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A comprehensive study 
for selecting optimal treatment 
modalities for blood cancer 
in a Fermatean fuzzy dynamic 
environment
Dilshad Alghazzawi 1, Aqsa Noor 2, Hanan Alolaiyan 3, Hamiden Abd El‑Wahed Khalifa 4,5, 
Alhanouf Alburaikan 4, Songsong Dai 6 & Abdul Razaq 2*

Cancer is characterized by uncontrolled cell proliferation, leading to cellular damage or death. 
Acute lymphoblastic leukemia (ALL), a kind of blood cancer, that affects lymphoid cells and is a 
challenging malignancy to treat. The Fermatean fuzzy set (FFS) theory is highly effective at capturing 
imprecision due to its capacity to incorporate extensive problem descriptions that are unclear and 
periodic. Within the framework of this study, two innovative aggregation operators: The Fermatean 
fuzzy Dynamic Weighted Averaging (FFDWA) operator and the Fermatean fuzzy Dynamic Weighted 
Geometric (FFDWG) operator are presented. The important attributes of these operators, providing a 
comprehensive elucidation of their significant special cases has been discussed in details. Moreover, 
these operators are utilized in the development of a systematic approach for addressing scenarios 
involving multiple attribute decision‑making (MADM) problems with Fermatean fuzzy (FF) data. 
A numerical example concerning on finding the optimal treatment approach for ALL using the 
proposed operators, is provided. At the end, the validity and merits of the new method to illustrate by 
comparing it with the existing methods.

An essential component of the decision sciences, multi-attribute decision making (MADM) is a procedure that 
ranks finite alternatives based on the attribute values. The issue of MADM has become intricately linked to the 
development of businesses and social decision-making in recent years, resulting in its extensive application across 
various domains. Efficiently and precisely expressing the attribute value emerges as a critical issue in practical 
decision-making processes. In practice, the utilization of exact values to represent attribute values of alternatives is 
insufficient due to the intricacy of decision-making problems and the ambiguity of decision-making environments.

In 1965, Zadeh first presented the theory of fuzzy sets (FS)1. Its notable accomplishments can be attributed to 
its adeptness in managing uncertainty. In the academic literature, numerous higher order fuzzy sets have been 
introduced in recent decades. Atanassov proposed the notion of intuitionistic fuzzy sets (IFS) in  19862. A fuzzy 
set is defined solely by its membership function, while IFS is distinguished by three parameters: the membership 
function, the nonmembership function, and the hesitation margins. One of the primary benefits of the IFS is its 
ability to accommodate uncertainty that may arise from information impression. Consequently, IFS is applicable 
to a vast array of disciplines, particularly decision making.

Yager extended the IFS concept by defining the Pythagorean fuzzy set (PFS)3 in 2013. In PFS, the total of the squares 
of the degrees of membership and non-membership falls within the interval [0, 1] . In this instance, PFSs can handle more 
ambiguous situations than IFSs. Consequently, PFS is more effective than IFS at solving real-world problems. In a short 
period of time, PFSs have piqued the interest of numerous researchers. Using Pythagorean fuzzy aggregation operators, 
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 Yager4 devised a useful decision-making method to resolve multi criteria decision-making (MCDM) problems. Yager 
and  Abbasov5 elucidated the relationship between complex numbers and Pythagorean membership grades, as well as 
the concepts associated with PFSs. Reformat and  Yager6 utilized PFNs in 2014 to manage the collaborative-based rec-
ommender system. In 2016, Gou et al.7 devised a few types of Pythagorean fuzzy mappings and exhaustively analyzed 
their fundamental properties, including differentiability, continuity, and derivability. In 2018, Zeng et al.8 devised an 
aggregation strategy for the PFS to address MADM issues.  Zhang9 presented the MCDM technique in 2016 in light of the 
similarity measure concept. Moreover, PFSs have been successfully linked to numerous domains, including investment 
 decisions10,11, candidate selection for the Asian Infrastructure Investment  Bank12, and domestic airline service  quality13.

Although the PFS framework is applicable to a broader range of situations, there are still certain situations where 
PFS cannot be applied. For example, if a person has to rate the degree to which an alternative �i , with membership 
and non-membership values of 0.9 and 0.6, respectively, meets or fails a specified criterion ∅j . Here, PFS fails to tackle 
this situation because 0.92 + 0.62 > 1 . Senapati and  Yager14 introduced the concept of Fermatean fuzzy sets (FFS) to 
generalize both IFS and PFS. In 2007, IF aggregation operators were introduced by  Xu15. Xu and  Yager16 conducted 
an exhaustive examination of geometric operators within the IF framework. Generalized ordered weighted averaging 
operators for interval-valued data were thoroughly examined by  Li17. Induced geometric aggregation operations were 
introduced to IFS by  Wei18. In PF frameworks, geometric and arithmetic operators have been examined by  Yager4. 
Power aggregation operators were implemented by Wei and Lu in PF- knowledge decision-making19.  Yager20 resolved 
a multitude of MCDM challenges by employing an assortment of aggregation operators. Novel logarithmic function 
operational principles were proposed by  Garg21, resulting in the development of geometric operators and PFS-specific 
weighted averaging.  Garg22 suggested PF weighted average and geometric operators to resolve MADM issues. Further-
more, symmetric PF weighted geometric and averaging operators were proposed by Ma and  Xu23. Subtraction, division, 
and arithmetic mean operations were introduced to FFSs by in  reference24. The concept of FF weighted averaging and 
geometric operators was introduced  in25. Mishra and  Rani26 suggested FF weighted aggregated sum product evaluation. 
Garg et al.27 demonstrated working FF aggregation in the COVID-19 testing facility. Yang et al.28 investigated the deriva-
tives and continuities of FF functions. Sergi and  Sari29 put forth a variety of approaches for FF capital budgeting.  Sahoo30 
investigated the applicability of a variety of FFS scoring functions to transportation decision-making. The extensive range 
of study undertaken on FFSs demonstrates the profound interest of experts in this  subject31–38.

Cancer is a major cause of death, characterized by the uncontrolled proliferation of aberrant cells in a spe-
cific area of the body, leading to cellular  dysfunction39. It has a significant impact on global mortality  rates40, 
with cancer responsible for a worldwide death toll of 10 million individuals in 2022. Blood cancer, a form of 
neoplastic disorders, manifests within the hematopoietic system and affects blood cells. The etiology of blood 
cancer primarily stems from genetic mutations or alterations occurring within the DNA of hematopoietic  cells41.

Leukemia, a form of hematologic malignancy, is distinguished by the unrestrained proliferation of malig-
nant leukocytes within the bone marrow, the principal site of hematopoiesis in the human  organism42. Clinical 
manifestations include hemorrhagic tendencies, musculoskeletal discomfort, asthenia, pyrexia, and heightened 
susceptibility to infectious pathogens due to the deficiency of normal blood cells. The actual cause of leukemia 
remains unknown, but it is thought to be a combination of genetic and non-inherited environmental elements. 
Risk factors for developing certain conditions include smoking, exposure to ionizing radiation, exposure to 
petrochemicals, previous chemotherapy treatment, and the presence of Down  syndrome43.

Leukemia has four main types: acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), 
chronic myeloid leukemia (CML), and several rarer variants. Both children and adults develop acute lympho-
blastic leukemia (ALL), a progressive cancer. ALL treatment includes remission induction, consolidation, and 
long-term  maintenance44.

Hematopoietic stem cell transplantation (HSCT) is one of the most innovative medical operations, however 
it can cause problems including graft-versus-host  disease45. Researchers have endeavored to develop innovative 
and effective therapies that are devoid of these aforementioned complications. In the consolidation phase, giving 
children with Philadelphia chromosome-positive ALL targeted drugs like Imatinib mesylate along with standard 
chemotherapy has shown to improve survival  rates46,47.

In the last decade, the use of immunotherapies based on the body’s own T cells has become a new way to treat 
ALL, aiming to prevent the blood cancer from becoming resistant to chemotherapy.

Motivation
Dynamic aggregation operators are employed to handle uncertainties and imprecise information that evolves 
over time. These operators facilitate the collection of data from different time periods to generate an accurate rep-
resentation, enabling a holistic understanding of the problems. Thus, it becomes important to conduct research 
that focuses on addressing the issues related to dynamic fuzzy MADM.

Research gap and objectives of the study
Prior research has concentrated primarily on circumstances involving decision-making in which all initial deci-
sion information is gathered simultaneously. Nevertheless, it is customary in a great number of contexts involv-
ing decision-making to gather the essential data pertaining to the decision at various time intervals. Dynamic 
intuitionistic fuzzy MADM was investigated by Xu and  Yager48, who also suggested the development of dynamic 
intuitionistic fuzzy aggregation operators. The "time degree" concept is employed in dynamic aggregation opera-
tors that gauge a decision maker’s information preference across time intervals using a time degree function 
within the MADM  context49–52. Introducing the variable in the dynamic framework allows for tracking the 
temporal evolution of membership degrees and analyzing variations within set time intervals. This capability 
enhances decision precision, provides insights into changes, and evaluates fuzzy set dynamics. To tackle these 
challenges, it is critical to formulate additional approaches.
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Fuzzy dynamic weighted averaging and geometric operators play a crucial role in improving decision-making 
models by accommodating dynamic changes and capturing complex relationships in systems affected by uncer-
tainty and imprecision. While these operators are defined for classical fuzzy, intuitionistic fuzzy, and Pythagorean 
fuzzy environments, their discussion in the literature regarding data containing Fermatean fuzzy sets is lacking. 
To address this gap, it is essential to define these operators for Fermatean fuzzy sets to handle such situations.

The following constitutes a summary of the principal contributions to this work:

 i. Two novel aggregation operators, FFDyWA and FFDyWG, have been developed to handle intricate deci-
sion-making situations that incorporate Fermatean fuzzy data.

 ii. The basic features of the FFDyWG and FFDyWA operators, encompassing monotonicity, idempotency, 
and boundedness, have been thoroughly examined.

 iii. A systematic approach to resolving MADM problems is provided through the utilization of newly defined 
operators. The flowchart of the proposed approach is presented is Fig. 1.

 iv. The suggested methodology is implemented to tackle a specific MADM challenge that revolves around 
ascertaining the most effective treatment approach for ALL. It shows the importance of FFDyWA and 
FFDyWG in the decision-making process.

 v. The efficacy of the proposed methodologies is evaluated through an exhaustive comparative analysis with 
a range of established techniques. The comparison results demonstrate that the devised methodology is 
dependable and consistent.

The remaining part of this paper is organized as follows: "Preliminaries" section provides the necessary 
background definitions to understand the key findings of this paper. "Dynamic operations on Fermatean fuzzy 
numbers" section introduces dynamic aggregate operators for FFS and analyzes their inherent characteristics. In 
"Application of proposed FF dynamic weighted aggregation operators in MADM problem" section, we introduce 
a novel approach to address MADM problems using FF information through the application of FF Dynamic 
weighted aggregation operators. "An optimal treatment modality to cure blood cancer under FF dynamic envi-
ronment" section is dedicated to illustrating the application of the proposed approach for selecting the optimal 
treatment modality for curing blood cancer. Furthermore, a comparative analysis is conducted to assess the 
effectiveness and feasibility of this innovative methodology in contrast to conventional approaches. "Conclusions" 
section summarizes the conclusion of this entire study.

Choose the distinct alternatives

Choose the attribute relative to 
alternatives

Obtain the Fermatean fuzzy 
decision matrices with respect to 

time periods 

Input

Compute FFDyWA/FFDyWG 
operator to aggregate all the 

decision matrices 

Compute FFWA/FFWG to 
aggregate overall values to evaluate 

optimal treatment modality for 
blood cancer

Output Select the best alternative having the 
maximum score value

Find the score values of each modality

Figure 1.  Flowchart of the proposed scheme.
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Preliminaries
In this section, we provide necessary background definitions to understand the key findings of this paper.

Definition 1 (2). Assume that X is a universe of discourse. The IFS F of X is formally delineated as follows: 
F = {�x,µF(x), νF(x)� : x ∈ X} , where, µF : X → [0, 1] and νF : X → [0, 1] , are membership functions. The 
former represents the membership function, while the latter represents the non-membership function. These 
membership functions must satisfy the constraint 0 ≤ µF(x)+ νF(x) ≤ 1 , for all x ∈ X.

IFSs fail to handle the situation when the combined sum of membership and non-membership values exceeds, 
for this  reason3 developed the concept of PFSs. This concept is reviewed in the following definition:

Definition 2 (3). The PFS F of the universe X is formally characterized as follows: F = {�x,µF(x), νF(x)� : x ∈ X} , 
wherein, µF : X → [0, 1] and νF : X → [0, 1] , are membership functions. The former represents the membership 
function, while the latter represents the non-membership function. These membership functions must satisfy 
the constraint 0 ≤ µ2

F(x)+ ν2F(x) ≤ 1 , for all x ∈ X.

A more advanced version of FSs was required to account for circumstances that exceeded the scope of the IFS 
and PFS. The authors introduced the concept of FFSs  in14 for this purpose; it is defined in the following section.

Definition 3 (14). An FFS F of X , is an object of the form: F = {�x,µF(x), νF(x)� : x ∈ X} , where, µF : X → [0, 1] 
and νF : X → [0, 1] , respectively represents the membership and non-membership functions, satisfying 
0 ≤ µ3

F(x)+ ν3F(x) ≤ 1 , ∀x ∈ X . The pairs µF(x) and νF(x) represent, membership and non-membership degrees 
of the element : x ∈ X . Moreover, for any FFS F and any element x ∈ X , the indeterminacy degree of x with 

respect to F , denoted as πF(x) = 3

√

1− µ3
F(x)− ν3F(x) . Furthermore, we represent the membership and non-

membership degrees of an element x ∈ X as x = (µF , νF) , defining it as a Fermatean fuzzy number (FFN), where 
, µF ∈ [0, 1] , νF ∈ [0, 1] and 0 ≤ µ3

F + ν3F ≤ 1.

Definition 4 (14). For a FFN F that is characterized by its membership function µF and non-membership func-
tion νF , two essential functions are defined as follows:

 i. The score function, denoted as g(F) , is formulated as g(F) = µ3
F − ν3F , where the result lies within the 

closed interval [−1, 1].

 ii. The accuracy function, denoted as H(F) , is expressed as H(F) = µ3
F + ν3F , with the outcome residing 

within the interval [0, 1].

Moreover, any two FFNs F1 and F2 satisfy the following comparison laws:

 i. If g(F1) > g(F2) , then F1 > F2
 ii. If g(F1) < g(F2) , then F1 < F2
 iii. If g(F1) = g(F2) , then  H(F1) > H(F2) ⇒ F1 > F2 , H(F1) < H(F2) ⇒ F1 < F2 and H(F1) = H(F2) 

⇒ F1 ∼ F2

Definition 5 (25). Consider a collection ϕ having n number of FFNs denoted as Fi = (µFi , νFi ) , where 
i = 1, 2, ..., n , and let ω = [ω1,ω2, ...,ωn]

T represent the weight vector associated with these FFNs, satisfying the 
constraints ωi ∈ [0, 1] and 

∑n
i=1ωi = 1 . In this context, we describe the concept of a Fermatean fuzzy weighted 

average (FFWA) operator as a mapping FFWA : ϕn → ϕ , defined by the rule:

Definition 6 (25). Let Fi = (µFi , νFi ) , where i = 1, 2, ..., n, represent a collection ϕ having n number of FFNs, 
and let FFWG : ϕn → ϕ be an operator defined to process these FFNs. The FFWG operator, infact known as the 
Fermatean fuzzy weighted geometric operator, is defined as follows:

In this context, ω = [ω1,ω2, ...,ωn]
T represents the weight vector associated with the FFNs Fi , with the stipu-

lations that ωi ∈ [0, 1] and 
∑n

i=1ωi = 1.

Definition 7 (48). In the context of a time variable designated t  , we call Ft = (µt , νt) as an IF variable, where 
µt ∈ [0, 1], νt ∈ [0, 1] , and µt + νt ≤ 1 . For an IF variable Ft , if we have a time sequence t = (t1, t2, ..., tp) , then 
Ft1 , Ft2 , ..., Ftp represents p IFNs collected at p different time points.

FFWA(F1, F2, ..., Fn) =

(

n
∑

i=1

ωiµFi ,

n
∑

i=1

ωiνFi

)

FFWG(F1, F2, ..., Fn) =
(

∏n

i=1
µ
ωi
Fi
,
∏n

i=1
ν
ωi
Fi

)
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Dynamic operations on Fermatean fuzzy numbers
In this section, we explore dynamic operations within the context of the FF environment. It is imperative to 
emphasize that the applicability of the FFW aggregation operators is restricted to scenarios where FF informa-
tion possesses time-independent attributes. In cases where time considerations are relevant, as in the collection 
of FF data across distinct time intervals, the FFW aggregation operators are unsuitable for effectively handling 
such situations.

Dynamic operational laws of FFNs
Definition 8 Let’s consider a time variable, denoted as t. We refer to Ft = (µt , νt) as a FF variable, where 
µt ∈ [0, 1], νt ∈ [0, 1] , and µ3

t + ν3t ≤ 1.

For a FF variable Ft , if we have a time sequence t = (t1, t2, ..., tp) , then Ft1 , Ft2 , ..., Ftp represents p FFNs collected 
at p different time points.

In the following definition, we introduce dynamic operational laws applied to FFNs.

Definition 9 Consider two FFNs Ft1 =
(

µt1 , νt1
)

 and Ft2 =
(

µt2 , νt2
)

 . The following are the fundamental opera-
tional laws that regulate their intertheme:

 i. Ft1 ≤ Ft2 , if µt1 ≤ µt2 and νt1 ≤ νt2
 ii. Ft1 = Ft2 if and only if  Ft1 ⊆ Ft2 and Ft2 ⊆ Ft1
 iii. Fct1 =

(

νt1 ,µt1

)

Definition 10 Consider Ft = (µt , νt) , Ft1 =
(

µt1 , νt1
)

 and Ft2 =
(

µt2 , νt2
)

 be three FFNs and ǫt > 0 . These FFNs 
are subjected to dynamic operations as delineated below:

Ft1 ⊕ Ft2 =
(

3

√

µ3
t1 + µ3

t2 − µ3
t1µ

3
t2 , νt1νt2

)

Ft1 ⊗ Ft2 =
(

µt1µt2 ,
3

√

ν3t1 + ν3t2 − ν3t1ν
3
t2

)

ǫtFt =

(

3

√

1−
(

1− µ3
t

)ǫt
, ν

ǫt
t

)

Fǫtt =

(

µ
ǫt
t ,

3

√

1−
(

1− ν3t
)ǫt

)

Structural properties of FFDyWA operator
Here, we introduce the notion of FFDyWA operator and prove its basic structural attributes.

Definition 11 Consider a collection  ϕ having p number of FFNs Ftk = (µtk , νtk ) at different time periods tk , 
where k = 1, 2, . . . , p . A Fermatean fuzzy dynamic weighted averaging operator is a mapping FFDyWA : ϕp → ϕ , 
defined as follows:

Here ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T represents the associated weight vector for the time periods tk , where k = 1, 2, . . . , p , 

such that ǫtk ∈ [0, 1] and 
∑p

k=1ǫtk = 1.

Definition 11 is elaborated upon in the subsequent examples.

Example 1 Consider three FFNs Ft1 = (0.7, 0.6) ,  Ft2 = (0.8, 0.7) and Ft3 = (0.9, 0.5) .  We have 
ǫt = [0.25, 0.3, 0.45]T  is the associated weight vector assigned to the time periods tk , where 
k = 1, 2, 3 . Then 

∏3
k=1

(

1− µ3
tk

)ǫtk = 0.403 and 
∏3

k=1ν
ǫtk
tk

= 0.578 . In view of Definition 11, we can 
obtain:FFDyWA

(

Ft1 , Ft2 , Ft3
)

= ⊕3
k=1ǫtk Ftk = (0.841, 0.578).

Theorem 1 Consider p numbers of FFNs denoted as Ftk = (µtk , νtk ) , existing at time intervals tk , where 
k = 1, 2, . . . , p . Let ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]

T be the weight vector corresponding to tk , where k = 1, 2, . . . , p , such that 
ǫtk ∈ [0, 1] and 

∑p
k=1ǫtk = 1 . The aggregated result of these through the FFDyWA operation remains an FFN. It 

can be expressed as:

FFDyWA
�

Ft1 , Ft2 , ..., Ftp
�

= ⊕
p
k=1ǫtk Ftk

=





3

�

�

�

�1−

p
�

k=1

�

1− µ3
tk

�ǫtk ,

p
�

k=1

ν
ǫtk
tk





FFDyWA
(

Ft1 , Ft2 , ..., Ftp
)

=

(

3

√

1−
∏p

k=1

(

1− µ3
tk

)ǫtk ,
∏p

k=1
ν
ǫtk
tk

)

.
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Proof The proof of this theorem is established through the utilization of mathematical induction on p . We initiate 
the proof by considering the base case when p = 2

Breaking down the components ǫt1Ft1 and ǫt2Ft2 , in the light of Definition 11 we obtain the following 
expressions:

Then,

Consequently,

Therefore, the theorem is valid for p = 2.
Next, we assume that the theorem holds true for p = n > 2 , so we have:

Now, if p = n+ 1 , then

This mean that

This demonstrates that the theorem holds for p = n+ 1 . Consequently, we can infer that the statement is 
valid for all positive integral values of p.

The next example provides concrete application of Theorem 1.

Example 2 Consider the FFNs Ft1 = (0.8, 0.7) , Ft2 = (0.6, 0.7) , Ft3 = (0.6, 0.8) and Ft4 = (0.9, 0.4) , accompanied 
by the corresponding weight vectors ǫt = [0.2, 0.4, 0.3, 0.1]T for the time periods tk , where k = 1, 2, 3, 4 . Calcula-
tions yield: 

∏4
k=1

(

1− µ3
tk

)ǫtk = 0.641 and 
∏4

k=1ν
ǫtk
tk

= 0.688 . In view of Definition 11, we summarize the above 
discussion as follows:

Thus, exemplifying the practical application of Theorem 1.

Theorem 2 (Idempotency) If all Ftk =
(

µtk , νtk

)

 , where k = 1, 2, . . . , p are equal, that is, Ftk = Ftj for all k and for 

some j ∈ {1, 2, ..., p} , where Ftj =
(

µtj , νtj

)

 . Then FFDWA
(

Ft1 , Ft2 , ..., Ftp
)

= Ftj.

Proof Given that Ftk = Ftj for all k = 1, 2, . . . , p , and for some j ∈ {1, 2, ..., p} , then µtk = µtj and νtk = νtj.
Consider

FFDyWA
(

Ft1 , Ft2
)

= ǫt1Ft1 ⊕ ǫt2Ft2

ǫt1Ft1 =

(

3

√

1−
(

1− µ3
t1

)ǫt1 , ν
ǫt1
t1

)

ǫt2Ft2 =

(

3

√

1−
(

1− µ3
t2

)ǫt2 , ν
ǫt2
t2

)

ǫt1Ft1 ⊕ ǫt2Ft2 =

(

3

√

1−
(

1− µ3
t1

)ǫt1 , ν
ǫt1
t1

)

⊕

(

3

√

1−
(

1− µ3
t2

)ǫt2 , ν
ǫt2
t2

)

=

(

3

√

1−
(

1− µ3
t1

)ǫt1
(

1− µ3
t2

)ǫt2 , ν
ǫt1
t1 ν

ǫt2
t2

)

FFDyWA
(

Ft1 , Ft2
)

=

(

3

√

1−
∏2

k=1

(

1− µ3
tk

)ǫtk ,
∏2

k=1
ν
ǫtk
tk

)

FFDyWA
�

Ft1 , Ft2 , ..., Ftn
�

= ⊕n
k=1ǫtk Ftk

=





3

�

�

�

�1−

n
�

k=1

�

1− µ3
tk

�ǫtk ,

n
�

k=1

ν
ǫtk
tk





FFDyWA
�

Ft1 , Ft2 , ..., Ftn , Ftn+1

�

= ⊕n
k=1ǫtk Ftk ⊕ ǫtn+1

Ftn+1

=





3

�

�

�

�1−

n
�

k=1

�

1− µ3
tk

�ǫtk ,

n
�

k=1

ν
ǫtk
tk



⊕

�

3

�

1−
�

1− µ3
tn+1

�ǫtn+1 , ν
ǫtn+1

tn+1

�

FFDyWA
(

Ft1 , Ft2 , ..., Ftn+1

)

=

(

3

√

1−
∏n+1

k=1

(

1− µ3
tk

)ǫtk ,
∏n+1

k=1
ν
ǫtk
tk

)

FFDyWA
(

Ft1 , Ft2 , Ft3 , Ft4
)

= ⊕4
k=1ǫtk Ftk = (0.710, 0.688)
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Consequently,

Theorem 3 (Boundedness) Let F−t =

(

min
tk

{

µtk

}

, max
tk

{

νtk

}

)

 and F+t =

(

max
tk

{

µtk

}

, min
tk

{

νtk

}

)

 be the lower 

and upper bounds of the FFNs Ftk =
(

µtk , νtk

)

 , where k takes on values from 1 to p . Assume that ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T 

is the corresponding vector of these FFNs, such that  ǫtk ∈ [0, 1] and 
∑p

k=1ǫtk = 1 . Then.

Proof Consider

For each FFN µtk , we have

Moreover,

Hence by comparing relation 1 and 2, we obtain that,

FFDyWA
�

Ft1 , Ft2 , ..., Ftp
�

=





3

�

�

�

�1−

p
�

k=1

�

1− µ3
tk

�ǫtk ,

p
�

k=1

ν
ǫtk
tk





=







3

�

1−

�

1− µ3
tj

�

p
�

k=1

ǫtk
, ν

p
�

k=1

ǫtk

tj






=

�

3

�

1−

�

1− µ3
tj

�

, νtj

�

=

�

3

�

µ3
tj , νtj

�

= (µtj , νtj )

FFDyWA
(

Ft1 , Ft2 , ..., Ftp
)

= Ftj

Ft
− ≤ FFDyWA

(

Ft1 , Ft2 , ..., Ftp
)

≤ Ft
+

FFDyWA
(

Ft1 , Ft2 , ..., Ftp
)

= (µt , νt),

(1)

min
tk

{

µtk

}

≤ µtk ≤ max
tk

{

µtk

}

⇒ min
tk

{

µ3
tk

}

≤ µ3
tk
≤ max

tk

{

µ3
tk

}

⇒ 1−max
tk

{

µ3
tk

}

≤ 1− µ3
tk
≤ 1−min

tk

{

µ3
tk

}

⇒

p
∏

k=1

(

1−max
tk

{

µ3
tk

}

)ǫtk

≤

p
∏

k=1

(

1− µ3
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p
∏
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(
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µ3
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}

)ǫtk

⇒
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{

µ3
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}
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∑
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≤

p
∏
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(
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tk

{

µ3
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}
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p
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ǫtk

⇒

(
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tk

{

µ3
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}

)

≤

p
∏
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(
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(
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{
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)
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tk

{

µ3
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p
∏
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(
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tk
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{

µ3
tk

}
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√

min
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µ3
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3

√

√

√

√1−
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(
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√
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⇒ min
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≤ µt ≤ max
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{

µtk

}

(2)

min
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{
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}

≤ νtk ≤ max
tk

{
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}

⇒

p
∏
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(

min
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{
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≤
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)ǫtk ≤

p
∏

k=1

(

max
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≤
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)ǫtk ≤

(
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{
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}
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∑

k=1
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⇒ min
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{
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≤ νt ≤ max
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{
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Ft
− ≤ FFDyWA

(

Ft1 , Ft2 , ..., Ftp
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≤ Ft
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Theorem 4 (Monotonicity) Consider two collections p number of FFNs, denoted as Ftk =
(

µtk , νtk

)

 and 
Gtk =

(

ηtk , ξtk

)

 , with k ranging from 1 to p . Let ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T be the weight vector corresponding to tk , 

where k = 1, 2, . . . , p , such that ǫtk ∈ [0, 1] and 
∑p

k=1ǫtk = 1 . If for each tk , µtk ≤ ηtk and νtk ≥ ξtk , then

Proof In view of given presentation of Ftk and Gtk the corresponding FFDyWA’s outcomes as follow:

Since µtk ≤ ηtk , which implies that µ3
tk
≤ η3tk , we can deduce that

Hence, we can conclude that

In a similar way, by considering νtk ≥ ξtk , we derive: 
∏p

k=1ν
ǫtk
tk

≥
∏p

k=1ξ
ǫtk
tk

 implying that,

Therefore, utilizing Definition 9 and by comparing relation 3 and 4, we obtain that:

Thus, the monotonicity property is established.
Structural properties of FFDyWG operator
This subsection serves to introduce the concept of the FFDyWG operator and outline its fundamental structural 
characteristics.

Definition 12 Consider a collection ϕ having p number of FFNs, denoted as Ftk = (µtk , νtk ) , existing across 
distinct time periods tk , where k takes values from 1 to p . A Fermatean fuzzy dynamic weighted geometric opera-
tor is a mapping FFDyWG:ϕp → ϕ , which is defined as follows:

 Here ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T represents the weight vector associated with the time periods tk , where k = 1, 2, . . . , p , 

such that ǫtk ∈ [0, 1]  and 
∑p

k=1ǫtk = 1.

Following examples elaborate the complete understanding of the above Definition.

Example 3 Consider three FFNs Ft1 = (0.9, 0.3) , Ft2 = (0.8, 0.6) and Ft3 = (0.7, 0.8) and the ǫt = [0.25, 0.35, 0.4]T 
is the associated weight vector, assigned to the time periods tk , where k = 1, 2, 3 . Then 

∏3
k=1µ

ǫtk
tk

= 0.781 and 
∏3

k=1

(

1− ν3tk

)ǫtk = 0.315 . In view of Definition 12, we obtain:

Theorem  5 Consider p number of FFNs represented as Ftk = (µtk , νtk ) , corresponding to time periods 
tk , wherek = 1, 2, . . . , p . Let ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]

T be the weight vector corresponding to tk , where k = 1, 2, . . . , p , 
such that ǫtk ∈ [0, 1] and 

∑p
k=1ǫtk = 1 . Then, the outcome of aggregating these FFNs through the FFDyWG opera-

tion yields a FFN as follows:

FFDyWA
(

Ft1 , Ft2 , ..., Ftp
)

≤ FFDyWA
(

Gt1 ,Gt2 , ...,Gtp

)

FFDyWA
(

Ft1 , Ft2 , ..., Ftp
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= (µt , νt)

FFDyWA
(

Gt1 ,Gt2 , ...,Gtp

)

= (ηt , ξt)

1− µ3
tk
≥ 1− η3tk

⇒

p
∏

k=1

(

1− µ3
tk

)ǫtk ≥

p
∏

k=1

(

1− η3tk

)ǫtk

⇒ 1−

p
∏

k=1

(

1− µ3
tk

)ǫtk ≤ 1−

p
∏

k=1

(

1− η3tk

)ǫtk

⇒
3

√

√

√

√1−

p
∏

k=1

(

1− µ3
tk

)ǫtk ≤
3

√

√

√

√1−

p
∏
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(

1− η3tk

)ǫtk

(3)µt ≤ ηt

(4)νt ≥ ξt

FFDyWA
(

Ft1 , Ft2 , ..., Ftp
)

≤ FFDyWA
(

Gt1 ,Gt2 , ...,Gtp

)

FFDyWG
(

Ft1 , Ft2 , ..., Ftp
)

= ⊗
p
k=1F

ǫtk
tk

=

(

∏p

k=1
µ
ǫtk
tk
,

3

√

1−
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k=1

(

1− ν3tk

)ǫtk

)

FFDyWG
(

Ft1 , Ft2 , Ft3
)

= ⊗3
k=1ǫtk Ftk = (0.781, 0.881)



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1896  | https://doi.org/10.1038/s41598-024-51942-7

www.nature.com/scientificreports/

Proof The proof of this theorem is established through the utilization of mathematical induction on p . We initiate 
the proof by considering the base case when p = 2

Breaking down the components F
ǫt1
t1  and F

ǫt2
t2  , in the light of Definition 12 we obtain the following expressions:

Then,

Consequently,

Therefore, the theorem is valid for p = 2.
Next, we assume that the theorem holds true for p = n > 2 , so we have:

Now, if p = n+ 1 , then we have

This mean that

This demonstrates that the theorem holds for p = n+ 1 . Consequently, we can infer that the statement is 
valid for all positive integral values of p.

Example 4 To exemplify the application of the FFDyWG operator, consider four FFNs Ft1 = (0.9, 0.4) , 
Ft2 = (0.8, 0.5) , Ft3 = (0.7, 0.3) and Ft4 = (0.6, 0.5) and the associated weight vector [0.25, 0.47, 0.13, 0.15]T 
assigned to the time periods tk , where k = 1, 2, 3, 4 . Subsequently, we calculate:

In view of Definition 12, we summarize the above discussion as follows:

FFDyWG
(

Ft1 , Ft2 , ..., Ftp
)

=

(

∏p

k=1
µ
ǫtk
tk
,

3

√
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F
ǫt1
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3
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(

1− ν3t1

)ǫt1
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µ
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)
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µ
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3

√
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(
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⊗
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µ
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=
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k=1
µ
ǫtk
tk

= (0.775)

∏4

k=1

(

1− ν3tk

)ǫtk = (0.902)

FFDyWG
(

Ft1 , Ft2 , Ft3 , Ft4
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= ⊗4
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ǫtk
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= (0.775, 0.461).



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1896  | https://doi.org/10.1038/s41598-024-51942-7

www.nature.com/scientificreports/

Theorem 6 (Idempotency) If all Ftk =
(

µtk , νtk

)

 , where k = 1, 2, . . . , p are equal, that is, Ftk = Ftj for all k and for 

some j ∈ {1, 2, ..., p} , where Ftj =
(

µtj , νtj

)

 . Then FFDyWG
(

Ft1 , Ft2 , ..., Ftp
)

= Ftj.

Proof The proof of this theorem is omitted because it is closely aligning with that of Theorem 2.

Theorem 7 (Boundedness) Let F−tk =

(

min
tk

{

µtk

}

, max
tk

{

νtk

}

)

 and F+tk =

(

max
tk

{

µtk

}

, min
tk

{

νtk

}

)

 be the lower 

and upper bounds of the FFNs Ftk =
(

µtk , νtk

)

 , where k takes on values from 1 to p . Assume that ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T 

is the corresponding vector of these FFNs, such that ǫtk ∈ [0, 1] , and 
∑p

k=1ǫtk = 1 . Then

Proof Consider FFDyWG
(

Ft1 , Ft2 , ..., Ftp
)

= (µt , νt) . For each µtk , we have

Moreover,

Hence by comparing relation 5 and 6, we obtain that

Theorem 8 (Monotonicity) Consider two collections p numbers of FFNs, denoted as Ftk =
(

µtk , νtk

)

 and 
Gtk =

(

ηtk , ξtk

)

 , with k ranging from 1 to p . Let ǫt = [ǫt1 , ǫt2 , ..., ǫtp ]
T be the weight vector corresponding to tk , 

where k = 1, 2, . . . , p , such that ǫtk ∈ [0, 1] and 
∑p

k=1ǫtk = 1 . If for each tk : µtk ≤ ηtk and νtk ≥ ξtk , then:

Proof The proof of this theorem is omitted because it is identical to that of Theorem 4.
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+
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⇒

p
∏
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∏
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∏
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Application of proposed FF dynamic weighted aggregation operators in MADM 
problem
In this section, we introduce a novel approach to address MADM problems using FF information through the 
application of FF Dynamic weighted aggregation operators.

• Let us consider a discrete set of alternatives denoted as {�1,�2, ...,�m}.
• Consider a set of attributes {∅1,∅2, ...,∅n} , each associated with a weight vector ω = [ω1,ω2, ...,ωn]

T , where 
ωj ≥ 0 for j = 1, 2, ..., n , and 

∑n
j=1ωj = 1.

• We further include the concept of different time periods tk , where k = 1, 2, . . . , p . Each time period is char-
acterized by a weight vector ǫt =

[

ǫt1 , ǫt2 ...ǫtp
]T , with ǫtk ∈ [0, 1] and 

∑p
k=1ǫtk = 1.

• Let Rtk = [oij(tk)]m×n
=

(

µij(tk), νij(tk)
)

m×n
 represent the FF decision matrices for time period tk , where µij(tk) 

indicates the degree to which alternative �i satisfies attribute ∅j during time periods tk , and νij(tk) signifies the 
degree to which alternative �i fails to satisfy attribute ∅j at time periods tk . These values are compliant with 
the constraints: µij(tk) ∈ [0, 1] , νij(tk) ∈ [0, 1] and (µij(tk)

)3 + (νij(tk))
3 ≤ 1.

Now, utilizing the previously presented decision information, we developed an efficient algorithm to decide 
on and rank the most preferable alternative(s) within the context of MADM.

Procedure for FFDyWA
Step 1 Utilize the FFDyWA operator:

This implies that

where, i = 1, 2, ...,m and , j = 1, 2, ..., n . This process aggregates all the FF decision matrices into a collective FF 
decision matrix as follows Rt = [oij]m×n

=
(

µij , νij
)

m×n
.

Step 2. Apply the FFWA operator as follows:

This step yields the overall values oi = (µi , νi) of the alternatives �i , where i = 1, 2, ...,m.
Step 3. Compute the scores values oi corresponding to each alternatives �i by using Definition 4.
Step 4. Arrange all the alternatives �i , for i = 1, 2, ...,m , and identify the optimal choice(s) using g(oi).
The graphical representation of the aforementioned steps of the proposed algorithm utilizing FFDyWA is 

shown in Fig. 2.

Procedure for FFDyWG
Step 1. Utilize the FFDyWG operator, represented as follows:

This implies that

where, i = 1, 2, ...,m and , j = 1, 2, ..., n . This operator is employed to aggregates all the FF decision matrices into 
a collective FF decision matrix as follows Rt = [oij]m×n

=
(

µij , νij
)

m×n
.

Step 2. Apply the FFWG operator, defined as:

This step yields the overall values oi = (µi , νi) for the alternatives �i , where i = 1, 2, ...,m.
Step 3. Compute the scores values oi corresponding to each alternatives �i by using Definition 4.
Step 4. Rank all the alternatives �i (where i = 1, 2, ...,m ) and select the best one(s) in accordance with the 

criteria of g(oi).
The graphical representation of the aforementioned steps of the proposed algorithm utilizing FFDyWA is 

shown in Fig. 3.
Both proposed schemes are very handy in solving MADM problems in the context of road safety measures, 

dynamic financial strategies, medicines, education, big data analytics, energy resources, and many more. In this 
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Figure 2.  Flowchart of the proposed algorithm under FFDyWA.

Figure 3.  Flowchart of the proposed algorithm under FFDyWG.
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article, we consider the following decision-making problem of treatment methods to cure blood cancer as an 
illustrated example to showcase the practicability of the proposed strategies.

An optimal treatment modality to cure blood cancer under FF dynamic environment
In this section, we effectively apply the proposed strategies of this article to obtain an optimal treatment modality 
to cure blood cancer under FF Dynamic knowledge.

Cancer is a major cause of death, causing the uncontrolled proliferation of abnormal cells in the body, leading 
to cellular dysfunction or death. Blood cancer, a form of neoplastic disorders, affects blood cells and is primarily 
caused by genetic mutations. Leukemia, a hematologic malignancy, is distinguished by the unrestrained prolifera-
tion of malignant leukocytes within the bone marrow. Clinical manifestations include hemorrhagic tendencies, 
musculoskeletal discomfort, asthenia, pyrexia, and increased susceptibility to infectious pathogens. The cause is 
unknown, but it is thought to be a combination of genetic and non-inherited environmental elements. Risk fac-
tors for developing certain conditions include smoking, exposure to ionizing radiation, petrochemicals, previous 
chemotherapy treatment, and Down syndrome. There are four major categories of leukemia: acute lymphoblastic 
leukemia (ALL), chronic lymphocytic leukemia (CLL), chronic myeloid leukemia (CML), acute myeloid leuke-
mia (AML), and several rarer variants. Hematopoietic stem cell transplantation (HSCT) is a unique procedure 
but may provide complications. In the consolidation phase, targeted drugs like Imatinib mesylate and standard 
chemotherapy have shown to improve survival rates.

Following are the treatment approaches for ALL disease.

Chimeric antigen receptor (CAR) T‑cells therapy
Advancements in the employment of CAR T-cell therapy have significantly evolved, emerging as an increas-
ingly pivotal modality for addressing hematological  malignancies53. Kymriah and Yescarta, the inaugural class 
of CAR T-cell therapeutics, obtained approval from the Food and Drug Administration in the United States for 
the treatment of leukemia and lymphoma, in August and October of 2017,  respectively54. CAR T-cells denote 
T or natural killer cells that have been subjected to genetic manipulation, resulting in the expression of hybrid 
proteins. These amalgamated proteins function as navigational cues, steering the engineered cells towards precise 
molecular targets located on the surface of neoplastic cells. CAR T-cell constructs comprise an extracellular anti-
gen recognition moiety, namely the single-chain variable fragment (scFv) derived from an antibody, an integral 
transmembrane domain, and an intracellular signaling domain. The targeting moiety is inherently supplied in 
its native form within the groove of major histocompatibility complex (MHC) molecules, without requiring 
any supplementary processing. CAR T-cells have the ability to recognize and target tumor cells without being 
influenced by the MHC haplotype of the patient.

The utilization of ligands or peptides for the purpose of targeting CAR T-cell therapy is a field of active 
advancement and investigation. This paper discusses the various functions and applications of monoclonal 
antibodies, specifically focusing on chimeric antibodies. CAR-T-cell and other targeted therapies for adult ALL 
are still being studied. These treatments in combination or sequentially may improve adult ALL cure rates to 
those of juvenile ALL. This method may also reduce the need for intensive and maintenance chemotherapy.

Chemotherapy
Paul  Ehrlich55,56, a German chemist with a focus on alkylating compounds, coined the term "chemotherapy" to 
denote the chemical intervention in the management of diseases. Chemotherapy pertains to the administration of 
pharmacological agents for the explicit purpose of treating cancer. These chemotherapeutic agents are delivered 
systemically through the circulatory system to effectively target neoplastic cells distributed throughout the entire 
organism. Chemotherapy exhibits notable efficacy in the management of malignancies, particularly leukemia, 
which has disseminated extensively within the organism. Certain advanced forms of malignancies, such as acute 
lymphoblastic and acute myelogenous leukemia, are amenable to curative treatment through chemotherapy. 
While curative outcomes are not uniformly achieved in the treatment of these malignancies, significant progress 
has been made in improving progression-free survival and overall survival rates. Chemotherapy is commonly 
linked to off-target effects, resulting in a detrimental impact on neighboring healthy cells. These effects can 
manifest in various forms, including but not limited to hair loss, nausea, vomiting, fatigue, mouth sores, hand 
or foot rashes, diarrhea, and impaired liver or kidney function. The observed negative effects can be attributed 
to excessive medication  administration57,58.

Radiation therapy
Radiation therapy constitutes an essential component of cancer treatment. At some stage, a majority of cancer 
patients, over 50%, require radiation therapy. The number of individuals who have survived cancer in the long 
term has experienced a substantial increase due to advancements in treatment approaches. Individuals who have 
survived cancer for an extended period of time have a heightened susceptibility to the development of subsequent 
cancers. Radiation therapy has been utilized for the purpose of CNS prophylaxis and for the management of 
certain instances of extramedullary recurrence. Cranial and/or craniospinal irradiation have been recognized as 
the most longstanding CNS prophylactic treatments for individuals diagnosed with ALL, including both children 
and adult  populations59. In the treatment of ALL, radiation therapy is occasionally employed in conjunction with 
chemotherapy. In cases where chemotherapy proves ineffective, radiation treatment can serve as a viable interven-
tion to impede the proliferation of leukemia cells inside the bone marrow. The eradication of cancer cells has the 
potential to alleviate bone discomfort resulting from the accumulation of cells associated with ALL. Radiation 
treatment has demonstrated efficacy in treating CNS in ALL; nonetheless, it is frequently accompanied by delayed 
side effects, including secondary neoplasms, endocrinopathy, neurocognitive impairment, and  neurotoxicity60. 
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From a clinical and, to a certain extent, biological perspective, it is imperative to establish a clear differentiation 
between early and late adverse effects. The initial effects become apparent within a short period of time follow-
ing the conclusion of a fractionated radiation treatment regimen. The aforementioned consequences encompass 
cutaneous erythema, both dry and wet desquamation of the skin, mucositis, as well as symptoms of nausea and 
diarrhea. The manifestation of late effects is commonly observed following extended durations of latency, span-
ning from several months to several years. These effects encompass radiation-induced fibrosis, atrophy, vascular 
impairment, and brain impairment, as well as a variety of endocrine and growth-related  consequences61.

Hematopoietic stem‑cell transplantation
Hematopoietic stem cell transplantation (HSCT) functions as a therapeutic approach aimed at consolidating the 
treatment of acute leukemia, resulting in the potential for cure in a significant number of patients with relapsed 
or very aggressive disease. The therapeutic efficacy of HSCT is a result of the combined action of direct cyto-
toxicity induced by the chemo-radiotherapy provided during the conditioning regimen, as well as an immune-
mediated impact known as graft-versus-leukemia (GVL). Patients who undergo transplantation with a lower 
illness burden tend to experience more favorable  outcomes62. Furthermore, it has been shown that individuals 
suffering from mild to severe GVHD have elevated rates of sustained remission over an extended period. This 
phenomenon is believed to be a result of an immunological reaction directed towards the host’s own  tissues63,64. 
The primary mediators of GVL response in ALL are T cells; however, the specific antigens recognized by these 
allogeneic T cells are mostly unidentified. The loss of antigen presentation mechanisms has been identified as a 
well-documented factor contributing to leukemic resistance against the GVL  impact65.

In the forthcoming analysis, we undertake a comparative assessment of CAR-T cell therapy vis-à-vis estab-
lished conventional modalities for the treatment of ALL by employing an analytical MADM technique, specifi-
cally under Fermatean fuzzy decision-making. Our approach involves the incorporation of CAR-T cell therapy 
into the comparative framework alongside the adaptation of evaluation criteria, comparative methodologies, 
and ranking procedures.

Illustration
Here, we delineate a systematic procedure for the evaluation and selection of optimal treatment alternatives for 
ALL within the framework of FF Dynamic aggregation operators.

Let us denote the set of treatment alternatives as {�1,�2,�3,�4} , where

 i. �1 : Signifies Chemotherapy
 ii. �2 : Represents Hematopoietic Stem-Cell Transplantation (HSCT)
 iii. �3 : Denotes Radiation therapy
 iv. �4 : Corresponds to Chimeric Antigen Receptor (CAR) T-cell Therapy

Furthermore, we identify a set of pertinent attributes as {∅1,∅2,∅3,∅4,∅5} each contributing to the assess-
ment of treatment options:

 i. ∅1 : Survival Rate
 ii. ∅2 : Achieving Remission (The primary goal of ALL treatment is to induce remission, which means that 

leukemia cells are no longer detectable in the blood or bone marrow. Achieving remission is a critical 
milestone in the treatment of ALL).

 iii. ∅3 : Side Effects
 iv. ∅4 : Efficiency
 v. ∅5 : Reliability

The four possible alternatives �i , will be evaluated using the FF information by the decision-maker under the 
attributes ∅j at three different periods tk , where t1, t2, and t3 represent periods of 2017− 2019 , 2019− 2021 and 
2021− 2023 , respectively. The weight vectors for the periods and attributes are denoted as ǫt = [0.2, 0.3, 0.5]T 
and ω= [0.3, 0.25, 0.1, 0.2, 0.15]T , respectively. The decision matrices Rt1 ,Rt2 and Rt3 are presented in Tables 1, 
2 and 3 respectively.

The presented MADM problem is addressed within the framework of the FFDyWA and FFDyWG operators. 
We outline the methodology and results of two distinct approaches, Method I and Method II, for resolving this 
complex decision problem.

Table 1.  Decision Matrix Rt1.

∅1 ∅2 ∅3 ∅4 ∅5

�1 (0.7, 0.4) (0.6, 0.5) (0.9, 0.6) (0.8, 0.4) (0.7, 0.3)

�2 (0.8, 0.6) (0.7, 0.8) (0.7, 0.4) (0.7, 0.6) (0.6, 0.6)

�3 (0.6, 0.8) (0.5, 0.7) (0.8, 0.5) (0.7, 0.5) (0.5, 0.4)

�4 (0.9, 0.6) (0.8, 0.4) (0.5, 0.8) (0.6, 0.4) (0.7, 0.5)
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Method I (FFDyWA operator)
Step 1. The FFDyWA operator is applied to aggregate the FF decision matrices Rt1 ,Rt2 and Rt3 , yielding a collec-
tive FF decision matrix Rt . The calculated values are displayed in Table 4.

Step 2. Subsequently, the FFWA operator is employed to derive the comprehensive values oi of �i , where 
i = 1, 2, 3, 4.

Step 3. Calculate the scores g(oi) where i = 1, 2, 3, 4 of the overall FF preferences values oi to rank all the 
alternative �i:

Step 4. The ranking order of the alternatives is established, revealing that �4 ≻ �1 ≻ �2 ≻ �3 . Consequently, 
CAR T-cell therapy is identified as the optimal choice.

The above procedure is graphically depicted in Fig. 4, which represents the score values of the alternatives 
obtained from FFDyWA operator.

Similarly, in accordance with the FFDyWG operator framework, the resolution of the aforementioned MADM 
problem is executed as follows:

Method II (FFDyWG operator)
Step 1. Employ the FFDyWG operator to amalgamate all FF decision matrices, denoted (tk) into a unified FF 
decision matrix Rt . These details are summarized as FFNs in Table 5 as follows:

Step 2. Apply the FFWG operator to derive the comprehensive values oi of �i , wherer i = 1, 2, 3, 4.

Step 3. Calculate the scores g(oi) wherer i = 1, 2, 3, 4 of the overall FF preferences values oi to rank all the 
alternative �i:

g(o3) = 0.020 g(o4) = 0.250

o1 = (0.749, 0.503)

o2 = (0.725, 0.624)

o3 = (0.621, 0.530)

o4 = (0.804, 0.496)

g(o1) = 0.292 g(o2) = 0.138

g(o3) = 0.090 g(o4) = 0.397

o1 = (0.725, 0.539)

o2 = (0.720, 0.678)

o3 = (0.600, 0.579)

o4 = (0.731, 0.520)

g(o1) = 0.224 g(o2) = 0.061

Table 2.  Decision matrix Rt2.

∅1 ∅2 ∅3 ∅4 ∅5

�1 (0.6, 0.7) (0.7, 0.6) (0.8, 0.6) (0.8, 0.7) (0.7, 0.5)

�2 (0.7, 0.6) (0.8, 0.7) (0.6, 0.5) (0.6, 0.9) (0.6, 0.5)

�3 (0.5, 0.7) (0.6, 0.6) (0.7, 0.5) (0.7, 0.6) (0.5, 0.6)

�4 (0.7, 0.5) (0.7, 0.5) (0.4, 0.7) (0.7, 0.4) (0.8, 0.6)

Table 3.  Decision Matrix Rt3.

∅1 ∅2 ∅3 ∅4 ∅5

�1 (0.7, 0.5) (0.7, 0.5) (0.9, 0.4) (0.8, 0.5) (0.8, 0.4)

�2 (0.8, 0.7) (0.8, 0.5) (0.7, 0.5) (0.7, 0.6) (0.7, 0.8)

�3 (0.6, 0.5) (0.6, 0.4) (0.8, 0.6) (0.6, 0.4) (0.6, 0.5)

�4 (0.9, 0.5) (0.8, 0.5) (0.3, 0.4) (0.9, 0.5) (0.8, 0.5)
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Step 4. Consequently, the ranking order of the provided alternatives is established as follows: 
�4 ≻ �1 ≻ �2 ≻ �3 . Therefore, CAR T-cell therapy emerges as the optimal alternative.

The above procedure is graphically depicted in Fig. 5, which indicate the score values of the alternatives 
obtain from FFDyWG operator.

The preceding explanation demonstrates that CAR T-cells therapies are the optimal treatment for ALL. The 
following are some advantages of CAR T-cell therapies: CAR T-cell therapies offer numerous benefits over con-
ventional treatments. These can induce long-term, complete remissions in multiple-treatment-resistant cancer 
patients. Additionally, the treatment duration is shorter, allowing for a more efficient and streamlined therapeutic 
process. Moreover, CAR T-cell therapies facilitate a rapid recovery, enabling patients to regain their health and 
well-being more quickly than with conventional treatments. These also benefit from the utilization of viable 
cells, which possess the capacity to proliferate within the bodies of patients, thereby establishing a long-lasting 
immunological memory. Hence, the presence of persistent CAR T-cells enables the identification and eradication 
of cancerous cells during instances of disease  recurrence66.

Table 4.  Collective matrix Rt using FFDyWA operator.

∅1 ∅2 ∅3 ∅4 ∅5

�1 (0.674, 0.528) (0.683, 0.528) (0.877, 0.489) (0.8, 0.528) (0.756, 0.403)

�2 (0.775, 0.648) (0.784, 0.607) (0.674, 0.478) (0.647, 0.677) (0.656, 0.655)

�3 (0.574, 0.607) (0.583, 0.505) (0.775, 0.547) (0.656, 0.472) (0.555, 0.505)

�4 (0.864, 0.518) (0.775, 0.478) (0.388, 0.543) (0.825, 0.447) (0.784, 0.528)

Figure 4.  Ranking of alternatives using FFDyWA.

Table 5.  Collective matrix Rt under FFDyWG operator.

∅1 ∅2 ∅3 ∅4 ∅5

�1 (0.668, 0.571) (0.678, 0.535) (0.868, 0.523) (0.8, 0.571) (0.748, 0.411)

�2 (0.768, 0.656) (0.778, 0.658) (0.668, 0.483) (0.668, 0.754) (0.648, 0.711)

�3 (0.568, 0.658) (0.578, 0.557) (0.768, 0.555) (0.648, 0.499) (0.547, 0.521)

�4 (0.834, 0.524) (0.768, 0.483) (0.362, 0.639) (0.769, 0.456) (0.778, 0.535)

Figure 5.  Ranking of alternatives using FFDyWG.
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Comparative analysis
During this discourse, we undertake a comparative examination in order to assess the reliability of the suggested 
methodologies in relation to the established approaches outlined  in48. We utilize two approaches, namely the 
IFDWA and IFDWG operators, to accumulate and combine identical data. The results produced through the 
utilization of these operators are compiled in Table 6 and arranged in Table 7 according to their ranking.

From the above discussion, it is quite evident that the methodologies developed in IF dynamic  environment48 
have less scope than the techniques presented in this article within the context of FF knowledge because the set 
of Intuitionistic membership degrees is less effective than the set of Fermatean membership degrees. It is, there-
fore, quite evident that dynamic FFS has a greater number of exhaustive options for identifying and resolving 
uncertainties than dynamic IFS.

The approaches developed  in25–34 are not applicable for evaluating the information present in Tables 1, 2 and 
3 because these techniques lack the ability to counter time-dependent decision-making problems. The efficacy of 
the proposed strategies in this study is enhanced due to their development within the framework of a dynamic 
FF environment because they take into account several time periods and enable a more precise evaluation of 
the information under consideration.

The theories of aggregation operators developed in the framework of the IF  environment15 and PF  knowledge4 
contained a lot of restrictions because these strategies ignored the time periods, and due to this reason, they 
lost a lot of information and hence were unable to evaluate the information available in Tables 1, 2 and 3. While 
compared to them, the recently proposed techniques are more beneficial because these methodologies have 
been designed within the framework of dynamic FF knowledge equipped with a time interval, which has very 
accurately evaluated the considered information.

As a result, the mathematical designs of the proposed operator based on FFSs with time periods are powerful 
and comprehensive. This demonstrates the superiority of the developed techniques over other existing methods.

Conclusions
This paper aims to present novel strategies for tackling decision-making problems in dynamic FF environment. 
The existing body of research has introduced several operators that have been shown to be helpful. However, it 
is worth noting that none of these operators have explicitly taken into account the time period in the FF setting. 
Because of this, using a dynamic FF model is a better way to express data about problems that change over time 
since it can handle bi-dimensional data within a unified framework in a better way. Considering these factors, 
we present a novel set of operators, namely FFDyWA and FFDyWG. We also examine the various characteristics 
of these operators.

Furthermore, we have introduced an innovative approach to address dynamic FF MADM problems. By uti-
lizing the FFDyWG and FFDyWA operators, this strategy manages decision-related data pertaining to attribute 
values known as FFNs. Significantly, our methodology considers data gathered at various time intervals during 
the decision-making process in this dynamic setting.

Additionally, we present a practical demonstration of the application of these newly developed approaches 
in the selection of an optimal treatment for the treatment of blood cancer. It has been demonstrated that the 
suggested techniques have high efficacy in rapidly killing cancer, as time plays a crucial role in cancer treatment. 
Finally, a comparative study is performed to emphasize the importance and reliability of these innovative pro-
cedures in comparison to currently available techniques.

The proposed FF environment is superior to IFS and PFS as it encompasses the space of both IFS and PFS. 
The cubic sum of membership and non-membership degrees is bounded by 1 in the FF framework. Moreover, 
the proposed strategies are presented in dynamic FF framework which allows for data collection at various time 
intervals and therefore enables to handle uncertainties in more precise manner.

Table 6.  Aggregated values of alternative obtained from different existing operators.

IFDWA48 IFDWG48

g(�1) (0.744, 0.503) (0.725, 0.525)

g(�2) (0.734, 0.624) (0.720, 0.662)

g(�3) (0.614, 0.530) (0.600, 0.560)

g(�4) (0.793, 0.496) (0.731, 0.509)

Table 7.  Ranking and score values for alternatives according to proposed and existing methodologies.

Methods S(r1) S(r2) S(r3) S(r4) Ranking order

IFDWA48 0.241 0.110 0.084 0.297 �4 ≻ �1 ≻ �2 ≻ �3

IFDWG48 0.200 0.058 0.040 0.222 �4 ≻ �1 ≻ �2 ≻ �3

FFDyWA 0.292 0.138 0.090 0.397 �4 ≻ �1 ≻ �2 ≻ �3

FFDyWG 0.224 0.061 0.020 0.250 �4 ≻ �1 ≻ �2 ≻ �3
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Although the proposed strategies enhance reliability with a better performance compared to the other exist-
ing techniques, it has some limitations, which include the following: (1) FFSs fails to handle the situation when 
cubic sum of membership and non-membership degrees exceed 1, and (2) it cannot be utilized to model cases 
involving spherical fuzzy information and picture fuzzy information because it only admits two parameters. 
These limitations will be addressed in our future work by applying the proposed strategies in the framework of 
q-rung fuzzy, picture and spherical fuzzy environment.

Future endeavors will primarily focus on developing a robust decision analysis tool, founded on dynamic 
operators, to enhance its practical utility and relevance. These approaches will be instrumental in shaping 
dynamic financial strategies, real-time social media monitoring, dynamic military management assessments, 
confidential short-listing in dynamic contexts, medical resource allocation for COVID-19, and intricate fuzzy 
dynamic decision-making paradigms in forthcoming research pursuits. We intend to investigate more extended 
operators, including dynamic Dombi aggregation operators and dynamic ordered weighted averaging/geometric 
operators. Furthermore, we aim to examine the effects of dynamic operators on advanced structures like intui-
tionistic fuzzy rough, q-rung fuzzy, picture and spherical fuzzy environment.
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