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Deep neural operator‑driven 
real‑time inference to enable 
digital twin solutions for nuclear 
energy systems
Kazuma Kobayashi 1 & Syed Bahauddin Alam 1,2*

This paper focuses on the feasibility of deep neural operator network (DeepONet) as a robust 
surrogate modeling method within the context of digital twin (DT) enabling technology for nuclear 
energy systems. Machine learning (ML)-based prediction algorithms that need extensive retraining for 
new reactor operational conditions may prohibit real-time inference for DT across varying scenarios. In 
this study, DeepONet is trained with possible operational conditions and that relaxes the requirement 
of continuous retraining - making it suitable for online and real-time prediction components for 
DT. Through benchmarking and evaluation, DeepONet exhibits remarkable prediction accuracy 
and speed, outperforming traditional ML methods, making it a suitable algorithm for real-time DT 
inference in solving a challenging particle transport problem. DeepONet also exhibits generalizability 
and computational efficiency as an efficient surrogate tool for DT component. However, the 
application of DeepONet reveals challenges related to optimal sensor placement and model 
evaluation, critical aspects of real-world DT implementation. Addressing these challenges will further 
enhance the method’s practicality and reliability. Overall, this study marks an important step towards 
harnessing the power of DeepONet surrogate modeling for real-time inference capability within 
the context of DT enabling technology for nuclear systems.

A reliable and sustainable energy is essential to support and drive economic activity in the modern world. As the 
urgent need for carbon-neutral solutions becomes increasingly evident, nuclear energy is projected to assume 
a significant role. With the ongoing global increase in energy demands, nuclear power is poised to emerge as a 
critical and environmentally friendly alternative to conventional energy sources.

Furthermore, nuclear research actively explores novel technologies and approaches to advance the field. 
Among these exciting research areas, using digital twin (DT) technology in nuclear systems has gained sub-
stantial attention. The United States Nuclear Regulatory Commission (U.S. NRC) and Department of Energy 
(DOE) recognize the potential of DT technology and has identified it as a key area for future research1,2–5. The 
NRC/DOE highlighted several potential benefits of DTs in nuclear energy applications, including increased 
operational efficiencies, enhanced safety and reliability, reduced errors, faster information sharing, and improved 
predictive capabilities1,6. However, it is imperative to recognize that the evolution of DT technology within the 
realm of nuclear systems is still at its inception, bringing forth a range of intricate challenges that necessitate 
diligent resolution and strategic overcoming7. These challenges span multifarious domains, encapsulating crucial 
aspects like the integrating data from various sources, the modeling & and simulation (M &S) of complex nuclear 
systems, the synchronization in real-time between the digital replica and physical asset, and the critical domains 
of cybersecurity and safeguarding data privacy. Furthermore, developing and deploying advanced sensors and 
network architecture is paramount, as they are pivotal to ensuring an uninterrupted data flow1,7. Among these 
challenges, this study focuses on potentially utilizing deep learning methods in M &S for nuclear systems.

A digital replica is created by capturing and integrating various data sources, such as sensor data, opera-
tional data, and design specifications, to generate a highly detailed and accurate representation of the physical 
system8. This virtual replica serves multiple purposes: monitoring, analysis, simulation, and prediction. While 
traditional analysis and simulation codes can fulfill these roles, it can be challenging to balance accuracy and 
speed, especially in systems requiring rapid analysis and response prediction. Dedicated codes are employed for 
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analysis in certain domains like nuclear reactor systems9,10. However, these codes often prioritize high analy-
sis accuracy, which can result in high computational costs. Relying solely on expensive simulations based on 
real-time information from various sensors installed in the reactor system and then making control decisions 
based on the results can lead to sluggish operator response times and, in extreme cases, potentially catastrophic 
nuclear accidents. This situation calls for a new approach in DT technology for nuclear and energy systems11–13 
that simultaneously addresses the need for high calculation accuracy and speed.

Deep learning, particularly through neural networks (NNs), has transformed the landscape of modeling 
techniques for nonlinear systems. Its significant contribution lies in its remarkable ability to capture intricate and 
complex relationships within data, making it exceptionally well-suited for approximating nonlinear phenomena. 
Within nonlinear systems, NNs excel at approximating functions that map inputs to outputs without imposing 
explicit assumptions about underlying dynamics. It is particularly advantageous when traditional modeling 
approaches falter due to the system’s nonlinear, dynamic, or stochastic nature. The applications of NNs within 
the nuclear field further highlight their versatility. Instances include leveraging Deep Neural Networks (DNNs)14 
and Recurrent Neural Networks (RNNs)15 for predicting neutron flux distribution in reactor cores. Additionally, 
NNs have been employed for surrogate modeling of nuclear reactor dynamic equations. It has been facilitated 
through the use of Convolutional Neural Networks (CNNs)16 and Physics-Informed Neural Networks (PINNs)17.

The advancement of NNs has been instrumental in shaping the landscape of data-driven modeling techniques, 
including hybrid approaches like PINNs. However, as these deep learning models progress to the deployment 
phase, they encounter a formidable challenge termed “dataset shift.” This challenge is rooted in the dynamic 
nature of real-world data. While these models are trained on specific datasets, they might only partially encom-
pass the diverse scenarios they will face during practical applications. Environmental changes, shifts in user 
behavior, or other external factors can introduce variations in data distribution that the model has yet to encoun-
ter during its training. This discrepancy between the distributions of training and deployment data can lead to 
a decline in model performance, resulting in less reliable predictions and potentially compromising the system’s 
overall functionality. The model might need help to adapt to novel situations insufficiently represented in its 
training data.

To illustrate, consider the behavior of neutrons within a nuclear system. This behavior is pivotal in reactor 
core analysis, shielding design, and criticality assessments. It can be effectively described by the neutron transport 
equation18, featuring a source term that encompasses contributions from processes like radioactive decay and 
fission. This neutron source term is far from constant in practical scenarios, exhibiting varying energies and 
spatial distributions over time. Just as the neutron source term evolves, the dataset shift phenomenon reflects the 
evolving nature of real-world data, creating a parallel challenge for deploying neural network models effectively 
in intricate systems such as nuclear reactors.

In order to address these challenges, this study introduces a potential solution in the form of data-driven 
surrogate modeling, utilizing the Deep Operator Network (DeepONet)19 to fulfill these demanding prerequisites 
effectively as a real-time prediction algorithm component of DT system.Unlike conventional ML methods that 
usually deal with input-output mappings, DeepONet focuses on the mapping between functions19. By training 
over function spaces, the DeepONet network learns a mapping between inputs and outputs without requiring 
retraining for various conditions and scenarios. Once trained, DeepONet can evaluate this mapping very quickly 
for any new input, bypassing the iterative processes typically involved in high-fidelity solvers. The main advantage 
of this approach is the ability to generalize and predict outcomes for inputs outside the distribution (extrapola-
tion). This is particularly beneficial in dynamic reactor environments where conditions can evolve rapidly, but 
the underlying physical processes or systems that the DT is modeling remain consistent. Utilizing DeepONet’s 
unique attribute, the study constructs a surrogate model for the intricate spatial distribution of neutron flux. This 
approach employs the neutron source’s spatial distribution as an input function. This utilization of function-based 
modeling demonstrates the potential of DeepONet in capturing the intricate dynamics of nuclear systems19 as 
a faster surrogate model instead of conventional nuclear code.

It is worth addressing that this research constitutes an extension of earlier published investigations on DT-
enabling technologies by the lead author20,21. Illustrative instances of DeepONet’s generalization capability is 
demonstrated in20. Moreover, explainability of the prediction algorithm for DT systems is carried out in21. This 
paper delves deeper into the practical application of the DeepONet in nuclear engineering problems, providing 
additional insights and discussions. The current work also introduces new experimental data and presents further 
validations to reinforce the robustness of the proposed approach.

Deep operator network (DeepONet)
DeepONet19, an advanced neural network, is built upon the Universal Approximation Theorem but focuses on 
the Universal Approximation Theorem for Operators19,22. While traditional neural networks map inputs to a 
function space, DeepONet is designed to map information from functions to an operator that can be observed 
in any domain.

Suppose G is an operator that takes an input function u; this assumption makes G(u) the output function 
corresponding to the input one. As explained in19, in the domain of G(u), the real number at any sampling 
point y can be expressed as G(u)(y). To handle an input function in calculations, it must be discretized in the 
input space V. In the concept of DeepONet19, input functions are discretized by sampling at the fixed positions 
{x1, x2, . . . , xm} where m represents the number of discretized points. Therefore, DeepONet can handle the two 
network inputs; [u(x1), u(x2), . . . , u(xm)]T and y ∈ R

d . Based on the Universal Approximation Theorem for 
the Operator, the operator G can be expressed by the Generalized Universal Approximation Theorem for the 
Operator by19,23 as follows:
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where ǫ > 0 , g and f  are continuous vector functions g : Rm −→ R
p and f : Rd −→ R

p , �·, ·� represents the 
dot product in Rp . The function g and f  are replaced with neural networks. Here, the NNs that handle the input 
function are distinguished as “branch” and those that handle the input vector y ∈ R

d as “trunk.” Since the main 
topic of this study is the applied use of DeepONet, please refer to19,24 for more detailed mathematical proof.

DeepONet employs the branch-trunk architecture, where the “branch” and “trunk” networks are subnetworks 
implemented using NNs19,25. The trunk network deals with domain information, while the branch network 
encodes sensor information from the function. Internal filtering allows DeepONet to handle data efficiently. 
This architecture is harnessed to approximate the system’s operator, and the entire model is trained using loss 
associated with the predictions. Figure 1 illustrates the branch-trunk architecture. For a more in-depth math-
ematical proof, refer to19,24.

DeepONet is proven to be versatile in diverse domains, including multiphysics scenarios such as electric 
convection23, bubble growth dynamics26, and fluid dynamics27. As DeepONet continues to prove its efficacy in 
handling complex nonlinear and computationally intensive problems, its applicability is anticipated to expand 
across a wide array of fields in the future.

Experiments
In order to showcase the capabilities of DeepONet, a surrogate model is constructed for calculating the 2-dimen-
sional spatial distribution of neutron flux in a maze. The training and test datasets used for training the DeepONet 
model are prepared using Particle and Heavy Ion Transport code System (PHITS) version 3.2428. This section 
elaborates on the methodology employed for data generation and the simulation setup utilized in this study.

Particle transport code
PHITS, a Monte Carlo particle transport simulation code, has the capability to accurately simulate particle 
transport across a wide range of energy spectra through the utilization of sophisticated nuclear reaction models 
and comprehensive data libraries28. Its versatility allows for its application in various research fields, including 
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Figure 1.   Illustration of DeepONet Branch-Trunk architecture employing fully-connected neural networks. 
It is an example when the input vector is composed of 2-dimension (i.e., y =  [x,y]). The discretized input 
functions and input vector y are individually fed into fully connected neural networks. Then, the dot product 
is computed using their network outputs. Note: This figure was completely redrawn by the authors based on 
the concept of DeepONet presented in19 to fit the problem setting of this study. This figure is further modified 
following20,21.
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accelerator technology, radiotherapy, space radiation, and other domains involving particle and heavy ion trans-
port phenomena. In this study, we leverage the power of PHITS to simulate the 2D spatial distribution of neutron 
flux within a maze. To accomplish this, we have customized and employed the sample code provided by the 
PHITS Development Group as a foundation for our research. For particle transport calculations in PHITS, the 
definition of geometry, material, radiation sources, and the phenomenon to be analyzed, referred to as Tally, is 
necessitated.

Geometry
In our simulation, a hypothetical maze with concrete walls enclosing an air-filled interior is chosen as the geom-
etry, as depicted in Figure 2a. During the configuration of the geometry, there is no need to specify the spatial 
resolution, such as the grid size, as it is a critical factor affecting the accuracy of the calculation and is determined 
when defining the Tally, as elucidated later.

Material
The material densities of concrete and air are set to 2.2 g/cm3 and 1.2× 10−3 g/cm3 , respectively. For each defined 
element, nuclear reaction cross-sections are bundled from the nuclear data library JENDL-4.029. Moreover, the 
detail of material compositions used in this study is provided in Supplementary Material  A.

Neutron Source
The simulation employs a Gaussian distribution neutron source, where the spatial distribution of neutrons is 
modeled as independent Gaussian distributions along each component of the spatial vector x = [x1, x2, x3] . 
Given the independence of the variables, the covariance matrix � is a diagonal matrix with variances σ 2

j  for each 
spatial dimension, as illustrated in Eq. (2):

In this representation, the subscript j corresponds to each spatial direction. Consequently, the 3-dimensional 
Gaussian distribution φ(x) is defined by Eq. (3):

The neutron source u(E, x) is characterized by a mono-energetic distribution, where all neutrons possess the same 
energy level E . This leads to the introduction of a new quantity, φ(x) · E , which represents the energy density 
distribution of neutrons in space. The neutron source distribution is thus simplified to:
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Figure 2.   (a) the layout of the concrete maze used in the particle transport simulation. The maze is enclosed 
by concrete walls, and the interior is filled with air. The neutron source position y is randomly selected, while 
the x location is fixed at x = 0 . (b) example of randomly generated distribution neutron sources (neutron 
energy density). The peak value and the Gaussian center position in the y-axis are randomly generated in each 
simulation run.
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In this equation, φ(x) represents the spatial distribution of neutron intensity and E is the constant energy level of 
each neutron. The product φ(x) · E thus describes the distribution of neutron energy density across the spatial 
dimensions, providing a comprehensive view of both the spatial and energetic characteristics of the neutron 
source. In this equation, µj represents the mean position component of the mean vector µ . This model allows 
for the simulation of the spatial and energetic distribution of neutrons, providing insights into their behavior 
in a controlled environment.

For every simulation, the single neutron energy E and mean position µ2 are randomly generated within the 
ranges of E and y are defined by E ∈ (0, 1) in MeV and y ∈ [−9, 9] in cm, respectively. These values are then 
employed in Eq. (4) to prepare the neutron source. It should be noted that the variances σ 2

1 = σ 2
2 = 1 , σ 2

3 = 0 , 
and mean values µ1 = µ3 = 0 remain fixed throughout the process. The possible regions of the mean position 
y are indicated by the red boxed area in Fig. 2a. Figure 2b shows an example of 15 randomly generated patterns 
of neutron sources projected onto the y-plane, which confirms that the peak value and peak position are each 
a random combination.

Tally
The flux within the geometry is calculated using the [T-Track] tally. To cover potential peak energies up to 1 
MeV, the energy mesh range is defined from 1 keV to 10 MeV. For spatial resolution, the geometry is divided 
into 80 divisions in both the x- and y-directions, ranging from  − 12 to 52 cm, while a single division is used in 
the z-direction, covering a range from − 10 cm to 10 cm. This results in the definition of 6400 sub-regions on 
the xy-plane, and the neutron flux values are computed for each of these regions. In this calculation, a normali-
zation factor of 1000 is set to avoid the default per-particle normalization in PHITS, which would result in a 
significantly smaller value.

Executing the simulations
A total of 1900 random combinations of energy E and the mean value of y positions are generated, and simula-
tions are carried out for each combination. Each simulation includes 105 neutrons per batch, with a total of 102 
batches per combination. This setup ensures that the relative error of the neutron flux remains below 10%.

In order to provide a comprehensive comparison between the simulation and surrogate model runtimes, it 
is important to include information about the computational environment. The simulations are performed on a 
machine running the Ubuntu 22.04 operating system, equipped with an AMD Ryzen9 3900X CPU (12 Cores/24 
Threads) and 64GB DRAM (3,200 MHz). PHITS version 3.24, compiled by our group with the Intel Fortran 
Compiler (Intel(R) Parallel Studio XE 2020 Update 1 for Linux), is used for hybrid MPI and OpenMP parallel 
computing. The number of threads (or cores) to be used for OpenMP is set to 2 threads per core, and one for 
MPI is 11 cores. Based on the log data, the time required per simulation was 30.54± 3.76 seconds.

Preprocessing
A systematic multi-stage protocol is implemented for preprocessing the data to trainining and test the DeepONet 
model.

Initially, an ensemble of n functions u1, u2, . . . , un is generated, each representing a hypothetical neutron 
source distribution scenario within our study. These functions are discretized by sampling them at m uni-
formly distributed spatial coordinates across the domain of interest. This process is graphically represented in 
Fig. 3a, providing a visual understanding of the discretization methodology. This study evaluates each function 
at m = 190 points along the y-axis, maintaining a constant interval width of 0.095 cm between points to ensure 
uniform domain coverage. Following the discretization, these functions are partitioned into training and test 
datasets in an 8:2 ratio. This data division is designed to optimize the training process while comprehensively 
evaluating the model’s predictive capability on unseen data.

As Fig. 3b represents, the discretized functional data are subsequently used as inputs for particle transport 
simulations conducted via PHITS on an 80× 80 Cartesian grid. This simulation step produces a matrix dataset 
of 6400 grid point coordinates (x, y), each paired with its corresponding simulated neutron flux values ψ(x, y) . 
This process effectively transforms the abstract functional forms into concrete, quantifiable simulation outcomes.

Furthermore, as demonstrated in Fig. 3c, while the entire set of 6400 (x, y) coordinate pairs with correspond-
ing simulation results ψ(x, y) is available for surrogate model construction, we have methodically created multiple 
sub-datasets, labeled as Set1 through Set5, to evaluate the impact of data volume on DeepONet’s performance. 
Each dataset is generated by randomly sampling a specific proportion of the total data in increments of 10%, 
starting from 50% and extending up to 90% of the 6400 pairs. This stratified sampling strategy facilitates a com-
prehensive evaluation, allowing us to methodically analyze how the variation in the volume of training data affects 
the model’s predictive accuracy. Creating these subsets, Set1 to Set5 enables a systematic investigation into the 
relationship between the quantity of training data and the fidelity of the DeepONet model.

Finally, the data is meticulously formatted to the unique capabilities of DeepONet, as delineated in Fig. 3d. 
Unlike conventional neural network models that rely predominantly on fixed-size feature vectors, DeepONet 
is uniquely equipped to learn mappings between functional inputs and their corresponding outputs across 
continuous domains. This specialized formatting process involves integrating the evaluations of the discretized 
input functions with their paired observation coordinates and neutron flux values. Thus, the data is transformed 
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into a format that optimally aligns with DeepONet’s architecture, enabling it to learn from these functional 
relationships efficiently.

DeepONet model
The desired function of a DeepONet model is to obtain the operator that maps between the distribution of neu-
tron source and the 2-dimensional spatial distribution of neutron flux in the maze. In this case, the operator G 
can be represented as G : u(E, y) �→ ψ(y) , where y ∈ R

2 denotes the position vector in the x-y plane. DeepONet 
network architecture, model training, and evaluation methods are provided in this section to build the model. 
The implementation of DeepONet is done using the scientific machine learning library DeepXDE24.

DeepONet utilizes fully connected neural networks for both the branch and trunk networks. The branch 
network has a layer size of [190, 80, 80], while the trunk network has a layer size of [2, 80, 80] to accommodate 
the two-dimensional input (x, y).

The Adam optimization algorithm is employed as the optimization method during the training process. The 
mean L2 relative error is the evaluation metric to assess the model’s performance. The model is trained for 10,000 
iterations with a learning rate of 0.001. The learning rate determines the step size during gradient descent and 
influences the convergence speed and accuracy of the training process. These choices of optimization algorithm, 
evaluation metric, and learning rate are consistent across all training datasets, ensuring a fair and comparable 
evaluation of the models.

In order to evaluate the performance of DeepONet models trained on each training dataset, four indices are 
employed: the R2 score, root-mean-squared error (RMSE), mean absolute error (MAE), and the ratio of RMSE 
to MAE (RMSE/MAE). These indices provide insights into the trained models’ accuracy, precision, and general 
performance. Please refer to Supplementary Material  D.

Results and discussions
Overall performance of the DeepONet models
The evaluation of DeepONet models using different datasets demonstrated their performance on the test dataset 
in terms of R2 score, RMSE, MAE, and RMSE/MAE, with Table 1 presenting the mean and standard deviation 
of each metric. The results revealed that larger training datasets led to improved model performance. Even with 

Figure 3.   Overview of the data preparation and simulation pipeline for DeepONet and conventional neural 
network models: (a) Input functions ui are sampled at m points, with the total number of functions being n. 
These functions are then split into training and test sets using an 8:2 ratio. (b) Each input function is read and 
processed through a PHITS simulation on a grid of 80 x 80 points to generate output files containing values 
of ψ(x, y) at corresponding coordinates. (c) The simulation results for every input function u form a dataset 
comprising 64,00 (x, y) pairs, which are then sampled into subsets for training and testing purposes. (d) The 
DeepONet framework utilizes the input functions, observation points, and output values for model training, 
distinguishing it from the training data structure used in FCNs and CNNs, which are represented in a more 
traditional feature-target format. The subscripts l in the observation points and output values equal to the length 
of sampled dataset X in panel (c).



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2101  | https://doi.org/10.1038/s41598-024-51984-x

www.nature.com/scientificreports/

the smallest dataset, the DeepONet models achieved impressive results, with R2 values reaching 0.99 and RMSE 
and MAE staying within 10%. For more detailed metrics for all model test data, please refer to Supplementary 
Material  B.

Ideally, a well-constructed model should capture the general trends in the data, with only random noise fol-
lowing a normal distribution being represented as errors. In such cases, the ratio of RMSE to MAE should be 
close to 1.253. However, the observed ratio of approximately 1.53 in all models indicates the presence of data 
points significantly deviating from the model predictions, suggesting the influence of outliers.

To address this issue, two potential solutions are considered. Firstly, the removal of outliers from the train-
ing dataset can improve model generalization and performance by focusing on representative data. Secondly, 
hyperparameter tuning allows the DeepONet model to adapt more effectively to the dataset’s complexities, 
fine-tuning its performance.

Combining both approaches can lead to a more robust and accurate DeepONet model, enabling reliable 
predictions even in the presence of challenging data points. Implementing these improvements will enhance the 
model’s effectiveness and applicability, making it a valuable tool in the context of this study.

Comparisons with FCN and CNN
This section compares the model’s performance trained with Set1 on the test data against FCN and CNN. As 
mentioned earlier, DeepONet takes functions as inputs, and the model test evaluates its response to unseen input 
functions. In this study, 380 test input functions were provided to the model, and the obtained model outputs 
were compared to the true values. The same metrics used in the previous section were calculated for each input 
function.

To distinguish each input function, identification numbers (Test ID) were assigned from 1 to 380. Notably, 
when Test ID 23 and 18 were used, the DeepONet model demonstrated the highest and lowest R2 values, respec-
tively. To compare with conventional ML methods, FCNs and CNNs were trained on these two cases, and the 
metrics were computed similarly. For more detailed information on the network architectures of FCNs and CNNs 
in these cases and the parameters used during training, please refer to Supplementary Material  C.

The calculation results are summarized in Table 2, where DeepONet has been trained for a range of condi-
tions, and FCNs and CNNs require retraining once operational conditions change with new dataset. In both 
cases of Test IDs 23 and 18, the DeepONet model outperformed FCN and CNN in terms of R2 score, RMSE, and 
MAE. Particularly, for Test ID 23, the DeepONet model exhibited significantly better performance with RMSE 
and MAE values superior by order of magnitude compared to the other models. Additionally, in the challenging 
case of Test ID 18, where FCN and CNN struggled to build accurate models, DeepONet achieved an impressive 
R2 value exceeding 0.9, while its RMSE and MAE demonstrated several times better performance than the other 
models. However, it is noteworthy that the ratio of RMSE to MAE for DeepONet was relatively higher than that 
of FCN and CNN when comparing the models.

In addition to quantitative model performance considerations, confirming the reproducibility of physical 
phenomena is crucial. In this study, we modeled the spatial distribution of neutron flux using the neutron source 
distribution in a two-dimensional space as an input function ( G : u(E, y) �→ ψ(y) ). Since the system under 

Table 1.   Performance of DeepONet models evaluated with R2 , RMSE, MAE, and RMSE/MAE.

Dataset

Metrics

R
2(×10

−1) RMSE (×10
−2) MAE (×10

−2) RMSE/MAE

Set1 (50%) 9.93± 0.02 6.61± 1.49 4.27± 1.20 1.56± 0.13

Set2 (60%) 9.93± 0.02 6.57± 1.47 4.47± 1.22 1.49± 0.10

Set3 (70%) 9.93± 0.02 6.43± 1.35 4.17± 1.15 1.56± 0.12

Set4 (80%) 9.95± 0.02 5.71± 1.40 3.84± 1.20 1.51± 0.12

Set5 (90%) 9.96± 0.02 5.14± 1.33 3.45± 1.16 1.52± 0.12

Table 2.   Performances of DeepONet model (Set1), FCN, and CNN.

Test ID Model

Metrics

R
2(×10

−1) RMSE ( ×10
−2) MAE ( ×10

−2) RMSE/MAE

Highest (ID: 23)

DeepONet 9.97 4.77 3.06 1.56

FCN 9.01 25.41 20.31 1.25

CNN 9.10 24.68 19.00 1.30

Lowest (ID: 18)

DeepONet 9.79 17.42 12.95 1.35

FCN 5.07 86.16 73.26 1.18

CNN 5.10 85.92 73.47 1.17
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consideration lacks fissile material, the Gaussian center position of the neutron source distribution is expected 
to have the highest value. Based on this fact, we compared the predictions of DeepONet, FCN, and CNN models.

Figure 4 presents the ground truth from the simulation, along with the predictions of DeepONet, FCN, and 
CNN for Test ID 23. As expected, the highest values are obtained at the Gaussian center position of the neutron 
source (Fig. 4a). The DeepONet model can reproduce the overall distribution of neutron flux, although the peak 
value at the Gaussian center position is estimated to be small (Fig. 4b). In contrast, FCN and CNN fail to accu-
rately reproduce both the Gaussian center location and the overall neutron distribution prediction (Fig. 4c and d).

Figure 5 shows the ground truth from the simulation and the predictions of DeepONet, FCN, and CNN for 
Test ID 18. The DeepONet model is capable of reproducing the overall distribution of neutron flux, although the 
Gaussian center position is slightly blurred (Fig. 5b). On the other hand, FCN and CNN models do not accurately 
reproduce the neutron flux distribution, especially in the upper-left regions farthest from the neutron source 
(Fig. 5c and d). Notably, in this test case, the neutron flux is overestimated relative to the true value, which could 
lead to potentially hazardous situations from a radiation protection perspective if underestimated.

Overall, these findings underscore the ability of the DeepONet model better to capture the intricate spatial 
distribution of neutron flux compared to FCN and CNN models, showcasing its potential for reliable and accurate 
predictions in nuclear engineering applications.

Key discussions
The study demonstrates the power of DeepONet, which takes functions as input data and constructs operator 
G in the system using training data. Notably, the prediction accuracy of DeepONet matches or surpasses that of 
conventional ML methods like FCN and CNN. The use of fixed sensors to extract features from input functions 
and their integration into the model through a branch network is a compelling concept. Training the model with 
historical data or high-confidence simulations allows it to handle diverse scenarios, including various accidents 
in the process.

An essential advantage of DeepONet, shared by many ML-based surrogate models, is its remarkably fast 
execution speed compared to conventional simulations. While a PHITS simulation took about 30 seconds, 
DeepONet performed the task in just 0.02 seconds. This remarkable speed makes DeepONet a potent modeling 
method for digital twin systems, enabling real-time predictions based on data from sensors installed on physical 
assets. Furthermore, DeepONet stands out in their approach to learning and adapting to dynamic reactor systems 
without the need for frequent retraining. They achieve this by treating functions, representing system changes, 
as inputs. This method allows the model to predict system responses across a wide range of scenarios based on 
a comprehensive initial training. By effectively learning from a vast array of potential situations, DeepONet can 

Figure 4.   Comparisons between the ground truth, DeepONet, FCN, and CNN predictions for the Test ID of 
23.
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handle new, unseen conditions within its training domain, significantly reducing the need for retraining when 
compared to traditional neural network methods.

To further enhance the application of DeepONet, two important issues must be addressed. Firstly, understand-
ing the impact of fixed sensors’ number and location on model performance is crucial, considering the limited 
installation possibilities in harsh environments like nuclear power systems. Optimizing sensor placement and 
quantity under such constraints will be necessary for accurate and reliable modeling. Secondly, evaluating the 
DeepONet model requires attention. While overall metrics may indicate excellent performance, certain input 
functions might produce spurious predictions. Improving the model evaluation process, including hyperparam-
eter tuning, is necessary to ensure robust and dependable predictions in all scenarios.

By addressing these challenges, DeepONet can be further optimized for digital twin systems, enhancing its 
potential to predict and analyze current and future systems based on real-time data from physical assets’ sensors. 
This advancement opens new possibilities for various engineering applications, including nuclear engineering 
and beyond.

Conclusions
This paper highlights the significant potential of DeepONet as a robust surrogate modeling method with real-time 
prediction capability for digital twin (DT) for nuclear energy systems, showcased by its remarkable prediction 
accuracy and computational efficiency. The utilization of DeepONet allows for the accurate prediction of complex 
behaviors and spatial distributions of neutron flux, surpassing the performance of conventional ML methods 
like FCN and CNN. Its ability to handle functions as input data and construct operator G from training data 
makes it a valuable tool for capturing the intricate behavior of nuclear systems in real-time within the context of 
DT. The speed of execution, significantly faster than traditional simulations, positions DeepONet as a promising 
method to enable real-time predictions based on sensor data from physical assets. It also demonstrates consist-
ent improvement in performance with increasing training datasets, making it a versatile and scalable solution 
for nuclear systems.

While DeepONet shows great promise, the study also sheds light on challenges that need further investigation. 
The impact of fixed sensors and the optimal sensor placement for improved model performance requires careful 
consideration, given the constraints in harsh operating environments like nuclear power systems. Additionally, 
developing more effective model evaluation methods is crucial to ensure reliable predictions and robustness.

Key areas for future research include: (1) Enhancing the multifidelity (including sparse and noisy data-
set) DeepONet architecture to integrate diverse data sources for improved digital twin fidelity and per-
formance. (2) Capturing sensor degradation over time  into the DeepONet model to ensure reliable 

Figure 5.   Comparisons between the ground truth, DeepONet, FCN, and CNN predictions for the Test ID of 
18.
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predictions. (3) Developing on-the-fly temporal synchronization module with the physical asset. (4) Multiscale 
uncertainty quantification.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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