying shifts 
in the process mean and variance. This finding implies that choosing a lower smoothing constant may, in 
some cases or applications, improve process quality and reliability by facilitating better monitoring and faster 
identification of deviations from the expected process parameters.

• The variation in sample size is one of the important factors that we have carefully examined in the context 
of our study. Our analysis’s findings provide an important and persuasive insight. It is evident that there is 
a notable and significant improvement in the efficiency and performance of the proposed Bayesian Max-
EWMA CC with increasing sample size. Put practically, this means that the CC can detect changes in process 
mean and variance more quickly and accurately when larger sample sizes are used. This improvement is 
particularly important because it can lead to more reliable and robust process monitoring, contributing to 
better overall process quality and consistency.

Real data application
Many researchers commonly employ the practice of demonstrating the functionality and effectiveness of pro-
posed CCs using actual datasets and simulated scenarios. In this context, we analyze a real-life dataset to show-
case the capabilities of the proposed CC. Monitoring the tensile strength of fibrous composites is crucial in 
industries ensuring material safety for aerospace and bridge construction. To achieve this, we examine the 
real-life dataset referenced in 26, which specifically outlines the breaking strengths of carbon fibers used in manu-
facturing these composite materials, as detailed in Table 5. These insights stem from research conducted at the 
U.S. Army Materials Technology Laboratory in Watertown, Massachusetts. The dataset consists of 20 samples, 
each comprising a sample size of n = 5, following the Weibull distribution with a scale parameter (η = 2.9437) 
and shape parameter (θ = 2.7929). Initially, 15 random samples of size n = 5 are drawn without replacement and 
marked as in-control samples. Subsequently, the dataset is altered by adding 1 to each observation. Following 
this modification, 10 random samples of size n = 5 are drawn without replacement and regarded as out-of-control 
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samples. Both charts are employed to monitor variations in the process mean, and the resulting computations 
are presented in Table 6.

Figures 1 and 2 provide a visual representation of the implementation of the provided Bayesian Max-EWMA 
CC, designed for the simultaneous monitoring of both process mean and dispersion. This monitoring employs 
both the SELF and LLF approaches. A thorough examination of these charts reveals clear signals indicating 
that the process has gone out of control in the 23rd and 21st samples, especially when considering a smoothing 
constant value of 0.10. The identified departure from the normal process state, resulting in an out-of-control 
scenario, can be ascribed to two main factors: alterations in either the process mean or variance. These alterations 
stem from modifications in the shape and scale parameters of the Weibull distribution, thereby influencing the 
distribution’s properties and giving rise to the observed deviations.

Conclusion
In this study, we introduce an innovative Bayesian Max-EWMA CC using the Weibull process designed for the 
simultaneous monitoring of the process mean and variance. This CC incorporates informative prior distribu-
tions and integrates two distinct LFs within the context of posterior distribution. The performance of this novel 
approach was rigorously evaluated through a comprehensive analysis, with results presented in Tables 1, 2, 3 and 
4. These assessments employ crucial metrics such as ARL and SDRL. We conduct a practical case study focused 
on the hard bake process in semiconductor manufacturing. Interestingly, the proposed Bayesian Max-EWMA 
CC shows excellent performance in identifying out-of-control signals in the process when applied to posterior 
distributions. Crucially, the knowledge acquired from this research could be applied to the creation of other 
memory-type CCs, improving their efficacy in a variety of industrial applications. Extending this novel method 
to different kinds of CC instead of just nonnormal distributions can lead to a more thorough comprehension of 
the underlying data patterns. This broader application enables the early detection of potential quality issues in 
different domains and allows for swift corrective actions, thereby reducing the risk of costly errors and defects. 
This method is essential for quickly spotting irregularities in patient data, enabling prompt interventions, and 
enhancing the quality of patient care in real-world situations like healthcare. In manufacturing, extending this 
approach to non-normal distributions and diverse CC types aids in identifying variations in the production 
process, ultimately leading to improved product quality and a reduction in waste.

Table 5.  Data set related to breaking strengths of carbon fibers.

Sample number
Breaking stresses (GPa) of carbon 
fibers Transformed standard normal from Weibull

1 4.91 2.85 2.12 5.08 2.76 2.1603 0.2502 −0.4407 2.3212 0.1665

2 3.68 3.15 1.84 2.97 2.95 1.0159 0.5277 −0.7190 0.3614 0.3429

3 3.11 2.95 4.20 3.19 1.87 0.4908 0.3429 1.4964 0.5646 −0.6886

4 3.56 5.56 1.17 2.93 1.22 0.9054 2.7800 −1.4527 0.3243 −1.3927

5 3.31 4.38 3.15 3.33 1.59 0.6752 1.6636 0.5277 0.6936 −0.9785

6 2.83 2.55 3.11 1.73 1.18 0.2316 −0.0297 0.4908 −0.8316 −1.4406

7 2.50 2.79 2.17 2.48 3.19 −0.0767 0.1944 −0.3921 −0.0956 0.5646

8 2.38 1.08 1.18 3.19 0.81 −0.1904 −1.5638 −1.4406 0.5646 −1.9297

9 2.82 0.39 1.41 2.43 2.73 0.2223 −2.6946 −1.1744 −0.1429 0.1386

10 2.35 0.81 3.19 5.08 4.70 −0.2189 −1.9297 0.5646 2.3212 1.9627

11 1.57 3.39 2.03 2.48 2.81 −0.9998 0.7489 −0.5290 −0.0956 0.2130

12 2.97 2.03 2.79 3.15 3.75 0.3614 −0.5290 0.1944 0.5277 1.0804

13 3.56 2.00 1.89 2.76 2.79 0.9054 −0.5587 −0.6685 0.1665 0.1944

14 3.31 2.48 3.28 0.39 3.15 0.6752 −0.0956 0.6476 −2.6946 0.5277

15 3.51 0.81 2.81 0.85 2.95 0.8594 −1.9297 0.2130 −1.8716 0.3429

16 2.59 3.03 3.48 5.42 4.11 0.0078 0.4169 0.8317 2.6454 1.4130

17 4.39 4.33 3.05 4.68 4.60 1.6730 1.6171 0.4354 1.9439 1.8690

18 3.81 4.09 2.57 2.25 1.98 1.1358 1.3945 −0.0109 −0.3147 −0.5785

19 3.00 3.38 2.36 4.22 4.65 0.3891 0.7397 −0.2094 1.5149 1.9158

20 3.76 3.88 3.95 2.89 3.83 1.0897 1.2003 1.2650 0.2873 1.1542

21 4.60 4.39 4.68 5.20 3.59 1.8690 1.6730 1.9439 2.4352 0.9330

22 2.92 3.59 2.69 5.20 2.89 0.3151 0.9330 0.1013 2.4352 0.2873

23 4.75 1.98 2.92 4.31 3.87 2.0097 −0.5785 0.3151 1.5985 1.1911

24 2.80 4.33 4.56 3.96 3.03 0.2037 1.6171 1.8316 1.2742 0.4169

25 6.56 3.82 2.18 3.95 2.84 3.7604 1.1450 −0.3824 1.2650 0.2409
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Table 6.  The values and out of control status proposed Bayesian Max-EWMA under SELF and LLF, with 
� = 0.10.

Sample #
Proposed Bayesian Max-EWMA 
under SELF UCL Out-of-control status

Proposed Bayesian Max-EWMA 
under LLF UCL Out-of-control status

1 0.1153 1.6654 0 0.1225 1.6521 0

2 0.1678 1.6654 0 0.2649 1.6521 0

3 0.2209 1.6654 0 0.5425 1.6521 0

4 0.3492 1.6654 0 0.5793 1.6521 0

5 0.4164 1.6654 0 0.7055 1.6521 0

6 0.4359 1.6654 0 0.8701 1.6521 0

7 0.6002 1.6654 0 0.7589 1.6521 0

8 0.6508 1.6654 0 0.8891 1.6521 0

9 0.7089 1.6654 0 0.8864 1.6521 0

10 0.7512 1.6654 0 0.8711 1.6521 0

11 0.8653 1.6654 0 1.0055 1.6521 0

12 1.0164 1.6654 0 1.0835 1.6521 0

13 1.1442 1.6654 0 1.1308 1.6521 0

14 1.1255 1.6654 0 1.2065 1.6521 0

15 1.1835 1.6654 0 1.2176 1.6521 0

16 1.1794 1.6654 0 1.2005 1.6521 0

17 1.2055 1.6654 0 1.3013 1.6521 0

18 1.3781 1.6654 0 1.3895 1.6521 0

19 1.5150 1.6654 0 1.4339 1.6521 0

20 1.5070 1.6654 0 1.6128 1.6521 0

21 1.4995 1.6654 0 1.7285 1.6521 1

22 1.6310 1.6654 0 1.7148 1.6521 1

23 1.7426 1.6654 1 1.8754 1.6521 1

24 1.7993 1.6654 1 1.8448 1.6521 1

25 1.7791 1.6654 1 1.8092 1.6521 1

Figure 1.  Using SELF, the Bayesian Max-EWMA CC using Weibull process for jointly monitoring with 
� = 0.10.
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acquired from the corresponding author upon a reasonable request. It suggests the author holds the data and is 
open to sharing it with interested parties in an appropriate manner.

Received: 11 October 2023; Accepted: 13 January 2024

References
 1. Shewhart, W. A. The application of statistics as an aid in maintaining quality of a manufactured product. J. Am. Stat. Assoc. 20(152), 

546–548 (1925).
 2. Page, E. S. Continuous inspection schemes. Biometrika 41(1/2), 100–115 (1954).
 3. Roberts, S. Control chart tests based on geometric moving averages. Technometrics 42(1), 97–101 (1959).
 4. Gan, F. Joint monitoring of process mean and variance using exponentially weighted moving average control charts. Technometrics 

37(4), 446–453 (1995).
 5. Chen, G., Cheng, S. W. & Xie, H. Monitoring process mean and variability with one EWMA chart. J. Qual. Technol. 33(2), 223–233 

(2001).
 6. Khoo, M. B., Teh, S. & Wu, Z. Monitoring process mean and variability with one double EWMA chart. Commun. Stat. Theory 

Methods 39(20), 3678–3694 (2010).
 7. Sheu, S.-H., Huang, C.-J. & Hsu, T.-S. Extended maximum generally weighted moving average control chart for monitoring process 

mean and variability. Comput. Ind. Eng. 62(1), 216–225 (2012).
 8. Sanusi, R. A., Mukherjee, A. & Xie, M. A comparative study of some EWMA schemes for simultaneous monitoring of mean and 

variance of a Gaussian process. Comput. Ind. Eng. 135, 426–439 (2019).
 9. Arif, F., Noor-ul-Amin, M. & Hanif, M. Joint monitoring of mean and variance under double ranked set sampling using likelihood 

ratio test statistic. Commun. Stat.-Theory Methods 51(17), 6032–6048 (2022).
 10. Noor-ul-Amin, M., Aslam, I. & Feroze, N. Joint monitoring of mean and variance using Max-EWMA for Weibull process. Com-

mun. Stat.-Simul. Comput. 52(7), 3257–3272 (2023).
 11. Yang, C.-M. An improved multiple quality characteristic analysis chart for simultaneous monitoring of process mean and variance 

of steering knuckle pin for green manufacturing. Qual. Eng. 33(3), 383–394 (2021).
 12. Chatterjee, K., Koukouvinos, C., Lappa, A. & Roupa, P. A joint monitoring of the process mean and variance with a generally 

weighted moving average maximum control chart. Commun. Stat.-Simul. Comput. 4, 1–21 (2023).
 13. Saemian, M., Maleki, M. R. & Salmasnia, A. Performance of Max-HEWMAMS control chart for simultaneous monitoring of 

process mean and variability in the presence of measurement errors. Int. J. Appl. Decis. Sci. 16(2), 165–188 (2023).
 14. Abbas, T., Ahmad, S., Riaz, M. & Qian, Z. A Bayesian way of monitoring the linear profiles using CUSUM control charts. Commun. 

Stat.-Simul. Comput. 48(1), 126–149 (2019).
 15. Erto, P., Pallotta, G., Palumbo, B. & Mastrangelo, C. M. The performance of semi-empirical Bayesian control charts for monitoring 

Weibull data. Qual. Technol. Quant. Manag. 15(1), 69–86 (2018).
 16. Erto, P., Lepore, A., Palumbo, B. & Vanacore, A. A Bayesian control chart for monitoring the ratio of Weibull percentiles. Qual. 

Reliab. Eng. Int. 35(5), 1460–1475 (2019).
 17. Aslam, M. & Anwar, S. M. An improved Bayesian modified-EWMA location chart and its applications in mechanical and sport 

industry. PLoS ONE 15(2), e0229422 (2020).
 18. Lin, C.-H., Lu, M.-C., Yang, S.-F. & Lee, M.-Y. A bayesian control chart for monitoring process variance. Appl. Sci. 11(6), 2729 

(2021).
 19. Noor-ul-Amin, M. & Noor, S. An adaptive EWMA control chart for monitoring the process mean in Bayesian theory under dif-

ferent loss functions. Qual. Reliabil. Eng. Int. 37(2), 804–819 (2021).
 20. Ahmadi Yazdi, A., Shafiee Kamalabad, M., Oberski, D. L. & Grzegorczyk, M. Bayesian multivariate control charts for multivariate 

profiles monitoring. Qual. Technol. Quant. Manag. 7, 1–36 (2023).
 21. Khan, I., Noor-ul-Amin, M., Khan, D. M., AlQahtani, S. A. & Sumelka, W. Adaptive EWMA control chart using Bayesian approach 

under ranked set sampling schemes with application to Hard Bake process. Sci. Rep. 13(1), 9463 (2023).
 22. Khan, I. et al. Hybrid EWMA control chart under bayesian approach using ranked set sampling schemes with applications to 

hard-bake process. Appl. Sci. 13(5), 2837 (2023).
 23. Gauss, C. Methods Moindres Carres Memoire sur la Combination des Observations. Vol. 1810. Translated by J. Bertrand (1955).

Figure 2.  Using LLF, Bayesian Max-EWMA CC for using Weibull process for jointly monitoring with � = 0.10.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3111  | https://doi.org/10.1038/s41598-024-52109-0

www.nature.com/scientificreports/

 24. Varian, H. R. A Bayesian approach to real estate assessment. In Studies in Bayesian Econometric and Statistics in Honor of Leonard 
J. Savage. 195–208 (1975).

 25. Faraz, A., Saniga, E. M. & Heuchenne, C. Shewhart control charts for monitoring reliability with Weibull lifetimes. Qual. Reliab. 
Eng. Int. 31(8), 1565–1574 (2015).

 26. Pascual, F. & Zhang, H. Monitoring the Weibull shape parameter by control charts for the sample range. Qual. Reliab. Eng Int. 
27(1), 15–25 (2011).

Acknowledgements
Researchers Supporting Project number (RSPD2024R1060), King Saud University, Riyadh, Saudi Arabia.

Author contributions
I.K. and M.N.A. bolstered the manuscript by conducting mathematical analyses and numerical simulations. J.I. 
and E.A.A.I. conceived the primary concept, analyzed the data, and aided in restructuring the manuscript. B.A. 
and Z.A. meticulously validated the findings, revised the manuscript, and secured funding. Furthermore, Z.A. 
and E.A.A.I. improved the manuscript’s language and conducted additional numerical simulations. The ultimate 
manuscript version, prepared for submission, reflects a consensus achieved by all authors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to B.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Memory type Max-EWMA control chart for the Weibull process under the Bayesian theory
	Bayesian approach
	Squared error loss function
	Linex loss function

	Proposed Bayesian Max-EWMA CC for joint monitoring of the Weibull distribution
	Results and discussion
	Main findings
	Real data application
	Conclusion
	References
	Acknowledgements


