
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1920  | https://doi.org/10.1038/s41598-024-51989-6

www.nature.com/scientificreports

Subtle variation in sepsis‑III 
definitions markedly influences 
predictive performance 
within and across methods
Samuel N. Cohen 1,4, James Foster 7, Peter Foster 4, Hang Lou 2, Terry Lyons 1, 
Sam Morley 1, James Morrill 1, Hao Ni 2*, Edward Palmer 3, Bo Wang 4,5, Yue Wu 6, 
Lingyi Yang 1,4 & Weixin Yang 1

Early detection of sepsis is key to ensure timely clinical intervention. Since very few end‑to‑
end pipelines are publicly available, fair comparisons between methodologies are difficult if not 
impossible. Progress is further limited by discrepancies in the reconstruction of sepsis onset time. This 
retrospective cohort study highlights the variation in performance of predictive models under three 
subtly different interpretations of sepsis onset from the sepsis‑III definition and compares this against 
inter‑model differences. The models are chosen to cover tree‑based, deep learning, and survival 
analysis methods. Using the MIMIC‑III database, between 867 and 2178 intensive care unit admissions 
with sepsis were identified, depending on the onset definition. We show that model performance 
can be more sensitive to differences in the definition of sepsis onset than to the model itself. Given a 
fixed sepsis definition, the best performing method had a gain of 1–5% in the area under the receiver 
operating characteristic (AUROC). However, the choice of onset time can cause a greater effect, 
with variation of 0–6% in AUROC. We illustrate that misleading conclusions can be drawn if models 
are compared without consideration of the sepsis definition used which emphasizes the need for a 
standardized definition for sepsis onset.

The rise in comprehensive electronic health record systems (EHRSs) has enabled the application of state-of-the-
art machine learning (ML) models in predictive  diagnostics1–3. In this context, machine learning typically focuses 
on developing models to maximise predictive accuracy against a given target clinical definition. The aim for the 
research community is to develop and critique models to find the best solutions for prediction. However, little 
attention is paid to small variations in these definitions used to define a predictive target when operationalised 
within the EHRS. Consequently, variations in clinical definitions, and their interpretation within an EHRS, 
lead to severe difficulty in fair comparisons of predictive methods across the literature. An interesting research 
question that arises from this current practice is how robust are the conclusions drawn from a comparison of 
different studies if there exist subtle differences in target definition? We seek to explore this, in the context of 
predicting sepsis onset time, by quantifying the impact that variations in onset time definitions have on a suite 
of methods (which are chosen from tree-based methods, deep learning, and survival analysis methods to cover 
popular and performant methods used for sepsis onset prediction).

Sepsis—a heterogeneous syndrome characterized by infection-induced organ  dysfunction4—is a global health 
concern. In 2017 alone, sepsis was estimated to affect nearly 50 million people worldwide, resulting in 11 million 
 deaths5. EHRSs do not contain a structured “ground truth” identifying sepsis. The sepsis-III definition opera-
tionalizes sepsis within an EHRS as an increase in the sequential organ failure assessment (SOFA)  score6 by two 
or more, in the presence of suspected or confirmed infection. In lieu of a gold standard label, it is a requirement 
for studies in this domain that clinical data are labelled with a “sepsis phenotype”7. In the sepsis-III  study8,9, 
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this phenotype was developed using the coincident administration of antibiotics and taking of blood cultures 
as a proxy for “suspicion of infection.” This allowed the labelling of patients who are likely to have sepsis, and so 
created a target definition for statistical models. Building on this definition, machine learning-based early warn-
ing systems have been studied for numerous clinical tasks, such as detection of  sepsis10–13 and septic  shock14–16.

The sepsis-III definition does not explicitly define the sepsis onset time, leading to different interpretations 
when this is of primary  interest8,11,17–22. A recent systematic  review23 of machine learning methods for sepsis pre-
diction highlighted the inconsistencies in sepsis definition across different papers and that most of the associated 
code is not publicly available. See  also24 for a review and discussion on the controversy relating to sepsis definition 
from the clinical perspective. This lack of a precise onset time, together with the absence of verifiable implemen-
tations of machine learning models, prevents effective comparison between performance of different methods.

From the sepsis-III definition, we can see that it is ambiguous whether the onset should be defined as the 
time of organ failure, the time of the suspicion of infection, or the earlier of these two events. All three are used 
across the literature. We consider these three competing interpretations of sepsis definition by evaluating them 
with a suite of advanced models on the MIMIC-III  dataset25. Each definition, depending on when organ dys-
function or suspected infection is identified, has a distinct clinical  interpretation11,17,18. MIMIC-III contains high 
frequency data for patients admitted to ICU. We note that although this has some limitations, this is a dataset 
frequently utilized for sepsis prediction tasks and can highlight the issues relating to subtle variations in sepsis 
label construction. We found significant differences in predictive performance between definitions, confirming 
the need for precise and verifiable methods, to allow comparisons to be made.

This study is accompanied by code implementing a pipeline for the development of early warning scores and 
their evaluation, including the use of signature methods for time series analysis. All code used in this study has 
been made publicly  available26, to allow further development and comparisons. This manuscript is prepared in 
accordance with the RECORD statement; the extension to STROBE for research based on routinely collected 
 data27.

Materials and methods
Determining the onset of sepsis: tsepsis
Determining the onset time of sepsis ( tsepsis ), requires identification of the onset of suspected infection ( tsuspicion ) 
and the time at which the SOFA score deteriorates by at least two points ( tsofa ). We align to the sepsis-III 
 definitions9 as closely as possible and describe any necessary deviations.

We used the drawing of blood cultures and the administration of antibiotics, within proximity to one another, 
as surrogates for clinical suspicion of infection. We identified the times that blood cultures were taken ( tcult ) and 
that a course of antibiotics was first administered ( tabx ). As patients typically took multiple doses of the same 
antibiotic, subsequent doses of the same antibiotic were classed as being in the same course, as long as consecutive 
doses were administered within two days of each other. Only the initial time of each course of antibiotics was 
used to look for clinical suspicion. We required at least two doses of any type of antibiotics to be administered 
within a 96-h period for a tabx to count towards a suspicion of infection. One-off prophylactic antibiotics were 
not included.

A valid suspicion of infection required that if the antibiotic was given first, the culture must be obtained within 
24 h, or that if the culture was taken first, the antibiotic must have been administered within 72 h. Once tcult and 
tabx had been identified with appropriate proximity, the onset of suspected infection ( tsuspicion ) was defined as 
the first occurrence in this pair (Fig. 1a).

To identify organ dysfunction attributable to infection, we required an increase in the SOFA score of least two 
points (at time tsofa ) in an interval around tsuspicion (Fig. 1). We call this interval the “SOFA window” described 
by the quantities {x, y} as in Fig. 1b. We calculated tsofa as the first time that the SOFA score was two above its 
initial value. This is a popular approach for the early detection  problem11,18.

For any given SOFA window, three competing onset times for sepsis ( tsepsis ) exist. These are labelled as H1, 
H2 and H3 and defined as follows:

• H1: tsepsis = tsofa , sepsis onset occurs at the onset of salient organ dysfunction.
• H2: tsepsis = tsuspicion , sepsis onset occurs at the onset of suspicion of infection.

Figure 1.  Timelines to determine the time of suspected infection (panel a) and the sepsis onset time (panel b). 
We name the interval around tsuspicion as the “SOFA window” where {x, y} denotes the time in hours before and 
after tsuspicion that is used for the detection of a change in SOFA score.
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• H3: tsepsis = min
(

tsofa, tsuspicion
)

 , sepsis onset occurs at the earlier of these two events.

Data resource
We used the MIMIC-III  dataset25 to assess the impact of these definitions on the prediction of sepsis onset. 
MIMIC-III comprises de-identified patient-level data from over 40,000 patients that stayed in intensive care units 
(ICUs) between 2001 and 2012 at the Beth Israel Deaconess Medical Center, Boston, Massachusetts (USA). The 
MIMIC-III dataset was approved by the Institutional Review Boards of Beth Israel Deaconess Medical Center 
and the Massachusetts Institute of Technology.

Information on antibiotics was recorded infrequently prior to 2004. Since the year of hospitalization was 
removed during the de-identification process, we excluded all patients recorded under the “CareVue” system, 
which was known to be in operation only until 2008. Only those patients recorded under the “MetaVision” system 
is retained. Further details can be found  at25.

Data were split into training (85%) and test (15%) sets by stratified sampling based on sex, age, intensive 
care length of stay, and whether the patient ever received invasive ventilation. This split was performed prior 
to applying further exclusion criteria, and only one hospital visit was retained per patient. We chose this split 
to balance between having enough data in the training set to calibrate the models (with cross validation) and 
having a reasonable size of test set (to reduce variance in results).

Granular information on the time of antibiotic administration and organ dysfunction was not available prior 
to ICU admission (for example, prescriptions only have data for date prescribed) hence precise sepsis onset time 
cannot be identified.  Following28, we excluded patients who were prescribed antibiotics before their entry to 
ICU. Patients attending the cardiothoracic surgical ICU were excluded since their requirements for organ sup-
port are likely to produce false positive labels in the sepsis phenotype. Elective surgical patients were excluded 
as they are often prescribed prolonged antibiotic prophylaxis pre-arrival to the ICU and have, in general, a low 
risk of developing sepsis in their index ICU admission. We excluded patients whose length of stay in the ICU 
was shorter than four hours or longer than twenty days, to avoid the development of sepsis prior to ICU admis-
sion, or bias from atypical visits. Patients missing all vital sign data were removed since these likely represent 
cases with data quality issues.

Finally, we excluded patients who developed sepsis within four hours following entry to the ICU. Given the 
different interpretations of sepsis onset defined above (H1–H3) and SOFA windows of varying size, excluding 
patients who developed sepsis within four hours of entry to the ICU excluded a different number of patients 
depending on these choices. A study flow diagram is given in Fig. 2. See Appendix A for further information on 
the training and test set after exclusions.

Modelling
Using MIMIC-III data from the described cohort, we fitted several models to assign an hourly risk score, given 
all salient patient information up to the present, which indicates the likelihood a patient will develop sepsis over 
some pre-defined prediction horizon (T hours). For each definition of sepsis onset time (H1–H3) we evaluated 
three models which have been previously used in sepsis prediction tasks: a light gradient boosting machine 
(LGBM)19, a modified Cox proportional hazards model (CoxPHM)29 and the long short-term memory (LSTM) 
neural  network16. These are representative models from tree-based  models30–32, survival  analysis33–36, and deep-
learning based  models37–39 respectively and further, these three classes cover a wide range of models used for 
this application. In particular, an LGBM model won the 2019 PhysioNet Computing in Cardiology Challenge 
on early prediction of  sepsis21. Demonstrating how the performance of this winning model compares against 
other popular models on different definitions emphasizes the need for transparency in model comparison. See 
Appendix D and E for further details on the models and how we selected the hyperparameters for our study. We 
investigated the impact of subtle variations in sepsis definition by looking at the changes in performance and 
the relative ranking of these models.

Risk scores predicted by each model were converted into binary predictions by selecting a threshold risk 
score above which a patient would be classified as septic (Fig. 3). This threshold was set to achieve a sensitivity 
of 85% on the training set, as was used in a prior  study11. We refer to this task as the real-time prediction task 
(See Appendix B for the precise problem formulation).

Models were trained on observations prior to the sepsis onset time ( tsepsis ), to ensure that the models were 
predictive, rather than replicating the chosen sepsis definition. Each model was trained against each definition 
of sepsis onset time (H1–H3) providing nine models for each set of {x, y, T}.

Models were fitted with 38 raw and 75 derived predictor variables, similar to those used in Morrill et al.13,14,16, 
though we did not use end tidal carbon dioxide, as it is typically unavailable in MIMIC-III. Raw variables were 
in four broad categories: demographics (e.g. age, sex), vital signs (e.g. heart rate, pulse oximetry), laboratory 
results (e.g. bicarbonate, pH), and admission information (e.g. time since admission to hospital/ICU). A full list 
of raw variables used is found in Supplemental Digital Content—Table 6. In addition to these raw variables, we 
derived time-dependent features to use in our models (Supplemental Digital Content—Table 7). Time varying 
features were processed using a rolling window and signature transformation; these capture key geometric and 
temporal properties of timeseries  data21,40,41. Further discussion of feature extraction is found in Appendix C.

As our goal is real-time sepsis prediction, models were trained to optimize prediction of patient labels aver-
aged over all patients and observation times. The hyperparameters of each model were tuned with 5-fold cross-
validation performed against training data. Models with the best performing hyperparameters were subsequently 
refitted against the full training set to obtain final model parameters before evaluation on the test set. All methods 
were performed in accordance with the relevant guidelines and regulations.
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Evaluation
To evaluate model performance, we calculated the area under the receiver operator characteristic curve (AUROC, 
or c-statistic) of each model. This describes the predictive performance of models, averaged over all patients 
and observation times.

Sensitivity analysis
Three main sensitivity analyses were considered to evaluate the sensitivity of the models and sepsis onset defini-
tions. First, different sizes of SOFA window were considered. Second, we retrained all models for the H1 and 
H2 sepsis onset definitions, but with ICU admissions excluded using the strictest exclusion criteria from H3. 
This allowed us to examine the differences between H1 and H2 with the same cohort (as H3), and so isolate any 
discrepancies to the sepsis definitions and models, and not to differences in cohorts (input data). Last, micro-
biological samples other than blood cultures were included in the definition of tsofa.

Figure 2.  Flow Study flow diagram. Different analysis cohorts are produced depending upon the sepsis onset 
definitions and SOFA windows applied. These are detailed in Supplemental Digital Content—Table 1 and 
Supplemental Digital Content-Table 2.
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Results
Following our study exclusions, between 737 and 1861 ICU admissions were available for model training, with 
140 and 317 admissions in the test sets, depending upon the sepsis onset definition and SOFA window under 
investigation (Supplemental Digital Content—Table 1 and Table 2). Baseline characteristics for the cohort with 
SOFA window {24, 12} are shown in Supplemental Digital Content—Table 3.

Prediction task
We compared the real-time prediction performance of LGBM, LSTM and CoxPHM models for each sepsis 
onset definition. Table 1 shows the performance of definitions in terms of test metrics (AUROC, specificity and 
accuracy), with H2 yielding consistently higher scores than H1 or H3, independent of the model chosen. The 
earliest sepsis onset time (H3) consistently gives the lowest performance scores. It is interesting to note that the 
variation in performance across sepsis criteria (0–6% AUROC) exceeds the variation in performance across 
models (1–5% AUROC).

The results are represented visually in the two top subplots of Fig. 4. We see that LGBM outperforms the 
others in that it has the highest AUROC for each fixed sepsis definition. However, in the bottom subplot, it can 
be seen that the best model on the worst performing definition (LGBM on H3) performs worse than the worst 
model on the best definition (CoxPHM on H2). This emphasizes the point that without full transparency on the 
design choice, fair comparison across models is not possible. Naive comparison across different definitions may 
result in misleading conclusions.

Full details of the evaluation, including the effects of changes in SOFA window and time horizon are detailed 
in Appendix F of Supplemental Digital Content—Tables 9 and 10. The evaluation of the real-time prediction 

Figure 3.  An illustrative example of converting sepsis risk scores to binary sepsis. The dotted black line with 
“x” markers indicates the risk score, while the horizontal dotted line indicates the chosen cutoff threshold to 
determine binary labels. In this case, the model predicted a positive sepsis label for the first time at 20 h after 
ICU admission. Here the prediction horizon T is set at 6. This indicates that the model is designed to predict 6 h 
ahead of the true sepsis onset time, which in this case is 21 h into the stay.

Table 1.  Summary of AUROC, specificity, accuracy of LGBM, LSTM and CoxPHM for the real-time 
prediction on the test set. Here the SOFA window is { 24, 12 } and prediction horizon T = 6 . The mean [lower 
95% confidence, upper 95% confidence] of AUROC with non-parametric bootstrapped confidence intervals 
drawn from 100 resamples are provided Specificity and accuracy are calculated based on that the sensitivity on 
the training set was chosen to be 85%.

AUROC Specificity Sensitivity Accuracy

H1

LGBM 0.832 [0.823,0.842] 0.784 0.723 0.725

LSTM 0.805 [0.796,0.815] 0.596 0.811 0.601

CoxPHM 0.799 [0.789,0.809] 0.546 0.850 0.553

H2

LGBM 0.869 [0.862,0.876] 0.761 0.808 0.806

LSTM 0.856 [0.848,0.863] 0.718 0.813 0.721

CoxPHM 0.844 [0.836,0.852] 0.672 0.831 0.677

H3

LGBM 0.829 [0.818,0.840] 0.768 0.713 0.714

LSTM 0.793 [0.781,0.805] 0.524 0.831 0.529

CoxPHM 0.780 [0.769,0.793] 0.490 0.840 0.496
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method is consistent with model evaluation in the literature. However, we can infer other interesting outcomes 
by looking at predictions made on each patient. Further discussion can be found in Appendix G.

Sensitivity analyses
Impact of SOFA deterioration observation window
All models were robust to variations of the SOFA window. Figure 5 demonstrates that, despite optimizing the 
models’ hyperparameters using the SOFA window {24,12}, the receiver operating characteristic (ROC) curves 
of the prediction from each model are very close for different SOFA windows under H3. For similar plots of the 
other two definitions see Supplemental Digital Content—Fig. 3.

Impact of strict exclusion criteria
Table 2 shows that the performance of each model under H1 and H2 decreases with the use of the strict exclusion 
criteria (that is, excluding patients who develop sepsis, according to H3, within the first four hours). While the 

Figure 4.  Highlights in the differences of AUROC for the SOFA window {24,12}. (Top panel) AUROC when 
models are evaluated on the test set, grouped by model. (Middle panel) AUROC when models are evaluated 
on the test set, grouped by sepsis onset definition. (Bottom) An illustration of an invalid comparison between 
models when the underlying sepsis definition is different. Here the best performing model on the worst 
definition, that is, LGBM on H3 has a lower AUROC than the worst performing model on the best definition, 
namely CoxPHM on H2.

(a) LGBM (b) LSTM (c) CoxPHM

Figure 5.  ROC plots for real-time prediction at different SOFA windows for T = 6 and definition H3 on the 
test set for (a) LGBM, (b) LSTM and (c) CoxPHM model.
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models continue to be ranked similarly under these exclusion criteria, the performance variation of each model 
across definitions become smaller, especially LSTM and CoxPHM. This suggests that the superior performance 
observed earlier under H1 and H2 is largely due to the differences in patient exclusion—it appears the task of 
predicting sepsis is more difficult under H3 than H1 and H2 principally due to the exclusion of more patients 
who develop sepsis soon after admission.

Impact of culture selection
The definition of suspected infection was broadened to include specimens other than blood culture. We note that 
in this case, the performance across all definitions and models shown in Table 2 decreased.

Discussion
Using representative models from both classical statistics and machine learning, we have demonstrated that 
model performance in predicting sepsis onset was markedly sensitive to subtle variations in onset definitions. 
This performance impact was at times more pronounced than the gains from the different models themselves. 
Taking the LGBM model (which was consistently the best model for fixed definitions) to predict sepsis under 
H3 gives a lower AUROC than using the CoxPHM (which performed worst for each fixed definition) to predict 
sepsis with H2 definition. If these results were reported across different papers and compared without considera-
tion of the underlying sepsis definitions used, we would get misleading conclusions.

There was a consistent ranking of onset definitions across all models, with the order H2, H1 and H3. This 
characterization of performance is consistent with one prior large database  study17. In the context of predictive 
modelling, this does not imply the models targeting the H2 definition are any better at predicting the true sepsis 
condition of the patient. Rather, the models perform better at predicting the onset time defined using this defini-
tion and, in particular, using data after the corresponding exclusion criteria have been applied. This highlights 
the significance that a change in onset definition can have on model performance with everything else fixed. We 
note that these results are not evidence for whether H2 should be chosen as the standard definition.

Significant variation in the application of sepsis onset definitions exists in the prediction literature, including 
examples of H111, H29 and H310,12,14,15. As a definition applied to retrospective data, H1 appears to be the most 
clinically meaningful, given that sepsis is defined as a “life-threatening organ dysfunction caused by a dysregu-
lated host response to infection”9. Thus, conditional on there being a confirmed suspicion of infection, the point 
of deterioration in organ function would best reflect the moment a patient becomes septic. However, we have 
demonstrated the sensitivity of a wide range of high-fidelity models to these target definitions.

There is no current consensus on the best SOFA window around tsuspicion to look for an increase in SOFA. 
Seymour et al.8 used several SOFA windows, ranging from 3 to 48 h prior to tsuspicion and 3–24 h following 
tsuspicion . Others have used a SOFA window from 24 h prior to 12 h post tsuspicion 11,17. Our results are reassur-
ing, as this aspect of the definition has limited impact on predictive performance, even though the cohort size 
changes significantly.

Finally we note that modern data science advancements, for example, extracting signature features, can 
provide improved techniques for signaling the likelihood of an impending event from patient observations. 
However, it is impossible to compare mechanisms across the literature and develop quality tools without devel-
oping standard benchmark criteria. Our study highlights the pressing need for a gold-standard sepsis phenotype 
for machine learning research on early sepsis detection. The current definitions, based on SOFA, have been 
optimized for ease of use of application at the bedside. This imposes natural limitations for advanced statistical 
models. For example, the SOFA score comprises laboratory results, which are typically measured only once per 
day. In contrast, other constituents of SOFA comprise underlying biological data which may be continuously 
monitored; the juxtaposition of these may reduce statistical  power42. Improvements to sepsis criteria, both in 
the precision of definition and in connection with clinical practice, will allow greater contributions to flow from 
machine learning research.

Conclusion
To summarize, with the availability of electronic healthcare datasets, we can conduct numerous retrospective 
studies to design predictive models. However when comparing the vast amount of research, the precise con-
struction of the target label can be overlooked. Our work demonstrates that a subtle difference in sepsis criteria 
leads to significant variation in model performance. Under any fixed sepsis definition, our implementation of 
LGBM was consistently the best model whilst CoxPHM was consistently the worst. However, if we compared 

Table 2.  AUROC scores of the three models (LGBM/LSTM/CoxPHM) on the test data using main extraction 
method and the other data exclusion choices for the real-time prediction with SOFA window { 24, 12 } and 
T = 6.

H1 H2 H3

LGBM/LSTM/CoxPHM LGBM/LSTM/CoxPHM LGBM/LSTM/CoxPHM

Main extraction method 0.832/0.805/0.798 0.869/0.856/0.844 0.829/0.793/0.780

Strict exclusion 0.832/0.796/0.785 0.851/0.805/0.795 0.829/0.793/0.780

Other cultures 0.816/0.792/0.778 0.847/0.837/0.816 0.801/0.756/0.751
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the performance of LGBM under the H3 definition against CoxPHM under the H2 definition, then we would 
find that the AUROC of CoxPHM is higher. If these were models presented by different papers (using different 
sepsis definitions), then we may inaccurately conclude that CoxPHM is the better model for sepsis prediction. 
The difference in the interpretation of the clinical criteria for sepsis created an issue which has not been addressed 
in literature.

In general, considering different methods, while ignoring variations in the criteria used to evaluate them, 
may lead to comparisons that draw invalid conclusions and hinder the progress to find the best predictive model. 
Therefore, we make the following recommendations for retrospective studies on EHRS data:

• The data management protocol should include the full details of extracting the clinical target of interest from 
EHRSs, to allow full reproducibility. Publication of results should typically include a link to the code used.

• A high-quality early warning system should consistently outperform other methods and be robust to the 
variations in data.

• A gold-standard for the clinical outcome of interest, in a format which can be extracted from EHRSs, should 
be established by the joint effort of the clinical community and machine learning community.

Limitations
Owing to the availability of data assets like MIMIC, the majority of research in sepsis prediction in the ICU 
has been performed on cohorts that commence at the time of ICU admission, as is the case here. However, it 
is important to note that most sepsis cases admitted to an ICU display evidence of organ dysfunction prior to 
arrival in the  ICU8. Extending this field of research to pre-ICU observational data comes with its own inher-
ent challenges, since patients outside ICU are monitored far less frequently and will be subject to informative 
sampling based on their acute physiology. This highlights the importance of developing high-quality pre-ICU 
data as a target for future research.

Patients who received antibiotics prior to ICU admission were necessarily excluded from our study, since 
the MIMIC-III database does not contain granular detail on organ dysfunction prior to arrival in the ICU. It is 
probable that the sepsis onset time in these cases was prior to admission to the ICU, and including these patients 
would have unreasonably biased model fit.

Our primary aim is to investigate the discrepancy in model performance and potential risks in misleading 
model comparisons caused by a subtle variation on the sepsis definition. To conduct a systematic and compre-
hensive comparative study, we have narrowed our scope to three representative models, employing only forward-
filling as our data imputation technique. This means that we explore neither the full range of predictive methods 
used for sepsis prediction nor the large literature of data imputation methods available. Therefore, although we 
have found that LGBM performs best in this analysis, we do not claim that it is the state-of-the-art model for 
early detection of sepsis. Moreover, we acknowledge the limitation of the forward-filling, which can be further 
improved by alternative imputation method for improving the predictive performance. These are important 
considerations when finding the best predictive model, but does not affect our conclusion that transparency and 
a standard sepsis definition is vital to identify such models.

Data availability
The data we used in this paper is extracted from the MIMIC-III database. Once the required training and 
credentials are obtained, this dataset is accessible from PhysioNet at https:// physi onet. org/ conte nt/ mimic iii/1. 
4/. The MIMIC-III project was approved by the Institutional Review Boards of Beth Israel Deaconess Medi-
cal Center (Boston, MA) and the Massachusetts Institute of Technology (Cambridge, MA). Requirement for 
individual patient consent was waived because the project did not impact clinical care and all protected health 
information was deidentified.

Code availability
Our code is publicly available at https:// zenodo. org/ record/ 51687 89. We have included detailed instructions on 
how to obtain the exact dataset used starting from the MIMIC-III database, as well as precise instructions on 
running the method so that we have an end-to-end pipeline to fully replicate the results.
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