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Multi‑objective exponential 
distribution optimizer 
(MOEDO): a novel math‑inspired 
multi‑objective algorithm for global 
optimization and real‑world 
engineering design problems
Kanak Kalita 1,2*, Janjhyam Venkata Naga Ramesh 3, Lenka Cepova 4, Sundaram B. Pandya 5, 
Pradeep Jangir 6 & Laith Abualigah 7,8,9,10,11,12,13

The exponential distribution optimizer (EDO) represents a heuristic approach, capitalizing on 
exponential distribution theory to identify global solutions for complex optimization challenges. This 
study extends the EDO’s applicability by introducing its multi‑objective version, the multi‑objective 
EDO (MOEDO), enhanced with elite non‑dominated sorting and crowding distance mechanisms. An 
information feedback mechanism (IFM) is integrated into MOEDO, aiming to balance exploration and 
exploitation, thus improving convergence and mitigating the stagnation in local optima, a notable 
limitation in traditional approaches. Our research demonstrates MOEDO’s superiority over renowned 
algorithms such as MOMPA, NSGA‑II, MOAOA, MOEA/D and MOGNDO. This is evident in 72.58% 
of test scenarios, utilizing performance metrics like GD, IGD, HV, SP, SD and RT across benchmark 
test collections (DTLZ, ZDT and various constraint problems) and five real‑world engineering design 
challenges. The Wilcoxon Rank Sum Test (WRST) further confirms MOEDO as a competitive multi‑
objective optimization algorithm, particularly in scenarios where existing methods struggle with 
balancing diversity and convergence efficiency. MOEDO’s robust performance, even in complex real‑
world applications, underscores its potential as an innovative solution in the optimization domain. The 
MOEDO source code is available at: https:// github. com/ kanak 02/ MOEDO.

Design considerations inherently involve optimization, necessitating the application of suitable optimization 
techniques and  algorithms1. Given the intricate nature of contemporary design tasks, conventional optimization 
strategies rooted in mathematical theories often fall short in delivering timely solutions. For instance, gradient-
based algorithms tackle optimization challenges by leveraging the gradient of the target  function2. Over the past 
several years, there has been a surge in interest to rectify the shortcomings of classical optimization algorithms 
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(OAs) and introduce more potent  OAs3. Thanks to technological progress, newer OAs that boast superior effi-
ciency, precision and speed in addressing diverse optimization tasks are gaining  traction4–6. Moreover, specific 
challenges like local optima and the irregularities and non-convexities of exploration domains have played a 
pivotal role in this evolution.

Such constraints on OAs have spurred scholars and industry experts to develop innovative metaheuristic algo-
rithms to navigate diverse optimization  hurdles7,8. Parallel to the growth of information technology, a plethora 
of optimization challenges have emerged across sectors like engineering, bioinformatics, operations research 
and  geophysics9,10. Numerous optimization issues are categorized as NP-hard, implying their solutions are not 
achievable within polynomial time unless NP is equivalent to P. As a result, exact mathematical methods are 
typically reserved for problems of a smaller scale.

Researchers have explored alternative strategies (approximation techniques) to identify feasible solutions 
within a reasonable timeframe rather than abandoning the effort. These techniques can be broadly categorized 
into heuristics and metaheuristics. The primary difference between the two is that heuristics are closely tied to 
the specific nature of a problem, making them effective for particular challenges but less so for others. In con-
trast, metaheuristics present a more universal algorithmic structure or a black-box optimization tool suitable 
for almost any optimization problem (OP). These advanced heuristics, designed to address a range of OPs, are 
termed metaheuristics (MHs). Numerous metaheuristic algorithms (MHAs) have been successfully employed in 
recent times to navigate complex  challenges11. A key benefit of these algorithms in addressing intricate optimiza-
tion tasks is their capability to identify commendable solutions, irrespective of the problem’s scale or  intricacy12. 
MH algorithms have been utilized across a spectrum of optimization challenges, encompassing both single and 
multi-objective, as well as continuous and discrete  scenarios13.

In the real world, problems often present multiple objectives, some of which might conflict with others. As 
a result, multi-objective optimization problems (MOPs) align more closely with these multifaceted challenges 
than single-objective optimization  does14. A common approach to solving MOPs is to treat each objective as 
an individual OP, addressing them one after the other based on their respective  significance15. Alternatively, 
individual solvers can exchange insights across successive iterations.

Techniques for multi-objective optimization can be divided into three primary  categories16,17: a priori, a 
posteriori and interactive approaches.

• A priori techniques: these strategies rely on preliminary knowledge about the problem and its objectives. They 
aim to pinpoint the Pareto optimal solutions even before the optimization process kicks off. A prevalent tactic 
in these techniques is transforming a MOP into a single-objective challenge at the outset. Notable examples of 
a priori techniques encompass weighting methods, goal-oriented programming and lexicographic  strategies18.

• A posteriori technique: these strategies draw from the results secured during the optimization phase. They 
strive to determine the Pareto optimal solutions post the completion of the optimization. Evolutionary algo-
rithms like genetic algorithms, particle swarm optimization and simulated annealing fall under this category, 
as do Multi-objective Genetic Algorithms such as NSGA-II, SPEA2, MOEA/D and NSGA-II19.

• Interactive techniques: these strategies necessitate human engagement throughout the optimization phase. 
They grant the decision-maker the ability to engage with the optimization process and offer insights on the 
outcomes produced by the  algorithm20. Examples of interactive techniques include interactive genetic algo-
rithms, interactive evolutionary tactics and interactive particle swarm optimization.

While a priori techniques are generally straightforward to deploy and can yield prompt results, they might 
miss out on capturing the genuine Pareto optimal solutions. On the other hand, a posteriori technique, though 
potentially offering more precise outcomes, can be intricate to implement and might be resource-intensive. 
Interactive techniques strike a balance, enabling the decision-maker to influence the outcomes, potentially 
enhancing solution quality. The techniques are illustrated in Fig. 1.

Multi-objective evolutionary algorithms (MOEAs) have gained popularity as effective a posteriori technique 
for addressing MOPs. Their strength lies in their ability to approximate the Pareto set (PS) and/or Pareto front (PF) 
within a single  execution21. A standard MOEA operates in two main stages for every generation. The first stage 
employs evolutionary mechanisms like crossover and mutation to generate new solutions in the decision realm. The 
second stage involves selecting superior solutions from both the newly created and pre-existing solutions for the 
subsequent  generation22. Depending on the selection methodologies employed, most contemporary MOEAs can 
be categorized into four types: domination-based, indicator-based, decomposition-based and hybrid  MOEAs23,24. 
To determine the quality of selection, many MOEAs assess the function values of all the freshly produced solutions. 
Consequently, these algorithms often necessitate numerous function evaluations to achieve  convergence25. Yet, the 
long-term outcomes of traditional optimization methods leave much to be  desired26. Issues such as the sensitivity 
to the problem’s initial estimation, reliance on the precision of the differential equation solver’s solution and the 
risk of becoming ensnared in local optima conventional optimization  techniques27. In addressing highly nonlinear 
challenges, there is a heightened risk of settling for a solution that is merely locally  optimal28.

Metaheuristics for MOPs, commonly referred to as MOEA, can be categorized based on their solution selec-
tion methodologies into four primary groups: dominance-based, decomposition-based, indicator-based and 
hybrid selection mechanisms.

1. Dominance-based MOEAs. These prioritize achieving optimal convergence by assigning fitness scores to 
individuals according to the Pareto-dominance principle. Additionally, a specific strategy is provided to 
maintain diversity. A widely recognized approach in this category ranks individuals through rapid non-
dominated sorting, emphasizing reduced time  complexity29–32. When multiple individuals possess the same 
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non-domination rank, density metrics ensure diversity, leading to a more uniform distribution of solutions. 
However, as the number of objectives increases, the proportion of non-dominated solutions grows expo-
nentially, making Pareto-dominated MOEAs less suitable for many-objective optimization. This can hinder 
the evolutionary process, diminishing selection pressure, diversity and convergence.

2. Decomposition-based MOEAs. These segment a MOP into multiple scalar optimization sub-tasks using a 
decomposition strategy. Solutions for each subtask are optimized by conducting evolutionary operations 
among its various neighboring sub-problems. The most frequently employed decomposition-based MOEA 
is MOEA/D, introduced by Zhang and  Li30. The MOEA/D structure can incorporate various traditional 
single-objective optimization and localized search  methods33–35.

3. Indicator-based MOEAs. These MOEAs utilize performance metrics related to solution quality as selec-
tion standards, guiding the search towards consistent enhancement of the overall population’s anticipated 
 attributes36,37. IBEA, a pioneering indicator-based MOEA, was developed by Zitzler and  Kunzl38. It employed 
a binary indicator to evaluate the comparative benefits of two approximation solution sets, aligning with the 
decision-maker’s preference. Given its compatibility with the Pareto principle, this indicator can be employed 
to determine fitness. This approach offers a foundational model for future indicator-based MOEAs. Some 
studies suggest that HV indicators might be a more computationally efficient alternative to other indicators 
while retaining similar theoretical properties.

4. Hybrid MOEAs. Addressing intricate MOPs often necessitates leveraging the strengths of multiple algo-
rithms, leading to the introduction of various hybrid MO  algorithms39–42. The primary considerations for 
hybrid algorithms revolve around the selection of algorithms to merge and the methodology for their inte-
gration. Contemporary research predominantly centers on amalgamating different strategies to generate 
offspring populations. However, there is a need for further exploration in other domains.

Other popular multi-objective (MO) Algorithms include MO ant lion optimizer (MOALO)43, MO equilib-
rium optimizer (MOEO)44, MO slime mould algorithm (MOSMA)45, MO arithmetic optimization algorithm 
(MOAOA)46, non-dominated sorting ions motion algorithm (NSIMO)47, MO marine predator algorithm 
(MOMPA)48, multi-objective multi-verse optimization (MOMVO)49, non-dominated sorting grey wolf optimizer 
(NS-GWO)50, MO gradient-based optimizer (MOGBO)51, MO plasma generation optimizer (MOPGO)52, non-
dominated sorting Harris hawks optimization (NSHHO)53, MO thermal exchange optimization (MOTEO)54, 
decomposition based multi-objective heat transfer search (MOHTS/D)55, Decomposition-Based Multi-Objective 
Symbiotic Organism Search (MOSOS/D)56, MOGNDO  Algorithm57, Non-dominated sorting moth flame opti-
mizer (NSMFO)58, Non-dominated sorting whale optimization algorithm (NSWOA)59, Non-Dominated Sorting 
Dragonfly Algorithm (NSDA)60, a reference vector based multiobjective evolutionary algorithm with Q-learning 
for operator  adaptation61, a many-objective evolutionary algorithm based on hybrid dynamic  decomposition62 
and use of two penalty values in multiobjective evolutionary algorithm based on  decomposition63.

Several algorithms have been crafted to adeptly navigate intricate OPs. One notable example is the expo-
nential distribution optimizer (EDO) algorithm introduced by Mohamed Abdel-Basset et al.64. This innovative 
algorithm has been applied across diverse sectors, from engineering challenges to manufacturing processes and 
scientific modeling. The foundational principle of the EDO algorithm draws integrates two approaches geared 
towards exploitation and exploration tactics. During the exploitation phase, the algorithm employs three core 

Figure 1.  Classification of multi-objective techniques.
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principles: the absence of memory property, a guiding solution and the exponential disparity observed among 
the exponential random variables to refine the existing solutions.

In recent times, the exponential distribution optimizer (EDO), a math inspired metaheuristic method rooted 
in the fractal theorem, was presented. Our research aims to introduce a novel multi-objective iteration of the EDO 
algorithm tailored for MOPs. The proposed version integrates the NDS, CD and IFM principle and a stochastic 
learning mechanism. To gauge the potency of this proposed method, we employ distinct benchmark test func-
tions:  ZDT65,  DTLZ66,  Constraint67,68 (CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering 
design Brushless DC wheel  motor69 (RWMOP1), Helical  spring68 (RWMOP2), Two-bar  truss68 (RWMOP3), 
Welded  beam70 (RWMOP4), Disk  brake71 (RWMOP5). The objective of this assessment is to compare the efficacy 
of our proposed method against MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO, using metrics like 
generational distance (GD)34, inverse generational distance (IGD)35,  hypervolume36,  Spacing37,  Spread36 and run 
time (RT). The approximations of the Pareto-front produced by our method are evaluated using these metrics.

The key contributions of this research are succinctly outlined as follows:

1. Introduction of the multi-objective exponential distribution optimizer (MOEDO) Algorithm, incorporating 
non-dominated sorting (NDS) and crowding distance (CD) principles.

2. Integration of the information feedback mechanism (IFM) to decompose multi-objective challenges into 
single-objective sub-tasks, enhancing the algorithm’s efficiency.

3. Utilization of the IFM approach to ensure a balanced dynamic between exploration and exploitation, foster-
ing improved convergence and the capability to bypass local minima.

4. Comprehensive evaluation of MOEDO’s performance against established multi-objective methods using 
benchmark datasets like ZDT, DTLZ, CONSTR and real-world engineering design problems.

5. Employment of metrics such as generational distance (GD), inverse generational distance (IGD), hypervol-
ume (HV), spacing, spread and run time (RT) to assess results, demonstrating the superior capabilities of 
our proposed technique in various test scenarios.

The structure of our comprehensive research is as follows: "Methodology" elaborates on the exponential 
distribution optimizer. "Results and discussion" provides an in-depth look at our proposed MOEDO method 
for multi-objective global optimization. "Conclusion" presents our experimental results.

Methodology
This section delves into the EDO  algorithm64 fundamental components. We will first discuss the inspiration 
behind EDO, followed by a detailed explanation of its initialization. We will also examine the explorative and 
exploitative features of EDO before discussing its mathematical structure.

Exponential distribution optimizer (EDO)
Exponential distribution model
The EDO approach takes its foundational principles from the theories of exponential distribution. This distri-
bution, which is continuous in nature, has been instrumental in explaining several occurrences in the natural 
world. For instance, the time span between the present moment and the occurrence of an earthquake can be 
represented using this distribution. Similarly, the time-based likelihood of a car reaching a toll station aligns 
with the exponential distribution. Exponential random variables have frequently been utilized to shed light 
on past events, particularly focusing on the duration leading up to a specific incident. Here, we delve into the 
mathematical construct of the exponential distribution and elucidate its unique attributes. Imagine having an 
exponential random variable, represented by x , associated with a parameter, � . This relationship can be expressed 
as x ∼ EXP(�) . The Probability Density Function (PDF) of this variable is indicative of the duration by:

As time is a continuous factor, it must always hold a non-negative value, i.e., (x ≥ 0) . Significantly, the � 
parameter, which is always positive, denotes the rate of occurrence in the exponential distribution. The expo-
nential distribution cumulative distribution function (CDF) can be derived through a specific formula:

A higher value of the rate of occurrence, � , indicates a reduced probability of the concerned random variable.
CDF function ascends, commencing from the foundational exponential rate and intensifying in proportion 

to the growth of the exponential random variable. For an exponentially distributed random variable, its mean 
(µ) and variance 

(

σ 2
)

 can be articulated using specific mathematical expressions:

These expressions reveal an inverse relationship between the � parameter and both the mean and variance. 
To put it succinctly, as � increases, both the mean and variance decline. Moreover, the standard deviation (σ ) 
mirrors the mean value and its derivation follows a particular computation

(1)f (x) =

{

�e−�x x ≥ 0
0, otherwise

(2)F(x) =

{

1− e−�x x ≥ 0
0, otherwise

(3)
µ = 1

�
,

σ 2 = 1
�2
.
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The memoryless nature of exponential distribution
One of the unique characteristics of certain statistical probability distributions is the ’memoryless’ attribute. 
This implies that the chance of a forthcoming event transpiring is independent of past events. In simpler terms, 
previous occurrences do not influence future probabilities. The exponential distribution, which is a continuous 
type, encapsulates this memoryless attribute, especially when gauging the timespan before an event occurrence. 
When a random variable, denoted by x , adheres to the exponential distribution with this memoryless feature, it 
means for any positive whole numbers s and t  belonging to the series {0, 1, 2, . . . ,∞} the following holds true:

Launching with the initial group
During the onset or the initiation stage, we cultivate a group termed ( Xwinners ), comprising N diversely valued, 
randomly formed solutions. To depict this search operation, we utilize an assortment of exponential distributions. 
Every potential solution is perceived as an embodiment of the exponential distribution. The respective positions 
of each solution are considered as exponential random variables conforming to this distribution. These are then 
structured as vectors, having a dimension d.

In this setup, Xwinners symbolizes the j element of the ith candidate within the exponential distribution vector. 
Following this, we can define the preliminary group, Xwinners.

To randomly generate each variable within the candidate exponential distribution in the solution space, we 
utilize a particular formula.

Here, lb and ub delineate the lower and upper limits of the given problem. The term ’rand’ signifies a randomly 
derived number within the span [0,1]. Upon concluding the initiation, we embark on the optimization phase. This 
leans on the exploratory and refinement skills of our proposed approach over iterative rounds. Subsequent sections 
will elucidate the two core techniques (exploration and refinement within EDO) for pinpointing the global pinnacle.

EDO exploitation strength
The exploitation component of EDO harnesses various facets of the exponential distribution model, including 
its memoryless trait, exponential rate, typical variance and average value. Additionally, a guiding solution steers 
the search towards the global peak. Initially in EDO, a set of random solutions is cultivated, mimicking an array 
of exponential distribution patterns. These solutions undergo evaluation via an objective function and are subse-
quently ranked in terms of performance. For maximization problems, they are ordered in descending efficiency, 
while for minimization challenges, they are arranged in ascending order. Areas surrounding a robust solution 
are fertile grounds for pinpointing the global apex. This is why several algorithms probe spaces around robust 
solutions, drawing weaker ones towards them. Therefore, the global apex quest focuses on the guiding solution. 
The guiding solution, labeled ( Xguidetime ), is derived from the mean of the top three solutions in a sorted group.

In this context, time replaces the term iteration, alluding to the period until the subsequent event in the expo-
nential distribution. The maximum number of iterations is symbolized by Max_time. This guiding solution offers 
invaluable insights about the global apex. Instead of exclusively leaning on the current best solution, the guiding one 
is prioritized. Though the leading solution has vital details about the global peak, an exclusive focus on it could lead 
to convergence around a local maximum. By introducing a current guiding solution, this challenge is mitigated. To 
emulate the memoryless characteristic of the exponential distribution, a matrix, termed memoryless, is formulated. 
This matrix houses the latest solutions, irrespective of their present efficiency scores. Initially, it mirrors the original 
population. Following this, solutions generated at the present time, regardless of their efficiency, are stored in the 
matrix, dismissing their past contributions. Operating in line with the memoryless property, if current solutions 
do not fare well against their counterparts in the original group, their success probabilities in subsequent iterations 
match those of the present. Therefore, past failures do not dictate future outcomes. Within the memoryless matrix, 

(4)σ =

√

1

�2
=

1

�
= µ

(5)P(x > s + t | x ≥ s) = P(x > t).

(6)Xwinnersi =
[

Xwinners i,1 ,Xwinnersi,2 , . . . ,X winnersi,d
]

(7)Xwinners si,j ∈ [lb, ub], i = 1, 2, . . . ,N ,j = 1, 2, . . . , d.

(8)Xwinners =











Xwinner1,1 Xwinner1,2 . . . Xwinners1,d
Xwinners2,1 Xwinners2,2 . . . Xwinners2,d

...
...

...
...

XwinnersN ,1 XwinnerN ,2 . . . XwinnersN ,d











(9)X winnersi,j = Ib+ rand(ub− lb).

(10)Xguidetime =
Xwinners time

best 1 + Xwinners time
best 2 + Xwinners time

best 3

3
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there are two categories of solutions: winners and losers. While losers can still contribute to the optimization process 
alongside winners, a solution is deemed victorious if its efficiency surpasses that of its counterpart in the Xwinners 
group. If a solution is updated in both the Xwinners and memoryless matrices, it a winner, otherwise, it a loser.

Our designed exploitation model, focused on updating solutions adhering to the exponential distribution, 
relies on both winning and losing solutions. The updated solution, 

(

Vtimx+1
i

)

 is modelled around a specific 
involving random and adaptive parameters. This strives to locate the global peak near an efficient solution, creat-
ing a new solution for future populations. The delves deep, examining how winners and losers navigate within 
the search space, leveraging valuable data from winners:

Additionally, the exponential rate, in relation to the mean, can be deduced:

The exponential mean arises from averaging the guiding solution and the associated memoryless vector, 
which can be either a winner or loser.

EDO exploration potential
This section delves into the exploration aspect of the introduced algorithm. The exploration segment pinpoints 
potential areas within the search domain that likely house the ideal, global solution. The EDO exploratory 
blueprint derives from two prominent solutions, or winners, from the primary population, which adhere to the 
exponential distribution pattern:

Updating the new solution involves with Mtime representing the average of all solutions sourced from the 
primary group. This average is computed by adding all exponential random variables from the same dimension 
and then dividing by the total population, denoted as N  . The term c signifies a refined parameter, indicating 
the proportion of information drawn from the Z1 and Z2 vectors towards the contemporary solution and is 
formulated as:

Here, d stands as a flexible parameter. Initially set to zero, it undergoes gradual decrement as time progresses. 
Here, ’time’ alludes to the present moment, while ’Max_time’ signifies the comprehensive duration or iterations. 
Both Z1 and Z2 are viewed as potential vectors, formed by:

Furthermore, D1 and D2 delineate the distance between the average solution and the ’winners’ randomly 
picked from the initial population. At the inception of the optimization journey, a notable disparity exists between 
the average solution and the standout performers. Yet, as the process nears its end, this gap between the promi-
nent solutions and their corresponding variances narrows. To establish the Z1 and Z2 vectors, exploration is 
conducted around the average solution, aided by a pair of randomly chosen outstanding solutions.

Optimizing with exponential distribution optimizer (EDO)
The EDO method we are introducing follows a series of steps to thoroughly navigate the search space, aiming for 
the global optimum. Initially, we create a collection of solutions, randomly generated and marked by a wide range 
of values. The search process is depicted using various exponential distributions and as such, the location of each 
solution can be seen as random variables adhering to this distribution. We design a matrix without memory to 
mimic the absence of memory and initially, it mirrors the original group of solutions. Leveraging the exploratory 
and refining stages of our method, every solution starts moving closer to the global optimum over time. During 
the refining stage, the matrix without memory is used to store the outcomes from the prior step, irrespective of 
their past, allowing them to play a pivotal role in shaping the new solutions. This leads to the categorization of 
solutions into two groups: the successful ones and the unsuccessful ones. Additionally, we incorporate various 
properties of the exponential distribution, like its mean, rate and variance. The successful solution is guided by 
a leading solution, while the unsuccessful one follows the successful one, aiming to discover the global optimum 

(11)Vtime+1
i =

{

a.
(

memorylesstime
i − σ 2

)

+ b.Xguidetime if Xwinnerstime
i =memorylesstime

i

b.
(

memorylesstime
i − σ 2

)

+ log(φ).Xwinnerstime
i ,Otherwise

(12)a = (f )10, b = (f )5, f = 2× rand − 1

(13)� =
1

µ
,

(14)µ = (memorylesstime
i + Xguidetime)/2

(15)Vtime+1
i = Xwinnerstime

i −Mtime + (cZ1 + (1− c)Z2)

(16)Mtime =
1

N
·

N
∑

j=1

Xwinnerstime
j,i , j = 1, 2, . . . .., d

(17)c = d × f , d =
1− time

Max_time

(18)Z1 = M − D1 + D2,Z2 = M − D2 + D1,D1 = M − Xwinnersrand1,D2 = M − Xwinnersrand2



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1816  | https://doi.org/10.1038/s41598-024-52083-7

www.nature.com/scientificreports/

nearby. In the exploration stage, the fresh solution is influenced by two randomly chosen successful solutions 
from the initial group and the average solution. At the start, both the average solution and its variance are distant 
from the global optimum. However, the gap between the average solution and the global optimum narrows down 
until it reaches its lowest point during the optimization. A toggle parameter determines whether to embark on 
the exploration or refining stage, based on a probability where (a < 0.5).

After crafting the new solutions, each solution boundaries are verified and then they are stored in the matrix 
without memory. A selection strategy is employed to incorporate the new solutions from both stages into the 
initial group. If a new solution proves beneficial, it integrated into the primary group. By the optimization con-
clusion, all solutions cluster around the global optimum. In the best solution, both the mean and variance are 
anticipated to be minimal, while the scale parameter λ is expected to be significant. The pseudo code of single 
objective EDO shown in Algorithm 1.

Algorithm 1.  The propsed EDO.

(19)Vtime+1
i =







a.
�

memoryless time
i − σ 2

�

+ b.Xguide time if Xwinners time
i =memoryless time

i

b.
�

memoryless time
i − σ 2

�

+ log(φ).Xwinners time
i ,Otherwiseif (a < 0.5)

Xwinners time
i −Mtime + (cZ1 + (1− c)Z2),Otherwise
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Proposed multi‑objective exponential distribution optimizer (MOEDO)
Preliminaries of multi‑objective optimization
In multi-objective optimization tasks (MOPs), there is a simultaneous effort to minimize or maximize at least 
two clashing objective functions. While a single-objective optimization effort zeroes in on one optimal solution 
with the prime objective function value, MOO presents a spectrum of optimal outcomes known as Pareto opti-
mal solutions. An elaboration on the idea of domination and associated terminologies are illustrated in Fig. 2.

Multi‑objective exponential distribution optimizer (MOEDO)
MOEDO algorithm starts with a random population of size N . the current generation is t, xti  and xt+1

i  the i th 
individual at t  and (t + 1) generation. ut+1

i  the i th individual at the (t + 1) generation generated through the 
EDO algorithm and parent population Pt . the fitness value of ut+1

i  is f t+1
i  and Ut+1 is the set of ut+1

i  . Then, we can 
calculate xt+1

i  according to ut+1
i  generated through the EDO algorithm and Information Feedback Mechanism 

(IFM)72 Eq. (20).

where xtk is the k th individual we chose from the t  th generation, the fitness value of xtk is f tk , ∂1 and ∂2 are weight 
coefficients. Generate offspring population Qt . Qt is the set of xt+1

i . The combined population Rt = Pt ∪ Qt is 
sorted into different w-non-dominant levels (F1, F2, . . . , Fl . . . , Fw) . Begin from F1 , all individuals in level 1 to l are 
added to St =

⋃l
i=1Fi and remaining members of Rt are rejected illustrated in Fig. 3. If |St | = N no other actions 

are required and the next generation is begun with Pt+1 = St directly. Otherwise, solutions in St/Fl are included 
in Pt+1 and the remaining solutions N −

∑l−1
i=0|Fi| are selected from Fl according to the crowding distance (CD) 

mechanism, the way to select solutions is according to the CD of solutions in Fl . The larger the crowding distance, 
the higher the probability of selection and check termination condition is met. If the termination condition is not 
satisfied, t = t + 1 than repeat and if it is satisfied, Pt+1 is generated represent in Algorithm 2, it is then applied to 
generate a new population Qt+1 by EDO algorithm. Such a careful selection strategy is found to computational 
complexity of M-Objectives O

(

N2M
)

 . MOEDO that incorporates proposed information feedback mechanism 
to effectively guide the search process, ensuring a balance between exploration and exploitation. This leads to 
improved convergence, coverage and diversity preservation, which are crucial aspects of multi-objective opti-
mization. MOEDO algorithm does not require to set any new parameter other than the usual EDO parameters 
such as the population size, termination parameter and their associated parameters. The flow chart of MOEDO 
algorithm can be shown in Fig. 4.

Algorithm 2.  Generation of t of MOEDO Algorithm with IFM procedure

(20)xt+1
i = ∂1u

t+1
i + ∂2x

t
k; ∂1 =

f tk
f t+1
i + f tk

, ∂2 =
f t+1
i

f t+1
i + f tk

∂1 + ∂2 = 1



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1816  | https://doi.org/10.1038/s41598-024-52083-7

www.nature.com/scientificreports/

Results and discussion
In this section, we present the results derived from our research and experiments, which were conducted to 
evaluate the efficacy of the proposed method and showcase its capabilities. To ensure robust and statistically sig-
nificant results, each experiment was replicated 30 times independently with population size = 40 and maximum 
number of iterations = 500. All techniques were executed using MATLAB R2020a on an Intel Core i7 computer 
equipped with a 1.80 GHz processor and 8 GB RAM.

Description of benchmark test functions
Our experimental evaluation of the MOEDO algorithm’s performance utilized three separate benchmark test 
set functions:

• Zitzler–Deb–Thiele (ZDT) test suite: from this benchmark  collection31, we selected ZDT1, ZDT2, ZDT3, 
ZDT4, ZDT 5 and ZDT6 (Appendix A). A brief overview of these problems is as follows: ZDT1 presents a 

Figure 2.  Multi-objective all definitions in search space of MO-problem.

Figure 3.  The procedure of the NDS approach based on MOEDO algorithm.
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continuous and uniformly distributed convex Pareto front. ZDT2 showcases a concave Pareto front. ZDT3 
displays five non-convex discontinuous fronts. ZDT4 has multiple local Pareto Fronts and ZDT6 features a 
disjointed Pareto front with an irregular mapping between the objective function space and decision vari-
able space. Each ZDT function typically encompasses two objective functions, a common feature in Pareto 
optimization, especially in engineering contexts.

Figure 4.  Flowchart of MOEDO algorithm.
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• Deb–Thiele–Laumanns–Zitzler (DTLZ) test suite: the DTLZ (Appendix B and Appendix C) suite, crafted 
by Deb et al.32, stands out from other multi-objective test challenges due to its adaptability to any objective 
count. This unique feature has facilitated numerous recent studies into what are commonly termed as many 
objective challenges. The DTLZ suite encompasses nine test functions, but only DTLZ8 and DTLZ9 have 
side constraints.

• Constraint67,68 CONSTR, TNK, SRN, BNH, OSY and KITA (Appendix D) and real-world engineering design 
(Appendix E) Brushless DC wheel  motor69 (RWMOP1), Helical  spring68 (RWMOP2), Two-bar  truss68 
(RWMOP3), Welded  beam70 (RWMOP4), Disk  brake71 (RWMOP5).

Figure 5.  Mathematical and schematic view of the GD, IGD, SP, SD and HV metrics.
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Performance metrics for evaluation
For this research, we employed six performance metrics: hypervolume (HV), generational distance (GD), 
inverted generational distance (IGD), spread (SD), spacing (SP) and run time (RT). Subsequently, we provide a 
concise explanation of each metric to enhance comprehension shown in Fig. 5. a statistical evaluation. “+/−/~” 
Wilcoxon signed-rank test (WSRT) was conducted at a significance level of 0.05 between the total amount of test 
problems on which the corresponding optimizers has a better performance, a worse performance and an equal 
performance for solving MO problems.

Performance analysis on benchmark test functions
Analysis using the GD metric
Table 1 showcases the final solution distributions when juxtaposing our MOEDO algorithm against MOMPA, 
NSGA-II, MOAOA, MOEA/D and MOGNDO using the GD metric. Within the ZDT benchmark, our algorithm 
emerged as the top performer, particularly excelling in ZDT1, ZDT2, ZDT3 and ZDT6 in terms of mean and 
standard deviation. In the DTLZ benchmark, MOEDO was showed commendable performance in 9/14 problems. 
For the constraint test suite, the third benchmark, MOEDO outshined in both the best and average metrics, 
especially in SRN, OSY and KITA. A WRST test was conducted to determine the overall standing of each multi-
objective method concerning the GD metric across all benchmarks. The results, presented in Table 1’s, place 
MOEDO at the top and MOMPA bottom behind other algorithms across all benchmarks.

Analysis using the IGD metric
Table 2 presents the final solution distributions when comparing MOEDO algorithm against MOMPA, NSGA-II, 
MOAOA, MOEA/D and MOGNDO using the IGD metric. For the ZDT3 and ZDT 6 test function, our algorithm 
surpassed its counterparts. In the DTLZ benchmark, MOEDO was notably superior in 8/14 metrics. Further-
more, in the third benchmark, MOEDO exhibited superior performance, especially in TNK, OSY and KITA 
both in the best and average metrics. MOMPA and MOEA/D consistently underperformed in all benchmarks. 
The WRST test’s results, displayed in Table 2’s final row, highlight MOEDO’s dominance, securing the top rank 
among the evaluated multi-objective variants.

Table 1.  Results of GD metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 3.5899e−5 (1.66e−5) + 9.6778e−3 (2.99e−3) − 8.2443e−4 (3.28e−4) − 2.9289e−4 (7.01e−5) = 1.0291e−3 (3.16e−4) − 3.1913e−4 (1.39e−4)

ZDT2 2 5.5879e−5 (1.90e−5) + 6.8841e−3 (3.43e−3) − 5.5661e−4 (2.37e−4) − 1.7784e−4 (4.77e−5) = 9.6730e−4 (7.50e−4) = 2.4053e−4 (1.12e−4)

ZDT3 2 3.1051e−5 (8.12e−6) + 1.7320e−2 (9.64e−3) − 4.1266e−4 (1.23e−4) − 1.2555e−4 (4.22e−5) + 4.3901e−3 (3.51e−3) − 2.0301e−4 (6.96e−5)

ZDT4 2 4.9930e−4 (2.42e−4) = 1.3619e−2 (1.86e−2) − 1.0777e−3 (7.58e−4) = 4.4432e−4 (1.99e−4) = 8.4438e−3 (7.41e−3) − 6.3176e−4 (2.81e−4)

ZDT5 2 1.7608e−1 (6.11e−2) − 3.8417e−1 (8.95e−2) − 1.0727e−1 (4.11e−2) = 8.5044e−2 (3.68e−2) = 1.8600e−1 (1.08e−2) − 9.5113e−2 (2.25e−2)

ZDT6 2 4.3546e−5 (2.85e−5) + 1.3273e−2 (4.57e−3) − 7.6474e−4 (4.63e−4) − 2.6681e−4 (1.67e−4) = 1.5860e−3 (5.35e−4) − 3.3853e−4 (2.43e−4)

DTLZ1
2 6.0144e−4 (8.85e−4) + 1.6082e−3 (9.63e−4) + 1.8068e−4 (1.32e−4) + 2.1494e−4 (1.91e−4) + 2.9252e−4 (1.65e−4) + 1.0717e + 1 (1.13e + 0)

3 5.1596e−4 (2.15e−4) + 2.0353e−3 (1.89e−3) + 1.6209e−3 (2.44e−3) + 7.6726e−4 (3.35e−4) + 4.0226e−4 (1.71e−4) + 7.1523e + 0 (1.34e + 0)

DTLZ2
2 6.5895e−6 (6.96e−7) + 2.9149e−4 (1.13e−4) + 8.2707e−6 (2.05e−6) + 6.8522e−5 (2.62e−5) + 1.1447e−4 (2.90e−5) + 1.1704e−1 (1.32e−2)

3 5.9406e−4 (2.19e−5) + 5.4216e−4 (3.69e−5) + 5.1050e−4 (4.98e−6) + 9.7976e−4 (1.18e−4) + 1.1220e−3 (7.88e−5) + 7.8219e−2 (5.65e−3)

DTLZ3
2 3.7702e−1 (5.19e−1) + 1.4681e + 0 (9.55e−1) + 4.2170e−1 (2.97e−1) + 1.0600e−1 (1.44e−1) + 8.5279e−2 (9.96e−2) + 7.4791e + 1 (9.01e + 0)

3 2.4250e−1 (2.75e−1) + 9.0255e−1 (4.03e−1) + 3.6571e−1 (1.80e−1) + 4.2306e−1 (4.40e−1) + 2.5751e−1 (4.41e−1) + 4.1806e + 1 (4.97e + 0)

DTLZ4
2 5.5527e−6 (2.97e−6) + 1.8542e−4 (4.80e−5) + 8.5496e−6 (1.56e−6) + 4.3208e−5 (3.94e−5) + 1.1022e−4 (2.54e−5) + 1.6174e−1 (1.32e−2)

3 5.7792e−4 (1.68e−5) + 5.2973e−4 (1.91e−5) + 5.1197e−4 (9.47e−6) + 9.7575e−4 (4.24e−4) + 1.2343e−3 (1.29e−4) + 1.4498e−1 (3.38e−2)

DTLZ5
2 7.4741e−6 (3.05e−6) + 1.7263e−4 (7.41e−5) + 8.1144e−6 (1.22e−6) + 6.4584e−5 (2.59e−5) + 1.0878e−4 (5.69e−5) + 1.2087e−1 (6.70e−3)

3 9.3663e−6 (8.02e−6) + 4.2770e−2 (1.85e−2) + 2.2465e−4 (6.12e−5) + 2.6687e−4 (7.29e−5) + 2.9505e−4 (1.45e−4) + 1.0173e−1 (4.82e−3)

DTLZ6
2 4.3256e−6 (2.40e−7) + 4.6240e−6 (4.15e−7) + 4.4398e−6 (2.44e−7) + 4.9037e−6 (2.61e−7) + 4.8632e−6 (1.36e−7) + 5.6426e−6 (4.68e−7)

3 4.4876e−6 (2.71e−7) + 8.9144e−2 (4.85e−2) − 4.6638e−6 (3.65e−7) + 4.6423e−6 (1.39e−7) + 4.8205e−6 (2.03e−7) + 9.1963e−6 (1.56e−6)

DTLZ7
2 8.6023e−6 (4.18e−7) + 5.2207e−3 (1.65e−3) − 6.0504e−5 (1.49e−5) = 4.5904e−5 (1.77e−5) = 9.6324e−5 (3.61e−5) = 6.6069e−5 (4.57e−5)

3 8.7151e−4 (6.20e−5) + 8.7116e−3 (5.66e−4) + 2.5299e−3 (3.50e−4) + 2.4906e−3 (3.02e−4) + 2.8349e−3 (3.25e−4) + 5.2801e−2 (4.03e−2)

CONSTR 2 3.3253e−4 (1.51e−5) − 5.0625e−3 (7.73e−4) − 3.5477e−4 (2.75e−5) − 7.0308e−4 (1.08e−3) − 1.6442e−4 (3.92e−5) = 1.2320e−4 (1.08e−5)

TNK 2 1.6889e−4 (4.67e−5) 4.8323e−3 (9.57e−4) 1.3526e−4 (1.44e−5) 1.1308e−2 (2.66e−3) = 2.4982e−2 (4.13e−3) = 1.1896e−2 (1.37e−3)

SRN 2 2.5602e−2 (1.46e−2) 1.9313e + 0 (3.27e−1) 4.9892e−2 (4.19e−3) 7.1254e−3 (4.86e−3) = 1.3429e + 0 (5.35e−1) 2.4982e−2 (4.13e−3) = 

OSY 2 7.6376e−1 (7.21e−2) 7.4381e + 0 (7.75e + 0) 8.2825e−1 (1.66e−1) 4.5599e−3 (8.54e−4) 3.4905e + 0 (2.88e + 0) 6.0564e−3 (1.06e−3) = 

BNH 2 4.9634e−3 (3.25e−4) + 2.3654e−2 (3.55e−3) − 1.1613e−2 (2.15e−3) = 9.1847e−3 (1.38e−3) + 4.8497e−3 (4.19e−4) + 1.1839e−2 (1.26e−3)

KITA 2 1.1858e−3 (1.06e−5) + 5.7029e−3 (1.52e−3) − 1.2696e−3 (4.80e−5) = 1.4396e−3 (6.63e−5) − 1.4160e−3 (6.89e−5) − 1.2490e−3 (3.76e−5)



13

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1816  | https://doi.org/10.1038/s41598-024-52083-7

www.nature.com/scientificreports/

Analysis using the spacing (SP) metric
Table 3 displays the final solution distributions when comparing MOEDO algorithm against MOMPA, NSGA-II, 
MOAOA, MOEA/D and MOGNDO using the spacing metric. MOEDO showcased commendable performance 
in ZDT1 for average metrics, while in ZDT4, it excelled in the average metric. For DTLZ 9/14, our method stood 
out in the standard metric. In the constraint benchmark, encompassing TNK, OSY, BNH and KITA, MOEDO 
consistently scored higher across all metrics. MOEA/D lagged behind in all benchmarks. The WRST test for the 
Spacing metric positioned MOEDO as the top performer, followed by MOGNDO and NSGA-II.

Analysis using the spread (SD) metric
Table 4 presents the final solution distributions of MOEDO algorithm against MOMPA, NSGA-II, MOAOA, 
MOEA/D and MOGNDO using the Spread metric. MOEDO was dominant in ZDT2 across all metrics and in 
ZDT2, ZDT3, ZDT4 and ZDT5 for both the std and average metrics. In the DTLZ benchmark, our method was 
superior in 10/14 for both std and average metrics. For the constraint benchmark, MOEDO outshined in TNK 
and OSY for the standard metric. MOEA/D consistently underperformed. The WRST test, based on the results 
from Table 4, highlighted MOEDO as the leading method among the evaluated algorithms.

Table 2.  Results of IGD metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 5.7530e−3 (2.65e−3) + 1.5182e−1 (8.75e−2) − 4.1114e−2 (4.50e−2) = 7.5748e−3 (3.25e−3) + 3.2328e−2 (2.39e−2) = 3.1042e−2 (3.23e−2)

ZDT2 2 2.9093e−2 (4.63e−2) + 1.9531e−1 (9.54e−2) = 1.9194e−1 (6.85e−2) − 4.1784e−2 (2.97e−2) = 1.6212e−1 (1.77e−1) = 1.1055e−1 (8.26e−2)

ZDT3 2 8.3171e−2 (1.01e−1) = 1.4706e−1 (6.10e−2) = 3.1223e−2 (3.25e−2) = 1.4433e−1 (5.96e−2) − 4.9961e−2 (3.27e−2) = 8.3405e−2 (7.58e−2)

ZDT4 2 6.8189e−3 (1.51e−3) + 1.8163e−1 (1.27e−1) − 5.0940e−2 (5.00e−2) = 2.0976e−1 (1.39e−1) − 7.8724e−2 (5.36e−2) − 3.2366e−2 (3.31e−2)

ZDT5 2 5.3770e−1 (1.36e−1) = 2.6373e + 0 (7.14e−1) − 5.9685e−1 (1.53e−1) = 1.7015e + 0 (4.09e−1) − 7.9240e + 0 (2.90e−1) − 5.8823e−1 (1.02e−1)

ZDT6 2 4.7754e−3 (1.11e−3) = 7.2220e−2 (2.16e−2) − 8.4752e−3 (3.96e−3) − 5.1878e−3 (9.39e−5) = 1.2589e−2 (3.87e−3) − 4.5874e−3 (1.22e−3)

DTLZ1
2 2.7364e−3 (1.00e−3) + 1.5813e−2 (1.12e−2) + 3.8205e−3 (1.18e−3) + 3.0759e−3 (1.49e−3) + 7.3334e−2 (9.73e−3) + 2.2978e + 1 (3.67e + 0)

3 2.4037e−2 (5.07e−3) + 6.8935e−2 (5.51e−2) + 2.7682e−2 (8.31e−4) + 2.2190e−2 (1.53e−3) + 1.9307e−1 (3.21e−2) + 2.4965e + 1 (3.82e + 0)

DTLZ2
2 3.9800e−3 (1.76e−5) + 5.4992e−3 (1.13e−3) + 5.0270e−3 (2.60e−4) + 4.1957e−3 (7.05e−5) + 1.5957e−2 (1.41e−3) + 3.2774e−1 (1.51e−2)

3 5.4550e−2 (7.96e−5) + 5.4534e−2 (6.27e−5) + 7.0869e−2 (6.84e−4) + 5.4527e−2 (4.82e−4) + 8.1252e−2 (1.12e−3) + 4.2993e−1 (3.32e−2)

DTLZ3
2 1.4814e + 0 (1.10e + 0) + 4.7188e + 0 (3.20e + 0) + 6.4932e−1 (8.40e−1) + 6.7843e−1 (8.81e−1) + 7.7134e−1 (5.98e−1) + 1.8142e + 2 (2.43e + 0)

3 2.3425e + 0 (1.07e + 0) + 3.8616e + 0 (1.55e + 0) + 7.1857e−1 (5.58e−1) + 9.5987e−1 (5.90e−1) + 9.9734e−1 (7.84e−1) + 1.9941e + 2 (9.18e + 0)

DTLZ4
2 3.9734e−3 (2.49e−6) + 4.9135e−3 (3.60e−4) + 5.0529e−3 (1.11e−4) + 2.9934e−1 (4.04e−1) = 1.6155e−1 (3.25e−1) = 4.2833e−1 (1.16e−2)

3 5.4529e−2 (1.59e−5) + 5.4578e−2 (1.45e−4) + 6.7868e−2 (3.07e−3) + 1.5184e−1 (2.17e−1) + 8.0769e−2 (4.18e−3) + 6.2438e−1 (2.17e−2)

DTLZ5
2 3.9725e−3 (2.08e−6) + 4.9054e−3 (7.08e−4) + 5.2364e−3 (3.42e−4) + 4.1861e−3 (3.20e−5) + 1.6419e−2 (2.30e−3) + 3.3372e−1 (3.35e−2)

3 1.3187e−2 (7.86e−4) + 8.9849e−2 (2.91e−2) + 5.8433e−3 (3.67e−4) + 4.5769e−3 (1.52e−4) + 1.5419e−2 (1.63e−3) + 3.2330e−1 (3.22e−2)

DTLZ6
2 3.9671e−3 (3.66e−7) + 3.9695e−3 (2.31e−6) + 5.6765e−3 (2.94e−4) + 4.0804e−3 (1.95e−5) + 3.0707e−2 (1.72e−3) − 6.7043e−3 (4.10e−4)

3 1.9953e−2 (1.48e−3) = 8.0223e−2 (1.36e−2) − 5.6950e−3 (2.18e−4) + 4.0860e−3 (2.48e−5) + 2.8297e−2 (3.20e−3) = 2.3471e−2 (8.33e−3)

DTLZ7
2 4.7668e−3 (9.20e−5) + 3.8324e−2 (1.08e−2) − 5.3869e−3 (1.81e−4) + 5.1999e−3 (1.11e−4) + 5.9739e−3 (1.29e−4) = 6.0539e−3 (3.22e−4)

3 6.1886e−2 (1.22e−3) + 1.1173e−1 (3.72e−3) = 7.9862e−2 (3.67e−3) + 7.7680e−2 (2.16e−3) + 7.6276e−2 (3.03e−3) + 1.0524e−1 (8.02e−3)

CONSTR 2 2.7365e−2 (1.01e−3) + 1.4755e−1 (1.21e−2) + 3.6649e−2 (1.10e−2) + 2.4496e + 0 (2.53e−2) = 2.4406e + 0 (1.16e−2) = 2.4375e + 0 (1.90e−2)

TNK 2 4.5601e−3 (1.23e−4) 3.4399e−2 (3.12e−3) 5.7426e−3 (1.86e−4) 2.4346e + 0 (9.98e−3) 1.8222e−1 (4.93e−2) = 8.0958e + 1 (2.60e + 1)

SRN 2 1.1036e + 0 (3.20e−2) 8.6933e + 0 (1.02e + 0) 8.3189e−1 (2.74e−2) 1.0593e + 0 (1.13e−2) 3.1281e−2 (3.26e−3) 1.1286e + 0 (4.96e−2) = 

OSY 2 7.4011e + 1 (4.09e + 1) 7.9798e + 1 (2.26e + 1) 8.8880e + 1 (3.25e + 1) 5.4045e−1 (9.42e−3) = 8.3425e + 0 (2.32e + 0) 2.7932e−1 (2.56e−2) = 

BNH 2 5.0551e−1 (1.39e−2) = 1.0828e + 0 (2.61e−2) − 1.0555e + 0 (8.22e−3) − 4.1436e−1 (1.04e−2) + 9.7701e−1 (8.68e−2) − 5.1216e−1 (2.14e−2)

KITA 2 9.6365e−2 (9.04e−5) + 2.7341e−1 (4.95e−2) − 1.2728e−1 (6.18e−3) + 1.2914e−1 (1.24e−3) + 1.4123e−1 (3.15e−3) + 1.4993e−1 (5.05e−3)
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Analysis using the HV metric
Table 5 delineates the final solution distributions when contrasting MOEDO algorithm against MOMPA, NSGA-
II, MOAOA, MOEA/D and MOGNDO using the HV metric. Our method outshone in 15 out of the 26 prob-
lems. It was particularly dominant in ZDT3 and ZDT5 across metrics. In the DTLZ benchmark, MOEDO was 
unparalleled, especially in DTLZ4. Lastly, in the constraint test suites, MOEDO excelled in TNK, OSY and KITA 
across all metrics. In the ZDT benchmarks, MOAOA consistently underperformed. The WRST test outcomes 
for the HV metric positioned MOEDO in the second spot among the five evaluated multi-objective methods.

Analysis using the RT metric
Table 6 illustrates the final solution distributions of MOEDO algorithm against MOMPA, NSGA-II, MOAOA, 
MOEA/D and MOGNDO using the initial gap metric. MOEDO surpassed its counterparts in DTLZ3 and DTLZ5 
across all metrics, namely Best, Avg and Std. In the constraint functions, our method was superior in CONSTR, 
TNK, SRN and KITA for the RT metric. MOEA/D consistently trailed its peers. The WRST test, based on the 
results from Table 6, positioned MOEDO at the best among the tested methods.

The visual representation of the final solutions from our proposed MOEDO method. Figures 6, 7, 8 and 9 
reveals MOEDO superior PF. This section provides a thorough assessment of MOEDO performance against 

Table 3.  Results of SP metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 7.1214e−3 (5.31e−4) + 1.6913e−2 (5.91e−3) − 1.0887e−2 (2.02e−3) = 7.6263e−3 (9.87e−4) + 7.5682e−3 (1.47e−3) + 1.0630e−2 (1.06e−3)

ZDT2 2 8.1044e−3 (5.95e−3) = 1.7679e−2 (9.02e−3) − 6.2838e−3 (4.02e−3) = 1.3871e−2 (4.17e−3) − 9.3412e−3 (5.31e−3) = 6.9593e−3 (3.58e−3)

ZDT3 2 6.3668e−3 (2.00e−3) + 3.5000e−2 (1.43e−2) − 1.1677e−2 (3.78e−3) = 5.1791e−3 (1.07e−3) + 2.9112e−2 (1.00e−2) − 1.0642e−2 (2.59e−3)

ZDT4 2 7.6587e−3 (5.43e−4) + 3.2109e−2 (2.55e−2) − 1.2094e−2 (3.15e−3) = 2.4643e−2 (7.84e−3) − 1.5679e−2 (1.05e−2) = 1.1124e−2 (1.21e−3)

ZDT5 2 1.0161e−2 (3.21e−2) + 1.8617e + 0 (3.36e−1) − 2.0357e−1 (3.62e−2) + 3.4202e−1 (7.62e−2) + 3.3569e−2 (7.08e−2) + 5.8873e−1 (2.67e−1)

ZDT6 2 5.5247e−3 (5.15e−4) − 1.9622e−2 (5.50e−3) − 4.9764e−3 (1.31e−3) − 8.9430e−3 (7.09e−4) − 6.4824e−3 (1.36e−3) − 3.7357e−3 (1.58e−3)

DTLZ1
2 1.5596e−3 (2.72e−4) + 2.4113e−2 (2.70e−2) + 7.2210e−4 (2.06e−4) + 3.3884e−3 (1.37e−4) + 1.5455e−1 (8.18e−2) + 5.5336e + 0 (2.68e + 0)

3 8.5216e−3 (1.38e−3) + 4.9424e−2 (3.69e−2) + 1.3803e−2 (1.79e−2) + 1.9562e−2 (1.26e−3) + 9.3928e−2 (1.19e−1) + 4.6740e + 0 (1.45e + 0)

DTLZ2
2 3.4446e−3 (4.74e−4) + 6.4510e−3 (1.44e−3) + 6.2005e−3 (3.94e−5) + 6.7530e−3 (2.92e−4) + 2.6631e−2 (1.58e−3) + 1.7875e−1 (6.89e−2)

3 2.3090e−2 (2.46e−3) + 5.6804e−2 (5.46e−4) + 5.7267e−2 (4.02e−4) + 5.5118e−2 (5.25e−3) + 6.6165e−2 (3.56e−3) + 1.6504e−1 (3.06e−2)

DTLZ3
2 7.0258e−2 (6.23e−2) + 5.5228e−1 (2.94e−1) + 2.6104e−1 (1.05e−1) + 6.7597e−2 (9.82e−2) + 8.9801e−1 (9.88e−1) + 3.7166e + 1 (1.69e + 1)

3 2.6771e + 0 (5.21e + 0) + 6.2909e−1 (3.01e−1) + 3.4681e−1 (1.54e−1) + 9.4149e−2 (3.71e−2) + 7.0548e−1 (4.69e−1) + 3.5037e + 1 (8.89e + 0)

DTLZ4
2 1.6482e−2 (9.37e−3) + 5.7672e−3 (1.35e−4) + 6.1890e−3 (4.53e−5) + 7.1392e−3 (4.43e−4) + NaN (NaN) 6.1747e−1 (1.42e−1)

3 6.5210e−2 (5.36e−3) + 5.6773e−2 (1.67e−4) + 5.6725e−2 (3.09e−4) + 5.9118e−2 (2.52e−3) + 2.1135e−2 (1.02e−2) + 4.3779e−1 (2.08e−1)

DTLZ5
2 3.3436e−3 (5.03e−4) + 5.7156e−3 (5.67e−4) + 6.2012e−3 (4.57e−5) + 6.9006e−3 (7.07e−4) + 2.7132e−2 (2.82e−3) + 2.4357e−1 (7.95e−2)

3 4.9022e−3 (1.02e−3) + 1.3195e−1 (6.07e−2) = 1.4769e−2 (3.25e−3) + 9.7820e−3 (7.85e−4) + 2.0880e−2 (5.77e−3) + 1.1697e−1 (1.01e−2)

DTLZ6
2 3.2839e−3 (1.53e−4) + 6.0118e−3 (7.08e−5) + 6.0678e−3 (2.51e−5) + 9.5433e−3 (8.22e−4) = 1.1594e−2 (1.42e−3) − 8.6874e−3 (5.23e−4)

3 4.3746e−3 (3.93e−4) + 2.0032e−1 (8.13e−2) − 1.4425e−2 (3.55e−3) + 1.1627e−2 (8.52e−4) + 1.3992e−2 (1.25e−3) + 3.4821e−2 (1.55e−2)

DTLZ7
2 3.5729e−3 (5.84e−4) + 2.0634e−2 (2.99e−3) − 1.1228e−2 (8.61e−4) = 8.1454e−3 (4.27e−4) + 1.0782e−2 (4.42e−4) = 1.1565e−2 (1.16e−3)

3 3.4012e−2 (3.74e−3) + 1.1205e−1 (4.70e−3) = 6.7504e−2 (4.98e−3) + 7.2390e−2 (2.72e−3) + 7.0513e−2 (4.85e−3) + 1.6617e−1 (4.89e−2)

CONSTR 2 4.5488e−2 (1.59e−3) − 1.6545e−1 (4.53e−2) − 5.2226e−2 (5.68e−3) − 2.2870e−2 (7.94e−3) = 2.1037e−2 (7.40e−3) = 1.6774e−2 (3.21e−3)

TNK 2 7.3809e−3 (4.18e−4) 3.6562e−2 (1.71e−2) 8.1623e−3 (5.99e−4) 1.1724e + 1 (1.07e + 1) 2.1316e−1 (4.26e−2) = 4.5412e−2 (4.09e−3) = 

SRN 2 1.7219e + 0 (1.59e−1) 9.3200e + 0 (2.72e + 0) 9.9125e−1 (2.97e−1) 2.6179e + 0 (1.51e−1) = 3.0393e−2 (1.68e−3) 1.5422e + 0 (1.22e−1)

OSY 2 5.2872e−1 (3.88e−1) 1.4278e + 1 (1.32e + 1) 6.6767e−1 (5.04e−1) 2.9190e−1 (4.68e−2) = 8.1866e + 0 (4.31e + 0) NaN (NaN)

BNH 2 3.4166e−1 (6.93e−2) + 2.5485e + 0 (6.08e−2) − 2.5404e + 0 (1.32e−2) − 7.8826e−1 (4.36e−2) = 9.9056e−1 (2.20e−1) = 2.9058e−1 (1.00e−1)

KITA 2 8.8811e−2 (7.64e−3) + 3.2781e−1 (6.20e−2) − 1.4685e−1 (6.04e−4) + 1.7733e−1 (2.09e−2) = 1.7994e−1 (1.70e−2) + 2.1774e−1 (3.18e−2)
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leading multi-objective methods using metrics like GD, IGD, HV, Spacing, Spread and RT across standard test 
suites such as ZDT, Constraint and DTLZ. MOEDO commendable performance is attributed to its rapid con-
vergence and a harmonious balance between exploration and exploitation. This is achieved by integrating the 
strengths of the IFM technique, the adept search capabilities of the EDO algorithm and the enhanced convergence 
facilitated by a IFM mechanism. Conversely, many of the compared multi-objective methods struggled with 
maintaining a balanced exploration–exploitation ratio and lacked efficient convergence.

Application to real‑world engineering design problems
Table 7 presents the performance of MOEDO concerning the spacing metric, compared against MOMPA, NSGA-
II, MOAOA, MOEA/D and MOGNDO. A lower spacing value denotes superior coverage performance. The data 
reveals MOEDO performance RWMOP1, RWMOP2, RWMOP3 and RWMOP4 was suboptimal. The WRST test, 
as illustrated in Table 7, positions MOEDO as the top performer in terms of spacing values among all others.

Table 8 showcases the findings of MOEDO for the HV metric, juxtaposed against other algorithms. A higher 
HV value is indicative of better performance. The data suggests that MOEDO excels across RWMOP1, RWMOP2, 
RWMOP5 and RWMOP6. However, the WRST test results in Table 8 indicate room for improvement in the 
HV metric for MOEDO.

Table 4.  Results of SD metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 4.4163e−1 (6.17e−2) + 6.8453e−1 (8.99e−2) − 5.9068e−1 (1.00e−1) = 4.1949e−1 (2.23e−2) + 5.8964e−1 (1.41e−1) = 5.6373e−1 (1.22e−1)

ZDT2 2 5.1648e−1 (1.41e−1) + 8.2618e−1 (1.18e−1) = 8.8220e−1 (6.38e−2) − 6.2752e−1 (1.35e−1) + 8.4278e−1 (2.14e−1) = 7.6411e−1 (1.32e−1)

ZDT3 2 6.1982e−1 (1.53e−1) = 7.0831e−1 (6.73e−2) = 6.8544e−1 (9.53e−2) = 7.9616e−1 (1.84e−2) − 8.9016e−1 (1.20e−1) − 7.3426e−1 (7.08e−2)

ZDT4 2 4.4500e−1 (5.26e−2) + 7.4246e−1 (1.76e−1) − 6.4107e−1 (1.58e−1) = 1.1363e + 0 (7.19e−2) − 1.1202e + 0 (2.25e−1) − 5.8509e−1 (1.05e−1)

ZDT5 2 7.7788e−1 (5.22e−2) + 1.0194e + 0 (6.14e−2) + 1.4541e + 0 (8.42e−2) + 1.3879e + 0 (7.66e−2) + 1.0090e + 0 (1.89e−2) + 1.5994e + 0 (5.47e−2)

ZDT6 2 3.6182e−1 (4.12e−2) − 5.5838e−1 (7.53e−2) − 3.1380e−1 (1.19e−1) − 4.3215e−1 (6.83e−2) − 2.9883e−1 (6.18e−2) − 1.9571e−1 (6.16e−2)

DTLZ1
2 1.3584e−1 (2.20e−2) + 6.5782e−1 (4.22e−1) = 6.8144e−2 (2.09e−2) + 3.7889e−1 (2.99e−2) + 1.1108e + 0 (5.62e−1) = 9.2205e−1 (1.44e−1)

3 9.4036e−2 (1.84e−2) + 5.1939e−1 (4.05e−1) = 1.7879e−1 (2.42e−1) = 4.2387e−1 (2.89e−2) + 1.5185e + 0 (4.47e−1) − 5.7706e−1 (7.81e−2)

DTLZ2
2 1.4097e−1 (2.12e−2) + 1.9901e−1 (2.84e−2) + 1.9714e−1 (3.81e−3) + 3.6979e−1 (2.72e−2) + 7.0152e−1 (2.50e−2) = 8.1712e−1 (1.15e−1)

3 8.5844e−2 (8.67e−3) + 1.7089e−1 (6.60e−4) + 1.7596e−1 (5.27e−3) + 5.0961e−1 (4.78e−2) = 4.5225e−1 (3.65e−2) + 6.2718e−1 (9.24e−2)

DTLZ3
2 7.9314e−1 (2.44e−1) = 8.5798e−1 (4.51e−2) = 1.0629e + 0 (1.46e−1) = 9.2082e−1 (2.29e−1) = 1.9088e + 0 (9.80e−1) − 9.2511e−1 (7.75e−2)

3 1.1413e + 0 (5.29e−1) = 5.6418e−1 (9.72e−2) = 7.9222e−1 (4.53e−2) − 5.8120e−1 (9.30e−2) + 1.7308e + 0 (4.87e−1) − 6.8872e−1 (3.27e−2)

DTLZ4
2 1.5709e + 0 (7.99e−2) 1.8050e−1 (5.45e−3) + 1.9512e−1 (1.92e−3) + 4.0893e−1 (4.96e−2) + 6.8654e−1 (1.79e−1) + NaN (NaN)

3 1.3314e + 0 (1.90e−1) 1.7012e−1 (1.13e−3) + 1.7448e−1 (2.26e−3) + 4.9689e−1 (2.62e−2) + 4.8118e−1 (4.02e−2) + 1.9433e−1 (2.13e−1) + 

DTLZ5
2 1.3710e−1 (2.87e−2) + 1.7534e−1 (1.56e−2) + 1.9703e−1 (1.63e−3) + 4.0634e−1 (4.82e−2) + 7.0571e−1 (3.73e−2) + 9.2448e−1 (1.13e−1)

3 1.4378e−1 (2.25e−2) + 4.0977e−1 (1.32e−1) + 9.3751e−1 (1.14e−1) − 4.8666e−1 (4.28e−2) + 6.1465e−1 (3.99e−2) = 6.5765e−1 (5.69e−2)

DTLZ6
2 1.2150e−1 (1.45e−2) + 1.8776e−1 (2.64e−3) + 1.8805e−1 (1.08e−3) + 7.2139e−1 (7.40e−2) − 9.3383e−1 (5.00e−2) − 3.5990e−1 (3.16e−2)

3 1.2833e−1 (1.03e−2) + 5.7465e−1 (1.59e−1) = 1.3798e + 0 (9.06e−2) − 7.2224e−1 (8.64e−2) − 9.2131e−1 (6.62e−2) − 4.2125e−1 (1.19e−1)

DTLZ7
2 1.2751e−1 (2.16e−2) + 4.3887e−1 (9.43e−2) = 5.6900e−1 (3.49e−2) = 4.2750e−1 (1.63e−2) + 4.3287e−1 (3.51e−2) + 5.1798e−1 (4.13e−2)

3 1.2708e−1 (1.85e−2) + 3.6140e−1 (1.73e−2) + 6.1178e−1 (1.03e−1) = 4.9795e−1 (1.58e−2) + 5.1748e−1 (3.84e−2) = 5.8885e−1 (7.15e−2)

CONSTR 2 4.0032e−1 (1.17e−1) + 8.0320e−1 (4.41e−2) + 6.9753e−1 (1.31e−1) + 9.5806e−1 (7.00e−3) + 9.6345e−1 (1.03e−2) = 9.7633e−1 (3.88e−3)

TNK 2 5.4136e−1 (1.48e−1) 8.3119e−1 (3.05e−2) 1.0010e + 0 (8.65e−2) 8.4346e−1 (1.02e−1) = 1.0767e + 0 (3.07e−2) 9.7003e−1 (3.18e−3)

SRN 2 4.5643e−1 (5.49e−2) 4.4755e−1 (8.49e−2) 1.0556e−1 (2.35e−2) 7.3960e−1 (1.29e−1) 7.1203e−1 (2.51e−2) = 6.0084e−1 (4.71e−2) = 

OSY 2 9.2304e−1 (6.48e−2) 9.6810e−1 (1.03e−1) 1.0009e + 0 (1.86e−2) 5.5471e−1 (5.68e−2) = 4.6138e−1 (5.00e−2) = 5.0966e−1 (4.10e−2)

BNH 2 5.1998e−1 (4.41e−2) = 6.9675e−1 (3.15e−2) − 6.7556e−1 (2.77e−3) − 1.4154e−1 (2.05e−2) + 5.6680e−1 (5.28e−2) − 4.7468e−1 (3.95e−2)

KITA 2 6.0594e−1 (6.55e−2) = 5.1226e−1 (8.49e−2) = 3.3402e−1 (7.78e−4) + 1.3280e−1 (1.07e−2) + 3.2786e−1 (4.70e−2) + 5.2172e−1 (6.67e−2)
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Table 9 showcases the performance of MOEDO concerning the run time metric, juxtaposed against other 
MOEDO others MOMPA, NSGA-II, MOAOA, MOEA/D and MOGNDO. Ideally, a lower RT metric value is 
preferred. Specifically, it showcased superior results for RWMOP2, RWMOP3, RWMOP4 and RWMOP5 in 
both Average and Best metrics. The overall ranking of each algorithm, based on the Best and Avg results, was 
determined using the WRST test. As illustrated in the concluding row of Table 5, MOEDO emerged as the top 
performer for the RT metric among the others.

Figure 10 emphasizes MOEDO superior performance for the RWMOP function, as its results closely align 
with the PF.

Conclusion
In this research, we introduce a multi-objective variant of the exponential distribution optimizer (EDO) method, 
a recently proposed metaheuristic algorithm rooted in specific principles of mathematics exponential distribu-
tion theory. We present a multi-objective EDO termed MOEDO, which integrates concepts of multi-objectivity, 
NDS, CD and IFM theory into the conventional EDO framework. The IFM approach, drawing from diverse 
strategies, ensures a balanced exploration–exploitation dynamic, promoting enhanced convergence and the 
ability to bypass local minima. experimental outcomes indicate that our MOEDO algorithm surpasses MOMPA, 

Table 5.  Results of HV metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 8.6894e−1 (3.27e−3) + 7.0827e−1 (5.62e−2) − 8.3442e−1 (3.08e−2) = 8.6446e−1 (4.49e−3) + 8.3849e−1 (1.68e−2) = 8.4607e−1 (2.34e−2)

ZDT2 2 5.0055e−1 (6.08e−2) + 3.0232e−1 (8.18e−2) − 3.1603e−1 (6.09e−2) − 4.8074e−1 (4.52e−2) + 3.6941e−1 (1.53e−1) = 4.0078e−1 (8.79e−2)

ZDT3 2 9.2335e−1 (1.28e−1) = 7.8164e−1 (8.15e−2) − 9.8307e−1 (3.86e−2) = 8.5116e−1 (7.83e−2) = 9.4019e−1 (4.36e−2) = 9.2170e−1 (9.51e−2)

ZDT4 2 8.6455e−1 (2.96e−3) + 6.8366e−1 (1.34e−1) − 8.2530e−1 (4.02e−2) = 7.1103e−1 (1.05e−1) − 7.5134e−1 (8.52e−2) − 8.4269e−1 (2.46e−2)

ZDT5 2 3.0693e + 2 (6.60e + 0) = 3.0368e + 2 (3.61e + 0) = 3.0927e + 2 (5.59e + 0) = 3.0694e + 2 (5.22e + 0) = 2.7668e + 2 (2.69e + 0) − 3.0626e + 2 (3.06e + 0)

ZDT6 2 4.3088e−1 (3.53e−4) = 3.2899e−1 (3.00e−2) − 4.2327e−1 (6.42e−3) − 4.2961e−1 (2.12e−3) = 4.1510e−1 (5.64e−3) − 4.2963e−1 (2.49e−3)

DTLZ1
2 1.7473e−1 (1.38e−3) + 1.6326e−1 (9.97e−3) + 1.7498e−1 (9.36e−4) + 1.7399e−1 (1.13e−3) + 1.2496e−1 (7.28e−3) + 0.0000e + 0 (0.00e + 0)

3 1.3865e−1 (7.84e−4) + 1.2212e−1 (1.93e−2) + 1.3806e−1 (1.82e−3) + 1.3637e−1 (5.14e−4) + 7.0145e−2 (1.47e−2) + 0.0000e + 0 (0.00e + 0)

DTLZ2
2 4.2015e−1 (1.04e−4) + 4.1779e−1 (1.04e−3) + 4.2006e−1 (2.29e−5) + 4.1924e−1 (5.40e−5) + 4.1885e−1 (1.61e−4) + 3.1484e−2 (2.30e−2)

3 7.3819e−1 (1.81e−3) + 7.4349e−1 (5.65e−4) + 7.4399e−1 (1.66e−4) + 7.0703e−1 (5.66e−3) + 7.4192e−1 (1.19e−3) + 4.5622e−2 (1.76e−2)

DTLZ3
2 1.6041e−1 (1.66e−1) = 0.0000e + 0 (0.00e + 0) = 1.9760e−2 (3.06e−2) = 1.4198e−1 (1.37e−1) = 6.6897e−2 (6.89e−2) = 0.0000e + 0 (0.00e + 0)

3 1.5867e−1 (3.03e−1) = 0.0000e + 0 (0.00e + 0) = 0.0000e + 0 (0.00e + 0) = 2.2703e−1 (3.12e−1) = 1.2688e−1 (1.23e−1) = 0.0000e + 0 (0.00e + 0)

DTLZ4
2 2.9614e−1 (1.70e−1) + 4.1845e−1 (4.58e−4) + 4.2006e−1 (1.38e−5) + 4.1935e−1 (1.48e−4) + 3.5713e−1 (1.38e−1) + 5.8848e−4 (1.32e−3)

3 6.8187e−1 (1.23e−1) + 7.4351e−1 (3.34e−4) + 7.4383e−1 (1.53e−4) + 7.1324e−1 (5.58e−3) + 7.4188e−1 (1.85e−3) + 0.0000e + 0 (0.00e + 0)

DTLZ5
2 4.2004e−1 (1.93e−5) + 4.1872e−1 (8.75e−4) + 4.2021e−1 (1.04e−4) + 4.1929e−1 (4.53e−4) + 4.1884e−1 (4.05e−4) + 2.8442e−2 (2.23e−2)

3 1.3267e−1 (1.37e−4) + 9.6369e−2 (1.11e−2) + 1.2892e−1 (5.18e−4) + 1.3243e−1 (4.35e−5) + 1.3215e−1 (2.06e−4) + 4.8987e−3 (6.73e−3)

DTLZ6
2 4.2056e−1 (4.41e−5) + 4.2013e−1 (2.75e−6) + 4.2013e−1 (7.29e−7) + 4.1906e−1 (2.86e−4) + 4.1435e−1 (5.56e−4) − 4.1844e−1 (3.91e−4)

3 1.3315e−1 (2.15e−5) + 9.7542e−2 (9.62e−3) − 1.2677e−1 (1.18e−3) = 1.3271e−1 (1.23e−4) + 1.3021e−1 (7.23e−4) + 1.2738e−1 (2.11e−3)

DTLZ7
2 1.0098e + 0 (1.48e−4) + 9.2610e−1 (2.55e−2) − 1.0090e + 0 (3.84e−4) = 1.0091e + 0 (1.99e−4) = 1.0093e + 0 (1.28e−4) = 1.0089e + 0 (3.33e−4)

3 1.6154e + 0 (5.00e−3) + 1.5112e + 0 (2.78e−2) = 1.5723e + 0 (7.69e−3) + 1.5694e + 0 (1.06e−2) + 1.6393e + 0 (3.87e−3) + 1.5294e + 0 (1.58e−2)

CONSTR 2 5.2265e + 0 (1.66e−3) + 4.9753e + 0 (2.08e−2) + 5.2160e + 0 (1.02e−2) + 3.6151e + 0 (1.38e−1) = 3.6562e + 0 (6.27e−2) = 3.6649e + 0 (1.04e−1)

TNK 2 5.2277e−1 (3.54e−4) 4.8054e−1 (3.87e−3) 5.2110e−1 (9.37e−4) 5.2209e + 0 (7.81e−4) = 4.9433e + 0 (9.11e−2) = 3.6805e + 0 (5.44e−2)

SRN 2 2.9871e + 4 (9.83e + 0) 2.6932e + 4 (4.68e + 2) 2.9990e + 4 (6.60e + 0) 3.0996e + 3 (3.87e + 2) 6.4222e + 3 (3.87e + 0) = NaN (NaN)

OSY 2 6.3066e + 3 (3.98e + 3) 4.7546e + 3 (1.50e + 3) 4.8425e + 3 (3.16e + 3) 2.9885e + 4 (4.79e + 0) NaN (NaN) NaN (NaN)

BNH 2 6.4406e + 3 (6.99e−1) = 6.4265e + 3 (2.70e + 0) − 6.4413e + 3 (1.43e−1) = 6.4430e + 3 (2.35e + 0) = 6.4458e + 3 (9.71e−1) + 6.4406e + 3 (1.31e + 0)

KITA 2 4.9805e + 1 (2.43e−3) + 4.8246e + 1 (3.66e−1) − 4.9646e + 1 (2.78e−2) + 4.9577e + 1 (1.61e−2) + 4.9387e + 1 (8.00e−2) = 4.9423e + 1 (8.70e−2)
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NSGA-II, MOAOA, MOEA/D and MOGNDO, in 72.58% of test scenarios using the ZDT, DTLZ. Constraint 
(CONSTR, TNK, SRN, BNH, OSY and KITA) and real-world engineering design Brushless DC wheel motor 
(RWMOP1), Helical spring (RWMOP2), Two-bar truss (RWMOP3), Welded beam (RWMOP4), Disk brake 
(RWMOP5) problems, especially in metrics like GD, IGD, HV, spacing (SP), Spread (SD) and RT. In the WRST 
test outcomes, MOEDO leads in all metrics. Looking ahead, we envision developing a binary version of MOEDO 
to tackle diverse and intricate real-world challenges. Additionally, the potential enhancements of the proposed 
method in its many-objective format for various optimization challenges remain an exciting avenue for future 
exploration.The MOEDO source code is available at: https:// github. com/ kanak 02/ MOEDO.

Table 6.  Results of RT metric of different multi-objective algorithms on ZDT, DTLZ and constraint 
benchmark problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

ZDT1 2 1.0840e + 0 (1.40e−1) 1.4185e + 0 (1.81e−1) − 1.5848e + 0 (1.57e−1) − 3.6373e + 0 (4.15e−1) − 1.8603e + 1 (1.04e + 0) − 5.3035e + 0 (3.26e−1) −

ZDT2 2 1.3086e + 0 (1.17e−1) 1.3579e + 0 (1.82e−1) = 1.8077e + 0 (1.17e−1) − 3.4632e + 0 (1.57e−1) − 1.8507e + 1 (2.52e + 0) − 3.6988e + 0 (7.49e−1) −

ZDT3 2 1.4600e + 0 (3.81e−1) − 1.0732e + 0 (1.55e−1) 1.6045e + 0 (4.06e−1) − 3.5964e + 0 (3.52e−1) − 1.8544e + 1 (1.97e + 0) − 5.4055e + 0 (4.99e−1) −

ZDT4 2 1.2239e + 0 (7.44e−2) − 9.5238e−1 (5.83e−2) 1.4150e + 0 (1.23e−1) − 3.4015e + 0 (3.48e−1) − 1.8608e + 1 (1.99e + 0) − 5.2289e + 0 (1.95e + 0) −

ZDT5 2 9.5160e−1 (2.93e−1) 1.4136e + 0 (3.76e−1) − 1.7063e + 0 (2.22e−1) − 3.5809e + 0 (4.79e−1) − 1.6872e + 1 (1.72e + 0) − 5.8031e + 0 (6.80e−1) −

ZDT6 2 9.3844e−1 (7.17e−2) 1.2634e + 0 (1.22e−1) − 1.4590e + 0 (1.17e−1) − 3.5204e + 0 (4.66e−1) − 1.8614e + 1 (2.56e + 0) − 6.0524e + 0 (7.98e−1) −

DTLZ1
2 9.6031e−1 (2.84e−1) + 1.2525e + 0 (1.53e−1) + 1.4012e + 0 (1.83e−1) + 4.4339e + 0 (5.50e−1) + 4.1116e + 0 (4.39e−1) + 6.6382e + 0 (4.64e−1)

3 9.0816e−1 (1.04e−1) + 1.2163e + 0 (4.15e−2) + 1.4483e + 0 (8.74e−2) + 5.4172e + 0 (4.22e−1) + 4.1937e + 0 (5.50e−1) + 6.7279e + 0 (1.84e−1)

DTLZ2
2 8.4328e−1 (5.64e−2) + 1.2513e + 0 (6.22e−2) + 1.5130e + 0 (2.09e−1) + 8.3898e + 0 (4.59e + 0) = 4.4058e + 0 (4.70e−1) + 6.6612e + 0 (3.84e−1)

3 9.2135e−1 (3.19e−2) + 1.2750e + 0 (5.76e−2) + 1.5529e + 0 (6.47e−2) + 1.1309e + 1 (5.47e−1) − 4.6738e + 0 (1.81e−1) + 7.0132e + 0 (2.77e−1)

DTLZ3
2 1.2627e + 0 (4.72e−2) + 9.6584e−1 (2.79e−2) + 1.3033e + 0 (5.11e−2) + 3.3023e + 0 (1.48e−1) + 4.3152e + 0 (1.85e−1) + 6.5943e + 0 (1.26e−1)

3 1.2558e + 0 (1.88e−2) + 9.3736e−1 (2.48e−2) + 1.3975e + 0 (2.26e−2) + 3.7878e + 0 (3.80e−1) + 4.3024e + 0 (1.18e−2) + 6.7236e + 0 (6.21e−2)

DTLZ4
2 8.3014e−1 (1.08e−2) + 1.2242e + 0 (4.21e−3) + 1.3975e + 0 (9.26e−3) + 4.8757e + 0 (1.45e + 0) + 4.3340e + 0 (2.17e−1) + 6.7796e + 0 (2.91e−1)

3 1.2504e + 0 (7.73e−3) + 9.1272e−1 (5.36e−3) + 1.5403e + 0 (1.24e−2) + 1.0096e + 1 (2.16e + 0) = 4.5982e + 0 (2.41e−1) + 7.4664e + 0 (7.93e−1)

DTLZ5
2 1.2979e + 0 (1.52e−1) + 8.7998e−1 (8.02e−2) + 1.4981e + 0 (1.70e−1) + 6.3156e + 0 (3.02e−1) + 4.3694e + 0 (1.78e−1) + 6.8971e + 0 (2.28e−1)

3 1.0506e + 0 (1.11e−2) + 8.9586e−1 (7.35e−3) + 2.1173e + 0 (6.75e−2) + 7.6273e + 0 (3.17e−1) = 4.6740e + 0 (1.90e−1) + 7.5965e + 0 (6.30e−1)

DTLZ6
2 9.1287e−1 (6.27e−2) + 1.2573e + 0 (5.08e−2) + 1.4153e + 0 (5.08e−2) + 1.0634e + 1 (3.59e−1) − 4.7006e + 0 (1.47e−2) + 7.5665e + 0 (8.67e−1)

3 9.3459e−1 (4.25e−2) + 1.2374e + 0 (6.09e−2) + 2.3709e + 0 (2.52e−1) + 1.0866e + 1 (7.69e−1) − 4.7894e + 0 (5.31e−2) + 7.3765e + 0 (2.24e−1)

DTLZ7
2 9.2944e−1 (4.34e−2) + 1.3029e + 0 (6.27e−2) + 1.4993e + 0 (7.73e−2) + 5.6874e + 0 (3.65e−1) + 4.5383e + 0 (2.13e−1) + 6.7145e + 0 (1.34e−1)

3 9.6492e−1 (1.08e−2) + 1.1815e + 0 (4.01e−2) + 1.7620e + 0 (1.02e−1) + 9.4474e + 0 (3.09e−1) − 4.8045e + 0 (1.24e−2) + 7.0641e + 0 (1.52e−1)

CONSTR 2 8.7374e−1 (1.11e−1) + 1.2232e + 0 (7.82e−2) + 1.5144e + 0 (9.54e−2) + 1.3907e + 1 (6.31e−1) − 3.5439e + 0 (2.53e−1) + 6.3507e + 0 (1.61e−1)

TNK 2 8.6013e−1 (5.32e−2) + 1.2835e + 0 (1.17e−1) + 1.4880e + 0 (8.44e−2) + 1.1838e + 1 (4.76e−1) − 3.1048e + 0 (1.31e−1) + 6.3953e + 0 (2.79e−1)

SRN 2 8.4685e−1 (3.34e−2) + 1.1482e + 0 (7.09e−2) + 1.4259e + 0 (7.34e−2) + 1.3554e + 1 (1.67e−1) − 3.5035e + 0 (6.69e−2) + 6.1560e + 0 (1.24e−1)

OSY 2 1.2234e + 0 (6.40e−2) + 9.1941e−1 (4.61e−2) + 1.4842e + 0 (8.07e−2) + 7.1965e + 0 (2.63e−1) − 3.4530e + 0 (1.37e−1) + 6.0350e + 0 (1.88e−1)

BNH 2 1.2135e + 0 (4.57e−2) + 7.8729e−1 (1.44e−2) + 1.3896e + 0 (1.18e−2) + 1.1663e + 1 (1.46e−1) − 3.4872e + 0 (2.42e−2) + 6.0393e + 0 (2.19e−1)

KITA 2 8.4522e−1 (5.03e−2) + 1.1953e + 0 (7.01e−2) + 1.4823e + 0 (1.28e−1) + 1.3566e + 1 (4.96e−1) − 3.4910e + 0 (1.98e−2) + 6.1794e + 0 (1.93e−1)

https://github.com/kanak02/MOEDO
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Figure 6.  Best Pareto optimal front obtained by the MOEDO algorithm on ZDT1, ZDT2, ZDT3, ZDT4, ZDT5 
and ZDT6 problems.
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Figure 7.  Best Pareto optimal front obtained by the MOEDO algorithm on DTLZ1-DTLZ7 problems with 
2-objectives.



20

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1816  | https://doi.org/10.1038/s41598-024-52083-7

www.nature.com/scientificreports/

Figure 8.  Best Pareto optimal front obtained by the MOEDO algorithm on DTLZ1-DTLZ7 problems with 
3-objectives.
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Figure 9.  Best Pareto optimal front obtained by the MOEDO algorithm on constrained CONSTR, TANK, 
SRN, OSY, BIN and KITA.
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Table 7.  Results of SP metric of different multi-objective algorithms on engineering design problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

RWMOP1 2 1.8684e−2 (2.56e−3) 1.5023e−1 (5.14e−2) 2.2250e−2 (3.43e−3) 1.8791e−2 (2.20e−3) 1.9296e−2 (1.16e−3) NaN (NaN)

RWMOP2 2 6.8240e + 2 (1.48e + 2) = NaN (NaN) 1.0591e + 3 (2.04e + 2) = 1.1011e + 3 (2.48e + 2) = 7.9174e + 2 (2.86e + 2) = 7.0175e + 3 (1.14e + 4)

RWMOP3 2 5.5089e + 2 (4.58e + 1) + 2.5135e + 3 (9.34e + 2) = 3.1492e + 3 (3.34e + 2) = 1.6276e + 3 (9.43e + 2) = 5.6910e + 2 (1.59e + 1) + 4.4510e + 3 (6.57e + 3)

RWMOP4 2 2.1262e−1 (5.55e−3) + NaN (NaN) 3.8102e−1 (2.55e−2) + 4.5326e−1 (1.16e−1) + 1.9114e−1 (1.52e−2) + 1.6764e + 0 (7.48e−1)

RWMOP5 2 6.9979e−2 (2.13e−3) + 4.3162e−1 (6.93e−2) = 9.5075e−2 (2.19e−2) + 1.4909e−1 (3.01e−2) + 9.3591e−2 (3.20e−2) + 1.6943e + 0 (1.70e + 0)

Table 8.  Results of HV metric of different multi-objective algorithms on engineering design problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

RWMOP1 2 7.8729e−1 (1.44e−2) + 0.0000e + 0 (0.00e + 0) 0.0000e + 0 (0.00e + 0) 0.0000e + 0 (0.00e + 0) 0.0000e + 0 (0.00e + 0) NaN (NaN)

RWMOP2 2 3.4457e + 6 (6.45e + 3) + 2.2454e + 6 (1.45e + 6) = 3.4342e + 6 (1.42e + 4) + 3.4334e + 6 (1.22e + 4) + 3.4370e + 6 (9.58e + 3) + 1.7023e + 6 (6.62e + 5)

RWMOP3 2 4.6805e + 3 (1.54e + 0) + 4.5295e + 3 (2.76e + 1) = 4.6374e + 3 (9.37e + 0) + 4.6285e + 3 (1.39e + 1) + 4.6825e + 3 (1.23e + 0) + 3.6036e + 3 (1.69e + 3)

RWMOP4 2 8.9567e−1 (2.33e−3) + 4.5704e−1 (3.02e−1) = 8.8959e−1 (4.89e−3) + 8.9057e−1 (7.52e−3) + 8.9203e−1 (5.88e−3) + 7.2647e−1 (8.24e−2)

RWMOP5 2 4.2559e + 1 (2.31e−1) + 4.1280e + 1 (7.10e−2) + 4.1229e + 1 (1.71e−1) = 4.2041e + 1 (3.66e−1) + 4.2287e + 1 (4.05e−1) + 4.0906e + 1 (2.24e−1)

Table 9.  Results of RT metric of different multi-objective algorithms on engineering design problems.

Problem M MOEDO MOMPA NSGA-II MOAOA MOEA/D MOGNDO

RWMOP1 2 1.8374e + 0 (1.28e−1) + 1.8087e + 0 (6.67e−2) + 2.7699e + 0 (1.66e−1) = 7.8034e + 0 (8.10e−1) − 1.8801e + 1 (1.11e + 0) − 2.5022e + 0 (1.69e−1)

RWMOP2 2 8.0916e−1 (4.71e−2) + 9.5380e−1 (4.64e−2) + 1.6790e + 0 (1.00e−1) + 2.1577e + 0 (5.26e−1) + 1.6126e + 1 (7.86e−1) − 3.5721e + 0 (2.56e−1)

RWMOP3 2 6.3854e−1 (2.10e−2) + 8.6947e−1 (2.00e−2) + 1.4797e + 0 (1.13e−2) + 7.8338e + 0 (3.47e−1) + 1.5504e + 1 (4.48e−1) = 1.5660e + 1 (1.65e + 0)

RWMOP4 2 9.5050e−1 (8.04e−2) + 9.8713e−1 (5.29e−2) + 1.7186e + 0 (1.04e−1) + 8.3498e + 0 (4.72e−1) = 1.6635e + 1 (8.28e−1) − 7.1340e + 0 (1.02e + 0)

RWMOP5 2 7.0057e−1 (3.21e−2) + 1.0097e + 0 (4.30e−2) + 1.7758e + 0 (7.51e−2) + 1.1412e + 1 (1.35e + 0) + 1.5428e + 1 (2.30e−1) = 1.5480e + 1 (4.85e−1)
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Figure 10.  Best Pareto optimal front obtained by the MOEDO algorithm on real-world engineering problems 
(RWMOP1-RWMOP5).
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