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Machine learning prediction 
of the failure of high‑flow nasal 
oxygen therapy in patients 
with acute respiratory failure
Ziwen Wang 1, Yali Chao 1, Meng Xu 1, Wenjing Zhao 1 & Xiaoyi Hu 2*

Acute respiratory failure (ARF) is a prevalent and serious condition in intensive care unit (ICU), often 
associated with high mortality rates. High‑flow nasal oxygen (HFNO) therapy has gained popularity 
for treating ARF in recent years. However, there is a limited understanding of the factors that predict 
HFNO failure in ARF patients. This study aimed to explore early indicators of HFNO failure in ARF 
patients, utilizing machine learning (ML) algorithms to more accurately pinpoint individuals at 
elevated risk of HFNO failure. Utilizing ML algorithms, we developed seven predictive models. Their 
performance was evaluated using various metrics, including the area under the receiver operating 
characteristic curve, calibration curve, and precision recall curve. The study enrolled 700 patients, 
with 490 in the training group and 210 in the validation group. The overall HFNO failure rate was 
14.1% among the 700 patients. The ML algorithms demonstrated robust performance in our study. 
This research underscores the potential of ML techniques in creating clinically relevant models for 
predicting HFNO outcomes in ARF patients. These models could play a pivotal role in enhancing the 
risk management of HFNO, leading to more patient‑centered and personalized care approaches.

Abbreviations
ARF  Acute respiratory failure
HFNO  High-flow nasal oxygen
ML  Machine learning
LASSO  Least absolute shrinkage and selection operator
IMV  Invasive mechanical ventilation
AUROC  Area under the receiver operating characteristic
AUPRC  Area under precision recall curve
PR  Precision recall
SHAP  Shapley
PDPs  Partial dependence plots
SOFA  Sepsis-related organ failure assessment
LODS  Logistic organ dysfunction score
SAPSII  Simplified acute physiology score
GCS  Glasgow coma score
COPD  Chronic obstructive pulmonary disease
AKI  Acute kidney injury
WBC  White blood cell
Hb  Hemoglobin
PLT  Platelet count
ALT  Alanine aminotransferase
AST  Aspartate aminotransferase
ALB  Albumin
Cr  Creatinine
BUN  Blood urea nitrogen
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PT  Prothrombin time
INR  International normalized ratio
SVM  Support vector machine
ADABOOST  Adaptive boosting
LR  Logistic regression
XGBOOST  Extreme gradient boosting
STACK  Stacking ensemble algorithms
RF  Random forest
NB  Naive bayes

Acute respiratory failure (ARF) ranks among the most prevalent conditions in intensive care unit (ICU). The 
emergence of COVID-19 in Wuhan has sparked a surge in research focused on acute respiratory failure, as the 
medical community strives to enhance treatments and patient outcomes. Predominantly impacting the respira-
tory system, COVID-19 has led to a swift progression to ARF in a significant number of  patients1. Recognized 
by the World Health Organization as a major international health threat, the pandemic has prompted extensive 
exploration of various treatment  methods2. Among these, high-flow nasal oxygen (HFNO) therapy has been 
noted in several studies as a potentially safe option, even for patients with moderate to severe  conditions3.

HFNO has emerged as a prominent non-invasive respiratory approach, extensively utilized for treating ARF in 
recent  years4–6. This therapy is adept at delivering a consistent and precise fraction of inspired oxygen, enhancing 
the partial arterial oxygen pressure. Additionally, HFNO offers the advantage of providing heated and humidified 
gas, which aids in the activation of airway mucus cilia and boosts sputum  clearance7–10. A key feature of HFNO 
is its capability to supply high-flow rates that align with a patient’s inspiratory flow, creating a positive pressure 
effect and diminishing anatomic dead space. Compared with conventional oxygen therapies, HFNO has been 
documented to significantly lower the necessity for invasive mechanical ventilation (IMV)11. However, other 
studies indicate that failure of HFNO may inadvertently delay the initiation of IMV, correlating with heightened 
mortality  rates12–14. Given these findings, it becomes critical to promptly identify the potential failure of HFNO 
in ARF patients. This urgency underscores the need for developing effective strategies to assess and mitigate the 
risks associated with HFNO failure.

A viable trajectory for the advancement of this strategy encompasses the utilization of machine learning (ML). 
ML is renowned for its capacity to assimilate and analyze an exceedingly vast array of input variables, culminating 
in the generation of models with high predictive  accuracy15. Notably, ML methodologies excel in their ability 
to delineate and interpret nonlinear correlations and interactions, often surpassing the performance metrics 
of conventional logistic regression  models16. To our knowledge, the establishment of such a model, specifically 
tailored for predicting the failure of HFNO in patients afflicted with ARF, remains an uncharted domain.

Therefore, we embarked on a retrospective data collection of patients diagnosed with ARF who were admin-
istered HFNO therapy. We aimed to develop and validate predictive models, employing ML methodologies, that 
are capable of forecasting the failure of HFNO in treating patients with ARF.

Methods
Participants
This was a retrospective study, registered at chictr.org (ChiCTR2300067597). This retrospective study was car-
ried out in the ICU of the Affiliated Hospital of Xuzhou Medical University and was approved by the ethics 
committee (approved number: XYFY2022-KL464). Due to the retrospective and observational nature of the 
study, informed consent was waived. The Affiliated Hospital of Xuzhou Medical University, located in Xuzhou 
City, Jiangsu Province, China, is a tertiary hospital. The medical institution has two hospitals, the east and west 
hospitals, with 4150 beds.

Patients with ARF who received HFNO were screened for enrollment. Inclusion criteria: (1) diagnosed as 
ARF (defined as oxygenation index ≤ 300 mmHg, the oxygenation index is the percentage of arterial partial 
pressure of oxygen divided by the concentration of inspired oxygen) and given HFNO; (2) the age between 
18 and 89 years old. Exclusion criteria: (1) ICU stay < 24 h; (2) multiple admissions to ICU; (3) Patients with 
incomplete clinical data.

Clinical data characteristics
The characteristics of clinical data in the study are shown in Table 1. The clinical data included: (1) baseline 
characteristics and comorbidities; (2) vital signs, Glasgow Coma Scale (GCS) score, clinical variables on the first 
day of HFNO; (3) treatment measures (use of sedation, vasopressors, albumin, diuretics and glucocorticoids); (4) 
primary outcome. HFNO failure was defined as either application of invasive mechanical ventilation or switching 
to the other study treatment modality.

Development of machine learning models
The outcome-related feature screening process was carried out using least absolute shrinkage and selection 
operator (LASSO). For the development of the models, the most relevant features chosen are employed. Non-
zero characteristic indicators selected through LASSO analysis were put into the multivariate logistic regression 
analysis to identify the independent risk factors associated with HFNO failure.

We considered seven different types of models: support vector machine (SVM), adaptive boosting (ADA-
BOOST), logistic regression (LR), extreme gradient boosting (XGBOOST), stacking ensemble algorithms 
(STACK), random forest (RF), and naive bayes (NB); The STACK is algorithms that integrate LR, SVM, NB, 
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Variables Total (n = 700) Success group (n = 601) Failure group (n = 99) Validation set (n = 210) Training set (n = 490) P

Age 49.00 (41.00, 60.00)* 49.00 (41.00, 59.00)* 49.00 (41.00, 62.00)* 51.00 (43.00, 60.75)* 49.00 (41.00, 59.75)* 0.085

Gender 0.543

 Female 273 (39%) 228 (38%) 45 (45%) 86 (41%) 187 (38)%

 Male 427 (61%) 373 (62%) 54 (55%) 124 (59%) 303 (62%)

BMI 27.89 (23.97, 32.88)* 27.97 (24.09, 32.87)* 27.27 (22.68, 33.18)* 27.34 (23, 32.65)* 28.17 (24.13, 32.94)* 0.213

Smoking 0.143

 No 463 (66%) 391 (65%) 72 (73%) 130 (62%) 333 (68%)

 Yes 237 (34%) 210 (35%) 27 (27%) 80 (38%) 157 (32%)

SOFA 6.00 (4.00, 9.00)* 6.00 (4.00, 8.00)* 9.00 (7.00, 11.00)* 6.00 (4.00, 9.00)* 6.00 (4.00, 8.00)* 0.279

LODS 6.00 (4.00, 8.00)* 5.00 (3.00, 7.00)* 9.00 (7.00, 11.00)* 6.00 (4.00, 8.00)* 6.00 (4.00, 8.00)* 0.501

SAPSII 41.00 (34.00, 50.00)* 40.00 (33.00, 48.00)* 50.00 (43.50, 62.00)* 41.00 (35.00, 50.75)* 40.50 (33.00, 50.00)* 0.385

GCS 14.00 (9.00, 15.00)* 14.00 (10.00, 15.00)* 9.00 (4.00, 13.00)* 14.00 (9.00, 14.00)* 14.00 (9.25, 15.00)* 0.497

Hypertension 0.276

 No 343 (49%) 289 (48%) 54 (55%) 110 (52%) 233 (48%)

 Yes 357 (51%) 312 (52%) 45 (45%) 100 (48%) 257 (52%)

Diabetes 0.427

 No 426 (61%) 368 (61%) 58 (59%) 133 (63%) 293 (60%)

 Yes 274 (39%) 233 (39%) 41 (41%) 77 (37%) 197 (40%)

Coronary atherosclerotic heart disease 1.000

 No 388 (55%) 324 (54%) 64 (65%) 116 (55%) 272 (56%)

 Yes 312 (45%) 277 (46%) 35 (35%) 94 (45%) 218 (44%)

COPD 0.751

 No 676 (97%) 580 (97%) 96 (97%) 204 (97%) 472 (96)%

 Yes 24 (3%) 21 (3%) 3 (3%) 6 (3%) 18 (4%)

Cerebral infarction 0.441

 No 676 (97%) 581 (97%) 95 (96%) 205 (98%) 471 (96%)

 Yes 24 (3%) 20 (3%) 4 (4%) 5 (2%) 19 (4%)

Peripheral vascular disease 0.338

 No 663 (95%) 572 (95%) 91 (92%) 202 (96%) 461 (94%)

 Yes 37 (5%) 29 (5%) 8 (8%) 8 (4%) 29 (6%)

Urinary tract infections 1.000

 No 577 (82%) 498 (83%) 79 (80%) 173 (82%) 404 (82%)

 Yes 123 (18%) 103 (17%) 20 (20%) 37 (18%) 86 (18%)

Asthma 0.534

 No 667 (95%) 572 (95%) 95 (96%) 198 (94%) 469 (96%)

 Yes 33 (5%) 29 (5%) 4 (4%) 12 (6%) 21 (4%)

AKI 0.105

 No 427 (61%) 392 (65%) 35 (35%) 118 (56%) 309 (63%)

 Yes 273 (39%) 209 (35%) 64 (65%) 92 (44%) 181 (37%)

Sedation use 0.637

 No 203 (29%) 170 (28%) 33 (33%) 64 (30%) 139 (28%)

 Yes 497 (71%) 431 (72%) 66 (67%) 146 (70%) 351 (72%)

Vasopressors use 0.560

 No 300 (43%) 251 (42%) 49 (49%) 86 (41%) 214 (44%)

 Yes 400 (57%) 350 (58%) 50 (51%) 124 (59%) 276 (56%)

Diuretics use 0.509

 No 52 (7%) 44 (7%) 8 (8%) 13 (6%) 39 (8%)

 Yes 648 (93%) 557 (93%) 91 (92%) 197 (94%) 451 (92%)

Albumin use 0.437

 No 509 (73%) 425 (71%) 84 (85%) 148 (70%) 361 (74%)

 Yes 191 (27%) 176 (29%) 15 (15%) 62 (30%) 129 (26%)

Glucocorticoids use 1.000

 No 637 (91%) 550 (92%) 87 (88%) 191 (91%) 446 (91%)

 Yes 63 (9%) 51 (8%) 12 (12%) 19 (9%) 44 (9%)

Prone position 0.402

 No 616 (88%) 520 (87%) 96 (97%) 181 (86%) 435 (89%)

Continued
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and RF. For the selection of hyper-parameters in models, we used five fold cross-validation for the selection of 
hyper-parameters, which also helped to effectively prevent the model’s over-fitting.

Model validation
For validation of prediction model, we divided the data randomly into a training set and validation set accord-
ing to a 70–30 split, and then used the resampling method for the internal validation of the prediction model 
in training set. Finally, we performed the validation again in the validation set. We provide additional technical 
information on the methods and parameter settings in the Supplementary material Table 1.

Model performance and explainability
To evaluate our models, we considered three predictive metrics: area under receiver operating characteristic 
(AUROC) curve, Brier score and area under precision recall curve (AUPRC). AUROC is bounded between 0.5 
and 1.0, with higher values being better. The Brier score is the mean squared difference between the predicted 
probability of HFNO failure and the actual outcome (0 or 1 where 1 indicates failure of HFNO). The Brier score 
is bounded between 0 and 1, with lower values being better. We additionally compared the models by plotting 
their receiver operator characteristic (ROC) curves, precision recall (PR) curves and calibration curve.

We applied the Shapley (SHAP) value to explain features in the training set. The SHAP summary, combining 
feature importance with feature effects, was visualized with dot plots to present the distribution of SHAP The 
position on the y-axis was determined by the feature and that on the x-axis by the SHAP value. The features are 
ranked by importance. Moreover, partial dependence plots (PDPs) were created to visualize the average change 
in probability of HFNO failure for all values of a predictor while keeping all other predictors  constant17.

Sample size and statistical analysis
Pmsampsize package (https:// search. r- proje ct. org/ CRAN/ refma ns/ pmsam psize/ html/ pmsam psize. html) in R 
software computes the minimum sample size required for the development of a new multivariable prediction 
model using the criteria proposed by Riley et al.18. Riley et al. lay out a series of criteria the sample size should 
meet. These aim to minimize the over-fitting and to ensure precise estimation of key parameters in the predic-
tion model. Following the parameters set in the pmsampsize package, we set the c-statistic to 0.80, the potential 

Variables Total (n = 700) Success group (n = 601) Failure group (n = 99) Validation set (n = 210) Training set (n = 490) P

 Yes 84 (12%) 81 (13%) 3 (3%) 29 (14%) 55 (11%)

Heart_rate 85.34 (76.11, 95.75)* 84.76 (76.33, 93.59)* 90.52 (73.08, 105.05)* 85.08 (77.14, 96.98)* 85.45 (75.78, 95.60)* 0.873

Temperature 36.71 (36.49, 37.06)* 36.72 (36.49, 37.05)* 36.69 (36.49, 37.17)* 36.73 (36.51, 37.08)* 36.71 (36.49, 37.05)* 0.639

Mean blood pressure 73.42 (68.43, 79.06)* 73.67 (68.67, 78.92)* 72.35 (66.08, 79.97)* 73.15 (67.74, 79.15)* 73.56 (68.72, 78.94)* 0.466

Respiratory rate 18.84 (16.74, 21.64)* 18.64 (16.52, 21.34)* 20.71 (17.73, 24.41)* 18.76 (16.65, 21.53)* 18.87 (16.78, 21.69)* 0.835

WBC 12.00 (8.20, 16.10)* 11.80 (8.20, 15.70)* 13.20 (8.65, 18.15)* 12.35 (8.20, 16.92)* 11.85 (8.30, 15.57)* 0.630

Hb 10.05 (8.80, 11.60)* 10.00 (8.80, 11.50)* 10.30 (9.05, 12.20)* 10.15 (8.90, 11.60)* 10.00 (8.80, 11.67)* 0.779

PLT 179.50 (126.00, 235.00)* 180.00 (128.00, 233.00)* 172.00 (118.00, 252.00)* 179.00 (125.25, 239.25)* 180.00 (126.00, 233.00)* 0.973

ALT 42.00 (31.00, 63.00)* 42.00 (32.00, 62.00)* 49.00 (25.50, 83.00)* 42.00 (31.00, 57.00)* 42.00 (32.00, 64.75)* 0.229

AST 30.00 (20.75, 46.00)* 30.00 (21.00, 46.00)* 38.00 (21.00, 55.50)* 34.50 (22.00, 50.00)* 30.00 (20.00, 46.00)* 0.243

ALB 3.20 (3.00, 3.50)* 3.20 (3.00, 3.60)* 3.20 (3.00, 3.45)* 3.30 (3.00, 3.60)* 3.20 (3.00, 3.50)* 0.084

Glycemia 125.75 (96.00, 164.00)* 125.00 (96.00, 161.00)* 134.00 (95.50, 177.25)* 128.00 (101.25, 172.62)* 124.00 (94.00, 161.00)* 0.100

Cr 17.00 (2.28, 31.25)* 16.00 (2.20, 30.00)* 24.00 (2.55, 41.00)* 18.00 (2.12, 33.00)* 16.00 (2.40, 30.00)* 0.240

BUN 1.60 (0.90, 14.00)* 1.50 (0.90, 13.00)* 2.40 (1.25, 22.50)* 1.65 (0.90, 14.00)* 1.50 (0.90, 13.75)* 0.744

Lactic acid 3.72 (3.15, 4.10)* 3.65 (3.15, 4.05)* 3.90 (3.45, 4.25)* 3.80 (3.20, 4.20)* 3.65 (3.15, 4.10)* 0.160

PT 15.50 (13.60, 18.70)* 15.40 (13.60, 18.20)* 16.20 (13.80, 23.10)* 15.15 (13.40, 18.17)* 15.60 (13.70, 18.90)* 0.111

INR 1.40 (1.20, 1.70)* 1.40 (1.20, 1.70)* 1.50 (1.20, 2.20)* 1.40 (1.20, 1.70)* 1.40 (1.20, 1.80)* 0.195

K+ 4.20 (3.80, 4.70)* 4.20 (3.80, 4.70)* 4.20 (3.85, 4.80)* 4.20 (3.80, 4.60)* 4.20 (3.80, 4.70)* 0.578

Na+ 139.00 (136.00, 141.00)* 139.00 (137.00, 141.00)* 138.00 (134.50, 141.00)* 139.00 (136.00, 141.00)* 139.00 (136.00, 141.00)* 0.656

Ca+ 8.30 (7.80, 8.70)* 8.30 (7.90, 8.70)* 8.20 (7.65, 8.70)* 8.30 (7.80, 8.70)* 8.30 (7.80, 8.70)* 0.871

Oxygenation index 151.00 (135.00, 207.00 )* 154 .00 (139.00, 214.00 )* 133.00 (106.00, 149.75)* 151.00 (134.00, 202.12)* 151.00 (136.00, 207.88)* 0.736

Respiratory failure severity 0.466

 Mild 193 (28%) 188 (31%) 5 (5%) 54 (26%) 139 (28%)

 Moderate 495 (71%) 407 (68%) 88 (89%) 154 (73%) 341 (70%)

 Severe 12 (2%) 6 (1%) 6 (6%) 2 (1%) 10 (2%)

Table 1.  Characteristics of patients in training and testing data set. SOFA Sepsis-related Organ Failure 
Assessment, LODS Logistic Organ Dysfunction Score, SAPSII Simplified Acute Physiology Score, GCS 
Glasgow Coma Score, COPD chronic obstructive pulmonary disease, AKI acute kidney injury, WBC white 
blood cell, Hb hemoglobin, PLT platelet count, ALT alanine aminotransferase, AST aspartate aminotransferase, 
ALB albumin, Cr creatinine, BUN blood urea nitrogen, PT prothrombin time, INR international normalized 
ratio; *Median (Q1, Q3).

https://search.r-project.org/CRAN/refmans/pmsampsize/html/pmsampsize.html
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prediction parameter to 8, and the target event incidence to be 14.1%. Minimum sample size required for new 
model development based on the above parameters inputs was 459, with 65 events. The sample size in the training 
set satisfies the minimum sample size requirement for the development of a new multivariable prediction model.

The Kolmogorov–Smirnov test was used to test the normal distribution for measurement data. Normally 
distributed data were expressed as means ± standard deviation, and the skewed distributed data was reported 
as medians with interquartile (25th–75th) percentiles. The two groups were compared using student t-test or 
Mann–Whitney U tests. Numeric data were expressed as a percentage (%), using χ2 or Fisher’s exact probability 
tests. R software was used for all analyses (R Foundation for Statistical Computing, Vienna, Austria).

Ethics statement
The study was approved by the Ethics Committee of the Affiliated Hospital of Xuzhou Medical University 
(approved number: XYFY2022-KL464).The procedures were followed in accordance with the ethical standards 
of the Ethics Committee of the Affiliated Hospital of Xuzhou Medical University on human experimentation and 
with the Helsinki Declaration of 1975. Due to the retrospective and observational nature of the study, informed 
consent was waived by the Ethics Committee of the Affiliated Hospital of Xuzhou Medical University.

Results
Characteristics of participants
During the study period, 1671 patients diagnosed with ARF were initially enrolled. Following the exclusion 
of 971 patients for various reasons, as detailed in Supplementary Material Fig. 1, the study proceeded with an 
analysis of 700 patients. These patients were divided into two groups: a training set comprising 490 patients and 
a validation set consisting of 210 cases. The general characteristics of these groups are summarized in Table 1. 
There are no statistically significant differences between the training set and the validation set (all P > 0.05). In 
both the training and validation sets, HFNO was failure in 67 (13.7%) of the 490 patients and 32 (15.2%) of the 
210 patients, respectively. Overall, the incidence of HFNO failure across the entire dataset was 14.1%. Consider-
ing the severity based on the oxygenation index, the majority of patients in this study exhibited mild or moderate 
 symptoms3, as detailed in Table 1 and Supplementary Material Fig. 2.

Feature importance
Table 2 shows the top 5 most important variables of the LASSO regression model for training set. Forty-three 
variables from the clinical characteristics were included in the LASSO regression analysis (Fig. 1A,B). We selected 
five non-zero characteristic variables including logistic organ dysfunction score (LODS), Glasgow coma score 
(GCS), prone position, lactic acid, oxygenation index to construct models (Table 2). We plotted the SHAP 
importance plots to reflect the significance of the five features. Each row represents the impact of a feature on 
the outcome of HFNO failure, with higher SHAP values indicating higher likelihood of HFNO failure (see Fig. 2 
for details). The PDPs in Supplementary material Fig. 3 shows that an oxygenation index under 155 or lactic acid 
above 3.5 compared to their median values increases the probability of HFNO failure.

The results of multivariate logistic analysis are presented in Fig. 3. Independent predictors identified by mul-
tivariate logistic regression analysis included LODS (OR = 1.342; 95% CI 1.178–1.529) and oxygenation index 
(OR = 0.971; 95% CI 0.961–0.981).

Model performance
Figure 4 displays the AUROC, Brier score and AUPRC metrics for the different predictive models and using 
different sets of data. In the training set, all models resulted in AUROC on the order of 0.81 to 0.87. There were 
no statistically significant differences between the AUROC for all models through the DeLong’s test (P > 0.05). 
However, only three models in the validation set had AUROC greater than 0.80. Specifically, the RF model’s 
AUROC showed the least difference in the training and validation. To further compare the models, we addition-
ally compared the models by plotting calibration curves and their PR curves. The STACK and RF models have 
lower Brier scores, and their calibration curves also have higher agreement with the 45-degree line. Similarly, 
the RF model’s Brier score showed the least difference in the training and validation sets. The larger AUPRC 
represents the better performance of the model. In training set, only three models reached AUPRC above 0.5, 
which are LR, RF and STACK models respectively. However, in the validation set, RF has a larger AUPRC. Simi-
larly, the RF model’s AUPRC showed the least difference in the training and validation sets. In view of the above 
results analysis, the RF model is deemed superior to the other models.

Finally, we established a dynamic grading system to facilitate the application of the model. The website address 
of the dynamic scoring system is https:// huxia oyi. shiny apps. io/ whole/.

Discussion
ARF remains a leading cause of mortality among patients in ICU. Recently, HFNO has gained prominence in the 
treatment of ARF, effectively reducing the necessity for  IMV19,20. However, the failure of HFNO therapy can lead 
to prolonged ICU stays and increased mortality  rates21. Therefore, early prediction of HFNO failure is crucial 
for identifying patients at higher risk and optimizing their treatment strategies.

Since the COVID-19 outbreak in 2020, the European Society for Critical Care has released clinical practice 
guidelines for  HFNO22. In 2021, several Chinese medical associations also issued expert consensus guidelines 
on HFNO’s clinical  use23. These guidelines emphasize close monitoring of patients’ vital signs within the first 
1–2 h of HFNO application. They recommend upgrading respiratory support if failure predictors are observed, 
including a respiratory rate over 35 breaths/min,  SpO2 below 88%, a ROX index under 2.85, contradictory 
thoracic and abdominal movements, or the use of accessory respiratory muscles. Although these guidelines are 

https://huxiaoyi.shinyapps.io/whole/
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based on moderate-level evidence, there remains a gap in research to enhance this evidence level. The relatively 
recent introduction of HFNO as a treatment limits the availability of extensive data. This study aims to contribute 
valuable insights for monitoring HFNO, addressing this data scarcity.

Our data analysis reveals two crucial insights regarding the prediction of HFNO failure in ARF patients. 
Firstly, all models exhibit high discrimination in the training set, with some achieving an AUROC between 0.80 
and 0.85. Secondly, the ability of these models to resist over-fitting, despite the inclusion of numerous features, is 
key to our methodology’s  effectiveness24. Traditional risk model development often follows the “one-in-ten” rule 
to limit features and prevent over-fitting, a constraint primarily due to the limitations of classic logistic regression. 
This traditional approach requires significant manual intervention and expert knowledge to exclude unneces-
sary features. ML algorithms can be helpful in developing more precise prognostication models that integrate 
complex interactions at a higher dimensional  level25. Physicians now have access to a variety of resources to learn 
about ML fundamentals and  techniques26,27. In our study’s training set, the classical logistic regression model 
showed a higher AUROC, but it also exhibited the largest drop in the validation set, with a 0.099 AUROC differ-
ence, suggesting potential over-fitting. Our findings further confirm that ML models are generally more robust 
than traditional logistic regression models. However, despite their advanced algorithmic power, ML models, 
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Figure 1.  Demographic and clinical feature selection using the LASSO regression. (A) The selection of the 
tuning parameter (lambda) in the LASSO model used fivefold cross-validation with the minimum criteria. The 
relationship curve between partial likelihood deviation (binomial deviation) and log (lambda) was plotted. 
Dotted vertical lines were drawn at the optimal values by using the minimum criteria and the 1 standard error 
(SE) of the minimum criteria (the 1-SE criteria). (B) LASSO coefficient profiles of the 44 features. A coefficient 
profile plot was produced against the log (lambda) sequence. Vertical line was drawn at the value selected using 
fivefold cross-validation, where optimal lambda resulted in 5 features with non-zero coefficients. LASSO least 
absolute shrinkage and selection operator.
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except LR, are often “black-box” algorithms, offering high algorithmic capabilities but low  interpretability28. 
This raises several concerns: (1) Clinicians may find it challenging to explain ML-based decisions, hindering 
the adoption of ML for critical decisions, and (2) Emerging regulations and concerns about ML emphasize the 
need for interpretability and transparent predictive reasoning. To address these issues, our study includes forest 
plots of multivariate logistic analysis and SHAP importance plots to better elucidate the models’ characteristics.

In our study, we analyzed a total of 700 patients, among whom 99 cases (14.1%) experienced HFNO failure, 
as detailed in Table 1. The low failure rate of HFNO in our study can be attributed to four primary factors: (1) 

GCS

Lactic acid

LODS

Prone position

Oxygenation index

−0.25 0.00
SHAP value

fe
at

ur
e

Low

High
Feature value

Figure 2.  SHAP importance plots of the HFNO failure for the ML model. The position on the y-axis was 
determined by the feature and that on the x-axis by the SHAP value. The length of the SHAP value indicates the 
importance of the features. LODS Logistic Organ Dysfunction Score, GCS Glasgow Coma Score; SHAP, Shapley.

Table 2.  LASSO regression results of important variables related to HFNOT failure (training dataset).

Variables Coefficient Lambda.min

LODS 0.235 0.027

GCS − 0.021

Prone position − 0.053

Lactic 0.030

Oxygenation index − 0.016

0 0.5 1 1.5
OR

LODS 1.342(1.178−1.529) <0.001
GCS 0.937(0.851−1.031) 0.183

Prone position 0.221(0.044−1.105) 0.066
Lactic acid 1.124(0.984−1.282) 0.083

Oxygenation index 0.971(0.961−0.981) <0.001

Variables OR(95% CI) P value

Figure 3.  Forest plot of multivariate logistic regression analysis. LODS Logistic Organ Dysfunction Score, GCS 
Glasgow Coma Score, SHAP Shapley, OR odds ratio, CI confidence interval.
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Figure 4.  A series of performance metrics in the ML models. (A,B) The receiver operating characteristic (ROC) 
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The patients with respiratory failure included in our study predominantly had mild or moderate symptoms, 
evidenced by a median oxygenation index of 151.00. (2) The patient cohort was relatively young, with a median 
age of 49 years. (3) The retrospective nature of the study introduces inherent biases. (4) The use of HFNO was 
often complemented by the application of prone positioning. Therefore, the success rate of HFNO observed in 
our study surpasses that reported in previous  research29,30.

The independent risk factors related to HFNO failure including LODS and oxygenation index were identified 
(Fig. 3). Among these features, oxygenation index was the strongest factor for HFNO failure in patients with ARF, 
and its SHAP value is the higher among several features (Fig. 2). Therefore, patients with lower oxygenation index 
also had a higher risk of failure in HFNO. Previous studies on the prognosis of pulmonary infection induced 
sepsis showed that oxygenation index was an independent risk factor for predicting in-hospital  mortality31,32. 
The results of Liu et al.33 also confirmed that oxygenation index was an independent risk factor for patients with 
non-invasive ventilation failure. LODS is an organ function-focused scoring system that reflects the severity of 
multiple organ dysfunction syndrome (MODS)34. This study also found that LODS was a independent risk fac-
tor for the failure of HFNO. In addition to the oxygenation index, it is also an important feature in ML models 
(see Fig. 3 for details). Finally, the ML model was transformed into a dynamic scoring system, which further 
facilitated the use of this model and patient’s understanding of disease prognosis.

In this study, there were several limitations that are inherent in these types of retrospective, ML projects. 
First of all, this study uses retrospective data, and should continue to conduct prospective validation research. 
Secondly, external validation data from other institutions can further determine the extrapolation of this model. 
Thirdly, although the ultimately validated ML model was robust and accurate, the size of data used was still 
relatively small. Fourthly, variable selection was exclusively conducted using the LASSO method. We did not 
employ other variable selection algorithms like RF, Boruta, etc., which could potentially have further enhanced 
the model’s performance. Fifth, patients who had multiple ICU admissions were excluded, and only those aged 
between 18 and 89 years were included. The reasons for this are as follows: (1) To avoid the impact of duplicate 
data; (2) To maintain the independence of the dataset; (3) To reduce the potential for confounding factors; (4) 
Children or patients older than 90 years are difficult to cooperate with high-flow nasal catheter oxygen therapy. 
Their poor compliance with HFNO could potentially bias the outcomes. Finally, many features associated with 
HFNO failure are complex and there are far more factors to be investigated and used to predict the failure of 
HFNO. Thus, picture features such as chest X-ray computer tomography should be included to improve the 
model in the future.

Conclusion
In this study, this work demonstrates the ability of ML techniques to produce clinically useful models for pre-
dicting state of HFNO.

The study may assist risk management of HFNO with improved patient centered and personalized care.

Data availability
The datasets used and analysed in this study may be obtained from the corresponding author upon reasonable 
request.
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