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Efficient synthesis of novel  
thiadiazolo[2,3‑b] 
quinazolin‑6‑ones catalyzed  
by diphenhydramine  
hydrochloride‑CoCl2⋅6H2O deep  
eutectic solvent
Mehri Moeini Korbekandi 1, Iraj Mohammadpoor‑Baltork 1*, Majid Moghadam 1, 
Shahram Tangestaninejad 1, Valiollah Mirkhani 1 & Behrouz Notash 2

In this research, a new Lewis acid‑based deep eutectic solvent (LA‑DES) was synthesized using 
diphenhydramine hydrochloride and  CoCl2·6H2O, (2[HDPH]:CoCl4

2−), and identified by FT‑IR and 
1HNMR techniques. The physicochemical properties of this LA‑DES, such as thermal behavior, 
thermal stability, and solubility in common solvents were also investigated. The catalytic ability 
of 2[HDPH]:CoCl4

2− was ascertained in the efficient synthesis of a novel array of thiadiazolo[2,3‑b]
quinazolin‑6‑one scaffolds via a one‑pot three‑component reaction of dimedone/1,3‑
cyclohexanedione, aldehydes, and 5‑aryl‑1,3,4‑thiadiazol‑2‑amines/3‑(5‑amino‑1,3,4‑thiadiazol‑
2‑yl)‑2H‑chromen‑2‑one under solvent‑free conditions. This catalyst was also successfully utilized 
for the synthesis of mono‑ and bis‑thiadiazolo[2,3‑b]quinazolin‑6‑ones from dialdehydes or bis‑
1,3,4‑thiadiazol‑2‑amine. The simplicity of enforcement, short reaction time, avoidance of toxic 
organic solvents, scalability of the synthesis procedure, excellent atom economy, high reaction 
mass efficiency, and low E‑factor are other outstanding advantages of this newly developed method. 
Furthermore, due to the convenient recovery and reuse of LA‑DES, this protocol is economically 
justified and environmentally friendly.

Green chemistry and sustainability are two crucial concepts that have gained particular attention in chemical 
 processes1. In this respect, designer solvents have been introduced and developed as excellent substitutes for con-
ventional and toxic solvents. Deep eutectic solvents (DESs) are a new generation of designer solvents, generally 
prepared by mixing substances capable of forming hydrogen  bonds2. The formation of hydrogen bonds will be 
associated with charge delocalization, which causes the melting point of the DES to be lower than any of the raw 
 materials3,4. Compared to their previous generation, ionic liquids (ILs), DESs are more cost-efficient, relatively 
non-toxic, more biodegradable, and have a more straightforward preparation  process5–10. Among the different 
types of DESs, Lewis acid-based (LA-DES) and bio-based ones have been extensively used in promoting organic 
 transformations11–16. To prepare LA-DES, the first-row transition metals can be used as Lewis  acid13,17. Cobalt is 
an attractive candidate for catalysis in chemical  syntheses18. On the other hand, the synthesis of LA-DES from 
 CoCl2·6H2O as one of the universally used salts of cobalt can improve its catalytic  activity19. Moreover, the high 
efficiency, easy recovery, and reusability of this LA-DES make this non-corrosive liquefy catalyst superior to 
other homogeneous liquid acid  catalysts19.

LA-DESs have been used as the  solvent20–24 and/or  catalyst25–30 in many multicomponent reactions for the 
synthesis of heterocyclic compounds which is of paramount interest due to their potential pharmaceutical and 
biological  activities31. Particularly, fused thiadiazoloquinazolines are a valuable class of fused N- and S-containing 
heterocyclic compounds, showing outstanding  anticancer32,  antifungal33,  antibacterial34, and anti-inflamma-
tory35 activities. Up to now, due to the significance of fused thiadiazoloquinazolines, several methods have been 
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developed for the synthesis of these  heterocycles36–43 However, they suffer from certain drawbacks such as mul-
tistep reaction sequences, prolonged reaction times, low yield, use of costly starting materials, corrosive reagents, 
and toxic solvents, as well as non-reusable catalysts which led to serious environmental and safety problems. 
Thus, the development of a more environmentally friendly and efficient procedure using a green and recoverable 
catalyst for the preparation of these worthy heterocyclic compounds is still vitally required.

Due to the synthesis of complex and structurally diverse bioactive heterocyclic compounds, multicomponent 
reactions (MCRs) play a paramount role in organic and medicinal  chemistry44. Moreover, high convergence, 
facile and simple performance, pot, atom, step, and cost economy (PASCE), bond-forming-index (BFI), and 
minimized waste generation are unique advantages of MCRs which make them preferable to the classical step-
wise  fashions45,46. Due to the observance of the principles of green chemistry, MCRs have gained a special place 
in organic  synthesis47.

As a part of our ongoing research on the synthesis of novel annulated heterocycles using green and reusable 
catalytic systems via multicomponent  strategy48–51, we wish to describe an efficient and feasible method for 
the one-pot three-component synthesis of thiadiazolo[2,3-b]quinazolin-6-ones and also their mono- and bis-
derivatives via the reaction of dimedone/1,3-cyclohexanedione, aldehydes/dialdehydes, and 5-substituted-1,3,4-
thiadiazol-2-amines/bis-1,3,4-thiadiazol-2-amine using 2[HDPH]:CoCl4

2− as a novel and new LA-DES under 
solvent-free and green conditions (Fig. 1).

Results and discussion
Synthesis and characterization of 2[HDPH]:CoCl4

2−

As mentioned in the experimental section, the LA-DES, (2[HDPH]:CoCl4
2−) was easily formed by using a mix-

ture of diphenhydramine hydrochloride and  CoCl2·6H2O in a 2:1 molar ratio and identified by FT-IR, 1HNMR, 
DSC, and TGA/DTG techniques.

The functional groups of the desired LA-DES were recognized by FT-IR spectroscopy (Fig. 2). In the FT-IR 
spectrum of  CoCl2·6H2O, the broad bands at 3500 and 1598  cm−1 are related to the vibrational modes of surface 
 water19. In the spectra of  [HDPH]Cl50 and [HDPH]:CoCl4

2−, the specific bands were observed at 3029  cm−1  (sp2 
C–H) and 1111  cm−1 (C–O–C). The characteristic bands at 1454 and 1386  cm−1 are related to  CH2 and  CH3 
stretching vibrations, respectively. Remarkably, the bands at 2400–2700  cm−1 (–N+–H) are weakened in the LA-
DES spectrum, which is good evidence for the formation of hydrogen bonding.

In the 1HNMR spectrum of 2[HDPH]:CoCl4
2−, the aromatic hydrogens appeared as multiplet in the range 

of 7.42–7.31 ppm. The peaks at 4.70, 4.54, and 4.27 ppm are related to  H3,  H2, and  H1
, respectively. Surprisingly, 

All the mentioned peaks are down-fielded compared to the similar peaks in the [HDPH]Cl  spectrum50. Also, 
the characteristic peak corresponding to –N+–H in 2[HDPH]:CoCl4

2− shifted from 12.58 to 13.21 ppm and 
becomes wider (Fig. 3). These observations indicate significant hydrogen bond formation in 2[HDPH]:CoCl4

2−.
Differential scanning calorimetry (DSC) was effectively used to diagnose the thermal behavior of 

2[HDPH]:CoCl4
2−. The melting point of 2[HDPH]:CoCl4

2− in the DSC curve was observed at around − 2 °C 
(Fig. 4), which is lower than those of the raw materials (the melting points of [HDPH]Cl and  CoCl2⋅6H2O are 
169 °C, and 56 °C, respectively). Such a depression of melting point can be related to the formation of hydrogen 
bonds in 2[HDPH]:CoCl4

2− deep eutectic mixture.
To examine the thermal stability of the 2[HDPH]:CoCl4

2−, TGA analysis was employed. According to Fig. 5, 
the new LA-DES has good thermal stability up to about 329 °C; weight losses of only 5% at 136.1 °C and 10% at 

Figure 1.  Synthesis of thiadiazolo[2,3-b]quinazolin-6-one catalyzed by 2[HDPH]:CoCl4
2−.
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232.9 °C were observed. The residual weight at 500 ℃ is 15.90%, which matches well with the theoretical  CoCl2 
weight % (15.80%).

Acidity is one of the most important physical properties of DESs, making them applicable for industrial usage. 
To determine the acidity of DES, FT-IR spectroscopy and pyridine as a probe are commonly  utilized28. For this 
purpose, the FT-IR spectra of pyridine, 2[HDPH]:CoCl4

2− and pyridine-2[HDPH]:CoCl4
2− were  investigated52. 

In the FT-IR spectrum of pyridine-2[HDPH]:CoCl4
2− (Fig. 6a), the characteristic band at 1446  cm−1, indicates 

that 2[HDPH]:CoCl4
2− has Lewis acidic sites which interact with pyridine groups. Also, the band appeared at 

1635  cm−1 in the FT-IR spectrum of pyridine-2[HDPH]:CoCl4
2− could be attributed to the formation of pyri-

dinium ions  ([PyH]+) upon the interaction of pyridine with Brønsted acid sites of the LA-DES3,50. Such an interac-
tion has been displayed in Fig. 6b. To confirm the acidity, pH of the solutions of  CoCl2⋅6H2O (4 ×  10−3 mol  L−1), 
[HDPH]Cl (8 ×  10–3 mol  L−1), and 2[HDPH]:CoCl4

2− (8 ×  10–3 mol  L−1) were measured and found to be 5.17, 

Figure 2.  FT-IR spectra: (a)  CoCl2⋅6H2O (magenta), (b) [HDPH]Cl (green), and (c) 2[HDPH]:CoCl4
2− (blue).

Figure 3.  1HNMR spectra (400 MHz,  CDCl3) of: (a) [HDPH]Cl (green) and (b) 2[HDPH]:CoCl4
2− (blue).



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1451  | https://doi.org/10.1038/s41598-024-52017-3

www.nature.com/scientificreports/

5.39, and 4.77, respectively. Consequently, 2[HDPH]:CoCl4
2− can be applied as an efficient acidic catalyst for 

useful organic transformations.

Optimization of the reaction conditions
For the initial investigation, the reaction between 4-methylbenzaldehyde, 5-phenyl-1,3,4-thiadiazol-2-amine, 
and dimedone was selected as a model to optimize the reaction conditions. In the absence of the catalyst, the 
desired three-component product 4a was obtained with only 5% yield even after 4 h at 120 ℃ under solvent-free 
conditions (Table 1, entry 1). Then, the titled reaction was performed in the presence of 0.2 mmol of catalysts 
including [HDPH]Cl,  CoCl2·6H2O, and different LA-DESs at 120 ℃ under solvent-free conditions (Table 1, 
entries 2–8). Among these, 2[HDPH]:CoCl4

2− provided the highest yield (90%) of the desired product 4a (Table 1, 
entry 8). Different molar ratios of [HDPH]Cl to  CoCl2·6H2O were examined (Table 1, entries 8–10); 2:1 molar 
ratio was found to be more suitable for this transformation (Table 1, entry 8). It is noteworthy that increasing 
the loading of 2[HDPH]:CoCl4

2− to 0.3 mmol did not improve the product yield, but decreasing the loading of 
the catalyst to 0.1 mmol led to a lower yield of the product (Table 1, entries 11, 12). In addition, the reaction was 
also tested at various temperatures (Table 1, entries 8, 13–15), and 120 ℃ was discovered to be more suitable 
for this transformation. Consequently, the optimum reaction conditions for the synthesis of target product 4a 
were attained by using 0.2 mmol of 2[HDPH]:CoCl4

2− at 120 ℃ under solvent-free conditions (Table 1, entry 8).

Synthesis of thiadiazolo[2,3‑b]quinazolin‑6‑one derivatives
The applicability and scope of this protocol to the synthesis of thiadiazolo[2,3-b]quinazolin-6-one deriva-
tives were then checked under optimal conditions. As shown in Fig.  7, the three-component reaction 
between dimedone/1,3-cyclohexanedione, 5-aryl-1,3,4-thiadiazol-2-amines and aromatic aldehydes with 

Figure 4.  DSC curve of 2[HDPH]:CoCl4
2−.

Figure 5.  Thermogravimetric analysis and derivative thermogravimetry (TGA/DTG) of 2[HDPH]:CoCl4
2−.
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Figure 6.  FT-IR spectra: (a) Pyridine (red), 2[HDPH]:CoCl4
2− (blue), and 2[HDPH]:CoCl4

2− in pyridine 
(green). (b) The interaction between the Lewis and Brønsted acid sites of the catalyst with pyridine.

Table 1.  Optimization of the reaction conditions for the model reaction.  a Reaction conditions: dimedone 
1a (1 mmol), 4-methyl benzaldehyde 2a (1 mmol), and 5-phenyl-1,3,4-thiadiazol-2-amine 3a (1 mmol) was 
performed under solvent-free conditions for 120 min at different conditions. b Isolated yield.

Entrya Catalyst (mmol) Molar ratio Abbreviation Temperature (℃) Yield (%)b

1 – – – 120 5

2 [HDPH]Cl (0.2) – – 120 12

3 CoCl2⋅6H2O (0.2) – – 120 31

4 [HDPH]Cl:CuCl2⋅2H2O (0.2) 2:1 2[HDPH]:CuCl4
2− 120 73

5 [HDPH]Cl:MnCl2⋅2H2O (0.2) 2:1 2[HDPH]:MnCl4
2− 120 50

6 [ChCl]:CuCl2⋅2H2O (0.2) 2:1 2[Ch]:CuCl4
2− 120 51

7 [ChCl]:CoCl2⋅6H2O (0.2) 4:1 2[ChCl]0.2[Ch]:CoCl4
2− 120 69

8 [HDPH]Cl:CoCl2⋅6H2O (0.2) 2:1 2[HDPH]:CoCl4
2− 120 90

9 [HDPH]Cl:CoCl2⋅6H2O (0.2) 3:1 [HDPH]Cl.2[HDPH]:  CoCl4
2− 120 85

10 [HDPH]Cl:CoCl2⋅6H2O (0.2) 4:1 2[HDPH]Cl.2[HDPH]:  CoCl4
2− 120 87

11 [HDPH]Cl:CoCl2⋅6H2O (0.1) 2:1 2[HDPH]:CoCl4
2− 120 68

12 [HDPH]Cl:CoCl2·6H2O (0.3) 2:1 2[HDPH]:CoCl4
2− 120 90

13 [HDPH]Cl:CoCl2·6H2O (0.2) 2:1 2[HDPH]:CoCl4
2− 130 90

14 [HDPH]Cl:CoCl2⋅6H2O (0.2) 2:1 2[HDPH]:CoCl4
2− 100 43

15 [HDPH]Cl:CoCl2⋅6H2O (0.2) 2:1 2[HDPH]:CoCl4
2− 80 20
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electron-donating and electron-withdrawing groups at various positions of aromatic ring proceeded smoothly 
in the presence of 2[HDPH]:CoCl4

2− at 120 ℃ under solvent-free conditions which afforded the corresponding 
thiadiazolo[2,3-b]quinazolin-6-ones 4a–4s in 73–96% yields. Under the same reaction conditions, 6-chloro-4-
oxo-4H-chromene-3-carbaldehyde as a heterocyclic aldehyde and 3-phenyl propanal, as an aliphatic aldehyde 
gave the desired products 4t, 4u, and 4v in 85%, 86%, and 75% yields, respectively.

It is also interesting to note that a scale-up synthesis of 4a was carried out under these conditions. On a 5 mmol 
scale, dimedone reacted with 4-methylbenzaldehyde and 5-phenyl-1,3,4-thiadiazol-2-amine in the presence 
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of 2[HDPH]:CoCl4
2− at 120 ℃ under solvent-free conditions to afford the corresponding thiadiazolo[2,3-b]

quinazolin-6-ones 4a in 88% yields.
To further demonstrate the efficacy of the present method, the synthesis of thiadiazolo[2,3-b]quinazolin-6-one 

derivatives was performed under optimal conditions using 3-(5-amino-1,3,4-thiadiazol-2-yl)-2H-chromen-2-one 
in place of 5-aryl-1,3,4-thiadiazol-2-amine and the corresponding products 6a–6d were obtained in 71–85% 
yields (Fig. 8).

To spotlight the attractive performance of this catalytic system, mono- and bis-thiadiazolo[2,3-b]quinazolin-
6-one scaffolds were prepared from different dialdehydes. As it is evident from Fig. 9, when dimedone/1,3-
cyclohexanedione (1 mmol) reacted with 5-aryl-1,3,4-thiadiazol-2-amines (1 mmol) and dialdehydes (1 mmol) 
under the optimized conditions, the desired mono-thiadiazolo[2,3-b]quinazolin-6-one scaffolds were selectively 
produced in 65–75% yields. Also, the corresponding bis-thiadiazolo[2,3-b]quinazolin-6-ones were achieved in 
60–65% yields by using 2 mmol dimedone/1,3-cyclohexanedione, 2 mmol 5-aryl-1,3,4-thiadiazol-2-amines, and 
1 mmol dialdehydes under the same conditions.

To reveal further utility of the current method, mono- and bis-thiadiazolo[2,3-b]quinazolin-6-ones were 
synthesized under optimal conditions using bis-1,3,4-thiadiazol-2-amine in place of dialdehyde. As observed in 
Fig. 10, the reaction of dimedone with aryl aldehyde and 5,5′-(butane-1,4-diylbis(sulfanediyl))bis(1,3,4-thiadi-
azol-2-amine) in 1:1:1 and 2:2:1 molar ratios in the presence of 2[HDPH]:CoCl4

2− at 120 ℃ under solvent-free 
conditions proceeded efficiently to generate the corresponding mono- and bis-thiadiazolo[2,3-b]quinazolin-
6-ones in 60–76% and 57–70% yields, respectively. Finally, it should be stressed that all the above-mentioned 
findings reveal the brilliant eligibility and applicability of this catalytic system in the synthesis of these vital fused 
heterocyclic compounds.

The structures of all the synthesized compounds were elucidated by FT-IR, 1H NMR, and 13C NMR spectra 
as well as elemental analysis. Furthermore, the structure of 4s was confirmed by single crystal X-ray analysis 
(Fig. 11; CCDC 2297765, Tables S1 and S2).

A plausible reaction mechanism for the synthesis of 4a in the presence of 2[HDPH]:CoCl4
2− is illustrated in 

Fig. 12. Initially, Knoevenagel condensation between the enol form of dimedone 1 and aldehyde 2 activated by 
the catalyst gives intermediate Ӏ. Then, LA-DES catalyzed Michael addition of 5-aryl-1,3,4-thiadiazol-2-amine 
3 to intermediate Ӏ resulting in the formation of intermediate II, which is transformed to intermediate IIӀ after 
keto-enol tautomerism. Next, intermediate ӀV is formed by the cyclization of intermediate IIӀ in the presence of 
2[HDPH]:CoCl4

2−. Finally, the elimination of water from intermediate ӀV affords the final product 4a, regenerat-
ing LA-DES, which can be used for the next catalytic cycle.

Catalyst recycling and reuse
Due to the atom economy, easy preparation, recovery, and reuse of DESs, they are considered green and sustain-
able solvents and catalysts in organic reactions. In this regard, the recyclability of the 2[HDPH]:CoCl4

2− was 
checked in the model reaction. After the consumption of precursors, the mixture was cooled to room tem-
perature, water was added, and stirred to dissolve LA-DES. The resulting precipitate was collected by simple 
filtration followed by washing with water. The filtrate was evaporated at 80 °C under vacuum and the recovered 
LA-DES was reused for the subsequent cycle. As can be seen in Fig. 13a, the catalyst is reusable for up to six 
cycles without noticeable loss in its activity. Comparison of the FT-IR (Fig. 13b) and 1H-NMR spectra (Fig. 14) 
of the fresh and recovered LA-DES shows that the catalyst is stable during the reaction which is very important 
from the practical point of view.

Green chemistry metric evaluation
To introduce the existing method as an eco-friendly and green synthetic path for the preparation of 
thiadiazolo[2,3-b]quinazolin-6-one scaffolds, a number of green metric  factors50,53–56 were calculated for the 
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synthesized compounds (Figs. 15 and 16). In this respect, effective mass yield (EMY), and reaction mass effi-
ciency (RME) for all the synthesized compounds were calculated and found to be in the range of 52.74–89.69%. 
To show the eco-compatibility and the atom economy of the present protocol, the E-factor, and atom economy 
(AE) were also determined which were found to be in ranges of 0.11–0.90 g/g and 90.27–96.18%, respectively. 
Due to the elimination of only water molecules in the present method, excellent results were obtained for the 
E-factor and atom economy. Also, the calculated atom efficiency (AEf), optimum efficiency (OE), and carbon 
efficiency (CE) for this procedure were up to 89.64%, 96.06%, and 96%, respectively. The obtained data together 
with the recoverability of the catalyst and solvent-free conditions introduce this protocol as a green and environ-
mentally benign pathway for the preparation of thiadiazolo[2,3-b]quinazolin-6-ones. The detailed calculations 
are presented in the Supporting Information.

Experimental
General information
The chemicals were purchased from Fluka and Merck chemical companies. 5-aryl-1,3,4-thiadiazol-2-amines, 
3-(5-amino-1,3,4-thiadiazol-2-yl)-2H-chromen-2-one, 5,5′-(butane-1,4-diylbis(sulfanediyl))bis(1,3,4-thiadiazol-
2-amine) and 2,2′-(butane-1,4-diylbis(oxy))dibenzaldehyde were prepared similar to the reported  methods57–60. 
Melting points were determined using a Stuart Scientific SMP2 apparatus. FT-IR spectra were recorded on a 
Nicolet-Impact 400D spectrophotometer. 1H and 13C NMR (400 and 100 MHz) spectra were recorded on a Bruker 
Avance 400 MHz spectrometer using  CDCl3 solvent. Elemental analysis was performed on a LECO, CHNS-
932 analyzer. Thermogravimetric and derivative thermogravimetric analysis (TGA/DTG) was carried out on a 
Perkin-Elmer STA 6000 instrument under nitrogen flow at a uniform heating rate of 10 ℃  min−1 in the range of 
30–600 ℃. Differential scanning calorimetry (DSC) was carried out with a TA Instrument Model DSC13-setaram 
under a nitrogen atmosphere with a scan rate of 10 ℃  min−1 in the range − 60 to 20 ℃.

General procedure for the synthesis of Lewis acid‑based deep eutectic solvents (LA‑DESs)
Diphenhydramine hydrochloride was mixed with the metal chloride hydrate at the specified molar ratio (Table 2) 
and heated up to 90 ℃ with mild stirring until it turned into a transparent liquid. The synthesized LA-DES, after 
cooling, was utilized without any further purification.
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Figure 11.  X-ray crystallographic structure of 4s.
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Figure 13.  (a) Recovery and reuse of the catalyst for the synthesis of 4a. (b) FT-IR spectra of fresh (blue) and 
reused (pink) of 2[HDPH]:CoCl4

2−.
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Synthesis of thiadiazolo[2,3‑b]quinazolin‑6‑ones catalyzed by 2[HDPH]:CoCl4
2−

In a screw-cap glass tube with a magnetic stirrer, a mixture of dimedone/1,3-cyclohexanedione 1 (1 mmol), 
aldehyde 2 (1 mmol), 5-substituted-1,3,4-thiadiazol-2-amine 3 or 5 (1 mmol) and 2[HDPH]:CoCl4

2− (0.2 mmol) 
was heated at 120 ℃ under solvent-free conditions for the appropriate time mentioned in Figs. 7 and 8. Upon 
consumption of the precursors as depicted by TLC (eluent: n-hexane/EtOAc, 2:1), the reaction mixture was 
allowed to cool to room temperature. To dissolve 2[HDPH]:CoCl4

2−, water (5 mL) was added, and the resulting 
solid crude product was separated by simple filtration, washed with water (5 mL), dried, and crystallized from 
ethyl acetate to afford the pure product. In some cases, chromatography on silica gel (eluent: n-hexane/EtOAc, 
2:1) is required to obtain the pure product.

Figure 14.  1H-NMR spectra of fresh (blue) and reused (pink) of 2[HDPH]:CoCl4
2−.

Figure 15.  Schematic diagram of calculated green metrics values, AEf, OE, and EMY for the synthesized 
compounds (4a-12c).
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Synthesis of mono and bis‑thiadiazolo[2,3‑b]quinazolin‑6‑ones from dialdehyde catalyzed by 
2[HDPH]:CoCl4

2−

In a screw-cap glass tube with a magnetic stirrer, a mixture of dimedone/1,3-cyclohexanedione 1 (1 mmol), 
dialdehyde 7 (1 mmol), 5-aryl-1,3,4-thiadiazol-2-amine 3 (1 mmol) and 2[HDPH]:CoCl4

2− (0.2 mmol) was 
heated at 120 ℃ under solvent-free conditions for the specified time demonstrated in Fig. 9. After completion 
of the reaction (monitored by TLC; eluent: n-hexane/EtOAc, 2:1), the workup was carried out according to the 
procedure used for thiadiazolo[2,3-b]quinazolin-6-ones to afford the pure mono-derivatives 8a–8d in 70–75% 
yields. For the synthesis of bis-thiadiazolo[2,3-b]quinazolin-6-ones, dimedone/1,3-cyclohexanedione 1 (1 mmol) 
reacted with dialdehyde 7 (0.5 mmol) and 5-aryl-1,3,4-thiadiazol-2-amine 3 (1 mmol) in the presence of LA-DES 
(0.2 mmol) and the mixture was heated at 120 ℃ under solvent-free conditions. The reaction progress was 
checked by TLC (eluent: n-hexane/EtOAc, 2:1). The workup and purification were performed according to the 
above-mentioned procedure to furnish the desired products 9a-9d in 60–65% yields (Fig. 9).

Synthesis of mono and bis‑thiadiazolo[2,3‑b]quinazolin‑6‑ones from bis‑1,3,4‑thiadia‑
zol‑2‑amine catalyzed by 2[HDPH]:CoCl4

2−

In a screw-cap glass tube with a magnetic stirrer, dimedone 1 (1 mmol), aldehyde 2 (1 mmol), and 5,5′-(butane-
1,4-diylbis(sulfanediyl))bis(1,3,4-thiadiazol-2-amine) 10 (1 mmol) were added to 2[HDPH]:CoCl4

2− (0.2 mmol) 
and the mixture was heated at 120 ℃ under solvent-free conditions for the specified time indicated in Fig. 10. 
On completion of the reaction (monitored by TLC analysis; eluent: n-hexane/EtOAc, 2:1), the workup was car-
ried out according to the procedure for the preparation of thiadiazolo[2,3-b]quinazolin-6-one and the desired 
pure product 11a–11c were obtained in 60–76% yields. All the steps for the synthesis of bis-thiadiazolo[2,3-b]
quinazolin-6-ones (12a–12c, 57–70%) from bis-1,3,4-thiadiazol-2-amine and their purification were the same as 

Figure 16.  Radar plot of evaluated green chemistry metrics for compounds (4a-12c).

Table 2.  The states of different catalysts.

Entry Catalyst Ratio State at Room Temperature

1 [HDPH]Cl:CoCl2·6H2O 1:2 No clear melt

2 [HDPH]Cl:CoCl2·6H2O 1:1 No clear melt

3 [HDPH]Cl:CoCl2·6H2O 2:1 Liquid

4 [HDPH]Cl:CoCl2·6H2O 3:1 Liquid

5 [HDPH]Cl:CoCl2·6H2O 4:1 Liquid

6 [HDPH]Cl:CoCl2·6H2O 5:1 No clear melt

7 [HDPH]Cl:NiCl2·6H2O 2:1 No clear melt

8 [HDPH]Cl:CuCl2·2H2O 2:1 Liquid

9 [HDPH]Cl:MnCl2·2H2O 2:1 Liquid

10 [HDPH]Cl:MgCl2·6H2O 2:1 White solid
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those of mono-thiadiazolo[2,3-b]quinazolin-6-ones except that 0.5 mmol of 5,5′-(butane-1,4-diylbis(sulfanediyl))
bis(1,3,4-thiadiazol-2-amine) reacted with 1 mmol of each dimedone 1 and aldehyde 2 (Fig. 10).

Conclusions
In summary, an efficient, convenient, green, and straightforward protocol has been developed for the preparation 
of a series of thiadiazolo[2,3-b]quinazolin-6-ones via a one-pot, single-step, multicomponent reaction of 
dimedone/1,3-cyclohexanone, aldehydes, and 5-aryl-1,3,4-thiadiazol-2-amines/3-(5-amino-1,3,4-thiadiazol-
2-yl)-2H-chromen-2-one) in the presence of 2[HDPH]:CoCl4

2− as an LA-DES under solvent-free conditions. 
This effective process is also applicable to the synthesis of mono- and bis-thiadiazolo[2,3-b]quinazolin-6-ones 
from dialdehydes or bis-1,3,4-thiadiazol-2-amine. High to excellent yields, high reaction rates, avoiding toxic 
organic solvents, operational simplicity, easy separation and recyclability of the catalyst, large-scale synthetic 
applicability, formation of water as green waste, excellent atom economy, high reaction mass efficiency, and low 
E-factor are outstanding features of this protocol.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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