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Augmented drug combination 
dataset to improve 
the performance of machine 
learning models predicting 
synergistic anticancer effects
Mengmeng Liu 1,4, Gopal Srivastava 2,4, J. Ramanujam 1,3 & Michal Brylinski 2,3*

Combination therapy has gained popularity in cancer treatment as it enhances the treatment 
efficacy and overcomes drug resistance. Although machine learning (ML) techniques have become 
an indispensable tool for discovering new drug combinations, the data on drug combination 
therapy currently available may be insufficient to build high-precision models. We developed a 
data augmentation protocol to unbiasedly scale up the existing anti-cancer drug synergy dataset. 
Using a new drug similarity metric, we augmented the synergy data by substituting a compound 
in a drug combination instance with another molecule that exhibits highly similar pharmacological 
effects. Using this protocol, we were able to upscale the AZ-DREAM Challenges dataset from 8798 to 
6,016,697 drug combinations. Comprehensive performance evaluations show that ML models trained 
on the augmented data consistently achieve higher accuracy than those trained solely on the original 
dataset. Our data augmentation protocol provides a systematic and unbiased approach to generating 
more diverse and larger-scale drug combination datasets, enabling the development of more precise 
and effective ML models. The protocol presented in this study could serve as a foundation for future 
research aimed at discovering novel and effective drug combinations for cancer treatment.

Developing effective anticancer therapies is an important yet challenging task. Most currently available treat-
ments employ a monotherapy, i.e., using a single drug to treat a particular disease1,2. Although widely used, 
monotherapies are known to suffer from certain problems, such as the acquired drug resistance and prominent 
side effects1,3. In contrast, combination therapies utilizing multiple pharmaceuticals to simultaneously target 
several biological processes generally have greater chances of overcoming these issues4. Not surprisingly, com-
bination therapies against complex diseases, such as cancer, are attracting a significant attention. Nonetheless, 
exploring all possible drug combinations within a vast pharmacological space is a major obstacle to find those 
drug combinations exhibiting synergistic effects. Accurate computational methods to select the most promising 
therapeutic candidates for experimental testing can greatly facilitate the discovery of effective drug combinations.

Approaches utilizing machine learning (ML) are well suited to predict drug synergistic effects. Supervised 
learning techniques require large-scale experimental data to train models predicting effective drug combina-
tions. These datasets differ with respect to the number of drugs and cell lines. For instance, A Large Matrix of 
Antineoplastic Agent Combinations from the National Cancer Institute (NCI-ALMANAC) contains 5232 drug 
pairs tested against 60 cancer cell lines5. Another resource provides drug responses measured for a panel of 39 
cancer cell lines and 22 experimental drugs in all possible pairwise combinations and in combination with 16 
approved drugs, totaling 583 compound pairs6. Other datasets are focused on a specific cell line, for example, 
1833 bioactive drugs at 5 μm were tested in combination with temozolomide at 400 μm against a human glio-
blastoma cell line T98GN7. Furthermore, 1327 drug combinations from the CeMM library of unique drugs 
(CLOUD) dataset containing 308 prodrugs and active drugs8 were found effective against a human chronic 
myeloid leukemia cell line KBM-79.
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Meta-datasets collect and standardize the results of individual drug combination screening studies in order 
to enable a more efficient utilization of these data resources. For instance, DrugComb is an open-access data 
portal to 739,964 combinations of 8397 drugs tested on 2320 cell lines from 33 tissues10,11. It quantifies the 
degree of drug-drug interactions over the full dose–response matrix with several synergy scores, Bliss independ-
ence (BLISS), Highest single agent (HSA), Loewe additivity (LOEWE), and Zero interaction potency (ZIP)12–14. 
SYNERGxDB is a comprehensive dataset compiled from nine individual datasets containing 22,507 pairwise 
combinations of 1977 drugs tested on 151 cell lines from 15 tissues15. Similar to DrugComb, SYNERGxDB also 
provides standardized synergy scores, BLISS and ZIP. Finally, Dialog for Reverse Engineering Assessments and 
Methods (DREAM) Challenges partnered with AstraZeneca and the Sanger Institute to compile a dataset of 
20,483 synergy scores for 910 drug combinations involving 118 anticancer drugs tested against 85 cancer cell 
lines16. This dataset also provides a quality assessment score for each combination, ranging from − 3 to 1, where 
1 indicates a synergy between drugs in the combination. Along with the synergy data for drug combinations, the 
AZ-DREAM Challenges data comprise various molecular data, such as mutations, copy number variation, gene 
expression, and the tissue of origin. These datasets offer unparalleled opportunities to develop highly accurate 
ML models to predict drug synergistic effects.

Since the performance of supervised ML strongly depends on the quality, quantity, and the contextual subject 
of training data, the data scarcity problem is one of the most common challenges to develop robust ML models. 
To overcome this difficulty, data augmentation techniques are widely employed to expand the volume of avail-
able data. For instance, classical augmentation methods, such as image flipping, image rotation, noise injection, 
kernel filters, random erasing, and image mixing, are frequently used in the medical image analysis domain17–22. 
Data augmentation techniques gaining attention in the medical time series analysis domain23 include the time 
domain augmentation24, the time–frequency domain augmentation25, decomposition-based methods26,27, statis-
tical generative models28,29, and learning-based methods30–33. In addition, more advanced deep learning-based 
augmentation techniques, including the feature space augmentation34,35, generative adversarial networks (GAN)-
based augmentation36–40, the neural style transfer41,42, and meta-learning schemes43–45, have been proposed.

To combat overfitting in a neural network architecture with 60 million parameters for image recognition, 
two types of data augmentation were employed, label-preserving transformations and altering the intensities of 
the RGB channels in training images using Principal Component Analysis46. Indeed, these data augmentation 
techniques significantly reduced overfitting and improved performance, leading to the reduction in the top-1 
error rate by more than 1%. CutMix is an interesting augmentation technique that combines regions from dif-
ferent images to create augmented samples47. CutMix improves model generalization by encouraging localiza-
tion, providing diverse training examples, and enhancing model robustness against input corruption, as well as 
out-of-distribution detection performances. Augmenting training data with bilingual lexicon information was 
demonstrated to improve the performance of machine translation models on low-resource and unsupervised 
languages48. Three main types of lexical augmentation employed are codeswitching, lexical prompting, and raw 
token-pair training. Extensive experimentation results show that applying any of these augmentations to mono-
lingual data yields substantial improvements, and that they can be combined for even greater effect.

Although image, language, and sequential data augmentation methods are well established, these approaches 
are, in principle, unsuitable to generate the heterogeneous data of cellular and molecular features for drug synergy 
prediction with supervised ML. On that account, a variety of domain-specific techniques have been developed. 
For instance, the fact that multiple simplified molecular-input line-entry system (SMILES) strings represent the 
same molecule was used to augment a molecular dataset of chemical species49 using the SMILES enumeration50. 
Further, data augmentation utilizing multiple SMILES representations for a single compound was demonstrated 
to enhance the prediction accuracy of various molecular properties, such as solubility, lipophilicity, and bioac-
tivity, irrespective of the specific machine learning model employed or the size of the dataset51. Another study 
doubled the size of a training dataset to predict anticancer drug synergism based on NCI-ALMANAC by gen-
erating duplicates with the reverse order of drugs52. Data up-sampling was also applied to increase the number 
of minor class instances for phenotype-based virtual screening of anticancer drug combinations53. Finally, an 
example of a deep learning-based data augmentation technique is the uniform graph convolutional network 
(UGCN)54. It employs a drug representation based on atomic interactions within organic compounds rather 
than hand-crafted features, such as molecular fingerprints, and string-based features, such as SMILES. UGCN 
can be used to augment chemical data by randomly sampling multiple complementary graphs for a single drug.

Despite the encouraging results reported for the abovementioned data augmentation techniques for drug 
synergy prediction, many of existing methods either are too general (up-sampling) or consider only drug struc-
tural information (SMILES enumeration and UGCN). To address these issues, we devised a new augmentation 
approach combining the drug chemical similarity with the system-level information on drug-target interactions. 
This approach employs a novel similarity metric, the drug action/chemical similarity (DACS) score, taking into 
account not only the chemical characteristics of drugs, but also their molecular targets. Applying the DACS score 
to augment the AZ-DREAM Challenges data with new compounds from PubChem55 significantly increased the 
size and diversity of the training dataset for drug synergy prediction. To the best of our knowledge, this methodol-
ogy represents the first systematic and effective protocol to augment a synergy dataset simultaneously utilizing the 
information on drug chemical structures and their protein targets. As a proof of concept, the augmented dataset 
was used to train several ML models demonstrating a higher accuracy of drug synergy prediction compared to 
those models trained on the original AZ-DREAM Challenges data.
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Results
Similarity measure for cellular responses to drug treatment
During the data augmentation, new drug combinations are generated by replacing drugs with those molecules 
triggering similar pharmacological responses. The similarity of pharmacological effects of two drugs is quanti-
fied by the Kendall τ correlation coefficient between pIC50 values for the monotherapy treatments of multiple 
cancer cell lines. A positive value of Kendall τ indicates that two drugs have similar pharmacological effects in 
terms of the inhibition of the cancer growth, whereas a negative correlation and the lack of correlation point to 
different cellular responses to drug treatment. This concept is illustrated in Fig. 1 for crizotinib, a tyrosine kinase 
inhibitor used for the treatment of non-small cell lung carcinoma (NSCLC)56, paired with six other anti-cancer 
drugs. Figures 1A–C are examples of a positive correlation between crizotinib and everolimus (Kendall τ of 
0.50), entinostat (Kendall τ of 0.44), and perifosine (Kendall τ of 0.42), respectively. Everolimus, a derivative of 
sirolimus with cell proliferation and immunosuppressive properties, is used in combination with other anticancer 
agents for the treatment of kidney and breast cancer, and neuroendocrine tumors of gastrointestinal and lung 
origins57. Entinostat, a benzamide derivative with the antineoplastic activity, and perifosine, an allosteric AKT 
inhibitor with the antiglycolytic activity, are used for the treatment of NSCLC58,59. According to the analysis of 
pIC50 values against multiple cancer cell lines, these three drugs have similar profiles to that of crizotinib, i.e., 
they inhibit the growth of the same cancer cell lines and are ineffective against the same group of cell lines as well.

In contrast, cellular responses of crizotinib are uncorrelated with that of adavosertib (Fig. 1D, Kendall τ of 
− 0.06), vinorelbine (Fig. 1E, Kendall τ of − 0.03), and capivasertib (Fig. 1F, Kendall τ of − 0.01). Adavosertib is 
a tyrosine kinase WEE1 inhibitor used to improve the outcome in triple-negative breast cancer60, vinorelbine is 
an agent to treat NSCLC and breast cancer61, and capivasertib is AKT inhibitor used in the treatment of breast 
cancer62. Since these drugs have uncorrelated pharmacological effects, they cannot be used to replace crizotinib 
during the data augmentation process. The analysis of cellular responses with the Kendall τ is versatile and can 
be applied when two drugs have been tested on at least two common cell lines, otherwise the value of the Kendall 
τ is set to 0. The similarities of pharmacological effects between crizotinib and everolimus, entinostat, perifosine, 
adavosertib, vinorelbine, and capivasertib were calculated based on 7 + 2, 9 + 0, 7 + 0, 9 + 0, 0 + 13, and 9 + 10 
common (breast + lung) cell lines, respectively.

Figure 1.   Similarity of pharmacological effects of two drugs quantified by the Kendall τ correlation coefficient. 
pIC50 values for the monotherapy treatments of multiple cancer cell lines with crizotinib are plotted against 
those for (A) everolimus, (B) entinostat, (C) perifosine, (D) adavosertib, (E) vinorelbine, and (F) capivasertib. 
(A, B, and C) are examples of the positive correlation, whereas (D, E, and F) represent the negative correlation. 
Individual breast cancer cell lines are shown as solid circles and lung cancer cell lines as solid plus signs.
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Relation between drug similarity and pharmacological effects
Next, we investigate how similar two drugs need to be in order to trigger similar pharmacological effects. This 
analysis is performed for 4753 (98C2) possible pairs of 98 drugs in the AZ-DREAM Challenges dataset. Phar-
macological responses are quantified with the Kendall τ correlation coefficient, whereas the drug similarity is 
measured with two metrics. The first score is the drug chemical similarity calculated as the Tanimoto coefficient 
(TC) between FP2 fingerprints63. Figure 2 (solid blue line) shows that, as expected, the fraction of drug pairs 
with the positive Kendall τ increases with the increasing chemical similarity and reaches a value of 1.0 for the 
TC threshold of 0.6. The second metric is the drug action similarity computed as the Matthews correlation coef-
ficient (MCC)64 between target proteins in the protein–protein interaction (PPI) network from the IHP-PING 
dataset65. Similar to the TC, the fraction of drug pairs with the positive Kendall τ also increases with the increas-
ing MCC reaching 1.0 for the MCC threshold of 0.6 (Fig. 2, dashed purple line). For comparison, increasing 
the threshold for a random similarity does not increase the fraction of drug pairs with the positive Kendall τ 
(Fig. 2, dotted black line).

Drug action/chemical similarity score
Analyses presented above demonstrate that both chemical and drug action similarities can be used for data 
augmentation. However, their combination could potentially cover a larger chemical space than individual 
similarities while ensuring that the pharmacological profiles of drugs selected for augmentation are highly 
similar to those of their parent molecules. Therefore, we combined TC and MCC into a new metric, the drug 
action/chemical similarity (DACS) score. Figure 3 shows the relation between the DACS score and the fraction 
of drug pairs with the positive Kendall τ as the spatial heatmap in two dimensions corresponding to the indi-
vidual similarities. The dark blue section in the upper left corner of the heatmap corresponds to the area of a low 
positive correlation, whereas the light blue section shows the combination of individual similarities resulting in 
a high positive correlation. The DACS score can be represented as a quarter circle in Fig. 3 (dashed black line). 
For example, above a DACS threshold of 0.6, as many as 85.7% drug pairs have a positive Kendall τ correlation.

Dataset augmentation with DACS
The DACS metric is used as a guide to find the optimal number of new instances to be generated for the syn-
ergy dataset according to a procedure presented in Fig. 4. Each instance in the AZ-DREAM Challenges dataset 
consists of a pair of drugs targeting a cell line with a particular synergy score (Fig. 4A, drug pair 1:2). During 
the augmentation procedure, candidate molecules to replace one drug in a pair are identified in the STITCH 
database66 (Fig. 4B, drugs 3, 4, and 5). Next, DACS scores against the drug to be replaced are calculated (Fig. 4C) 
and those molecules having scores larger than a cutoff are selected (Fig. 4D, drugs 3 and 5). The original drug is 
then replaced by the selected molecules to create augmented pairs (Fig. 4E, drug pairs 3:2 and 5:2). This procedure 
is repeated for the second drug in the original pair creating more augmented instances (Fig. 4F, drug pairs 1:6).

The selection of a cutoff for DACS scores between the original drug to be replaced and the candidate substitute 
compounds is critical to create high-quality augmented instances. On that account, we conducted an analysis of 
the fraction of new drugs having similar pharmacological profiles to their parent molecules and the number of 
new instances that can be obtained from the STITCH database at different DACS similarity thresholds. Figure 5 
shows that these two quantities are inversely related, i.e., increasing the DACS similarity threshold results in a 
higher chance of substitute compounds to trigger similar pharmacological responses (dashed purple line), how-
ever, at the same time, fewer molecules can be used to augment the dataset (solid blue line). The intersection point 

Figure 2.   Fraction of drug pairs with positively correlated pharmacological effects as a function of their 
similarities. The chemical similarity (solid blue line) is measured with the Tanimoto coefficient between drug 
FP2 fingerprints. The drug action similarity (dashed purple line) is quantified with the Matthews correlation 
coefficient between target proteins in the IHP-PING protein–protein interaction network. Random similarity 
(dotted black line) is obtained by assigning a random number between 0 and 1.
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marked by a dotted black line in Fig. 5 represents the DACS cutoff of 0.53, at which the majority of substitute 
drugs (82%) have similar pharmacological profiles to their parent molecules and as many as 42,225 new drugs 
can be obtained from the STITCH database to augment the synergy dataset. Applying this threshold to replace 
one molecule in a drug pair in the AZ-DREAM Challenges dataset of 8798 instances produces an augmented 
dataset of 6,016,697 drug pairs annotated with synergy scores against various cancer cell lines.

Ideally, the distribution of synergy values across the augmented dataset should be the same as for the AZ-
DREAM Challenges dataset. Figure 6 shows that these two distributions indeed are similar; the average synergy 
score ± standard deviation is 9.9 ± 26.1 for the AZ-DREAM Challenges dataset and 12.1 ± 28.5 for the augmented 
dataset. In addition, we compare various physicochemical properties of drugs present in the original and aug-
mented dataset to those calculated for a set of 27,385 molecules selected randomly from the STITCH database66. 
Indeed, the original and augmented drugs have similar octanol–water partition coefficient (logP, 3.6 ± 2.0 and 
3.8 ± 1.8), the number of hydrogen bond donors (HBD, 2.0 ± 1.2 and 2.0 ± 1.6) and acceptors (HBA, 6.8 ± 2.6 and 
5.8 ± 2.4), and the Quantitative Estimate of Druglikeness67 (QED, 0.48 ± 0.18 and 0.49 ± 0.20). For comparison, 
logP, HBD, HBA, and QED for random molecules are 3.2 ± 2.4, 1.9 ± 1.9, 5.0 ± 2.7, and 0.50 ± 0.22, respectively. 
These analyses demonstrate that the augmented dataset does not contain artifacts, such as molecules with certain 

Figure 3.   Heatmap of the fraction of drug pairs with positively correlated pharmacological effects. The fraction 
of drug pairs with the positive Kendall τ is displayed according to the color scale on the right. One-dimensional 
histograms show the distributions of the chemical similarity (a subplot on the right) and the drug action 
similarity (a subplot on the top). The dashed quarter circle represents a DACS threshold of 0.6.

Figure 4.   Flowchart of the augmentation procedure. The procedure starts with an original drug pair 1:2, in 
which drug 1, represented by a green rounded box, is to be replaced first (A). Candidate molecules 3, 4, and 5, 
represented by yellow boxes, are selected from the STITCH database (B). DACS scores for compounds 3, 4, and 
5 are calculated against drug 1 (C) and those molecules with scores larger than a cutoff are retained (D). These 
compounds are then combined with drug 2 creating augmented instances 3:2 and 5:2 (E). The same procedure 
is then applied to replace drug 2, represented by an orange box. This generates more augmented instances 
containing drug 1, such as an augmented pair 1:6, in which molecule 6, represented by a cyan box, is a substitute 
for drug 2 (F). The class of augmented instances (either synergistic or antagonistic) is transferred from the 
original drug pair 1:2.
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physicochemical properties, that could potentially bias the training of machine learning models toward a par-
ticular effect (either synergism or antagonism).

Drug synergy prediction with machine learning
Finally, we investigate whether training machine learning against the augmented data achieves a better clas-
sification performance than training against the original AZ-DREAM Challenges dataset. Four state-of-the-art 
machine learning methods are employed, Logistic Regression (LR)68,69, Support Vector Machines (SVM)70,71, 
Random Forest (RF)72, and Gradient Boosting Trees (GBT)73. Following the original publication16, drug pairs 
having synergy scores higher than 20 are labelled synergistic and those having synergy scores lower than − 20 
are labelled antagonistic. First, we performed a fivefold cross-validation by randomly splitting the dataset into 
5 subsets. Note that the augmented data are only used to train machine learning models, which are then vali-
dated against AZ-DREAM Challenges instances. Table 1 shows the classification performance evaluated with 
several metrics. Encouragingly, the performance of classifiers is improved when models are trained against the 
augmented data and the random-split validation is employed. For instance, the area under the receiver operat-
ing characteristic plot (AUC) increased from 0.802 to 0.809 for RF and from 0.859 to 0.863 for GBT classifiers.

Although a random-split cross-validation is often used to assess the performance of drug synergy predictors 
16 , it leads to a significant overlap between training and validation subsets because those instances involving 
similar cell lines are present in both sets. Consequently, the trained model is going to have only a weak ability 
to generalize to unseen data, even though the validation accuracy may seem high. In order to mitigate this issue 
and more reliably evaluate the performance of machine learning trained on drug synergy data, we conducted a 

Figure 5.   Selection of the optimal DACS threshold for data augmentation. The solid blue curve represents 
the number of potential substitutes for the original 98 drugs that can be found in the STITCH database as the 
DACS threshold is increased. The dashed purple line represents the change in the fraction of drug pairs with 
the positive Kendall τ as the DACS threshold is increased. The vertical dotted line marks the DACS threshold 
optimizing these two quantities.

Figure 6.   Distribution of synergy score across drug synergy datasets. The step histogram in purple dashed 
line shows the distribution of synergy scores in the original AZ-DREAM Challenges data, whereas the step 
histogram in blue solid line shows the distribution of synergy scores in the augmented dataset.
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tissue-based cross-validation in which each fold comprises a particular tissue (or a group of tissues). This pro-
tocol has been shown to eliminate the overlap between training and validation subsets allowing for an unbiased 
assessment of the capabilities of machine learning to extract the information from input data 74.

Table 1 and receiver operating characteristic plots presented in Fig. 7 show that applying the more rigorous 
tissue-based validation protocol decreases the performance of machine learning predicting drug synergistic 
effects. However, this evaluation is more reliable because it better mimics a real scenario in which machine 
learning is applied to predict drug synergistic effects for unseen data, i.e., drug combinations against cell lines 
originating from tissues that have not been used to train the classifier. With this cross-validation protocol, 
machine learning trained on the augmented data yields even higher improvements in terms of the classification 
accuracy compared to models trained on the original AZ-DREAM Challenges dataset. For example, the AUC 
increased from 0.647 to 0.685 for RF and from 0.688 to 0.734 for GBT classifiers.

Table 2 shows AUC scores for each tissue fold and tree-based models trained on both the original and the 
augmented datasets. The comparison of AUC scores reveals that incorporating the augmented data into the train-
ing process systematically improves the classification performance regardless of the tissue type. In general, these 
findings indicate that incorporating augmented data can provide enhanced information for training machine 
learning models in a more effective manner.

Classification of instances with ambiguous synergy scores
The robustness of ML models stems from the foundation laid by the quality of the training data, ensuring that 
they can effectively handle diverse and complex scenarios with a high degree of accuracy. When a machine learn-
ing model encounters instances with ambiguous labels, it adapts by making predictions that are less confident 
for such cases. To illustrate this phenomenon, we evaluate the capability of the trained GBT model to handle 
instances with unclear class labels by assessing its performance across a spectrum of synergy scores. The GBT 
model was selected because its performance in fivefold cross-validation against instances with reliable synergy 
scores ≥ 20 (synergistic cases) and ≤ −20 (antagonistic cases) is better than those of LR, SVM, and RF. Figure 8 
shows the distribution of prediction probabilities reported by the GBT model for drug combinations selected 
from the AZ-DREAM Challenges dataset with a varying degree of synergy scores with the corresponding sta-
tistics reported in Table 3.

Including ambiguous labels represented by synergy scores close to 0 lowers the confidence, and the model 
attempts to reflect this uncertainty in its predictions. For instance, Fig. 8A shows that the median (Q2) prediction 
probability is 0.981 when the most ambiguous positive cases with the synergy score of > 0 are included, while 
it is as high as 0.999 when the model is applied to only the most reliable positive cases with the synergy score of 
≥ 20 . This trend can also be observed for negative instances (Fig. 8B), for which the median prediction prob-
ability increases from 0.248 for the most ambiguous cases with the synergy score of < 0 to 0.687 for the most 
reliable cases with the synergy score of ≤ −20 . Another indication of the lack of strong prediction confidence 
when instances having unclear labels are included is the increased spread of prediction probabilities. Indeed, 
wider interquartile ranges (Q3-Q1) are observed when ambiguous positive cases are considered compared to 
those obtained for the most reliable drug combinations only. For negative cases, Q2 and Q3 values decrease as 

Table 1.   Performance of machine learning in the prediction of drug synergistic effects. ACC​ accuracy, TPR 
recall, FPR false positive rate, PPV precision, AUC​ area under the receiver operating characteristic plot, MCC 
Matthews correlation coefficient. Two protocols are employed utilizing the random-split of the data and 
the tissue-based cross-validation. The performance of Logistic Regression (LR), Support Vector Machine 
(SVM), Random Forest (RF), and Gradient Boosting Trees (GBT) classifiers is evaluated against the original 
AZ-DREAM Challenges data and the augmented dataset.

Classifier Validation protocol Dataset ACC​ TPR FPR PPV AUC​ MCC F1-score

LR

Random-split
Original 0.752 0.768 0.302 0.893 0.809 0.417 0.826

Augmented 0.756 0.770 0.292 0.897 0.811 0.427 0.829

Tissue-based
Original 0.631 0.718 0.509 0.769 0.659 0.200 0.728

Augmented 0.637 0.711 0.475 0.777 0.661 0.221 0.729

SVM

Random-split
Original 0.745 0.755 0.287 0.897 0.803 0.414 0.819

Augmented 0.750 0.757 0.271 0.902 0.803 0.429 0.823

Tissue-based
Original 0.619 0.736 0.546 0.761 0.671 0.191 0.721

Augmented 0.651 0.771 0.560 0.765 0.674 0.208 0.751

RF

Random-split
Original 0.754 0.787 0.358 0.879 0.802 0.392 0.831

Augmented 0.757 0.788 0.347 0.882 0.809 0.402 0.832

Tissue-based
Original 0.667 0.811 0.644 0.749 0.647 0.173 0.769

Augmented 0.705 0.866 0.659 0.758 0.685 0.226 0.801

GBT

Random-split
Original 0.833 0.921 0.457 0.869 0.859 0.503 0.894

Augmented 0.840 0.927 0.445 0.873 0.863 0.524 0.899

Tissue-based
Original 0.716 0.930 0.803 0.734 0.688 0.176 0.815

Augmented 0.736 0.940 0.743 0.750 0.734 0.260 0.828
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more unclear instances are included, meaning there is a concentration of prediction probability towards the 
lower values, which signifies the declined prediction confidence for those instances and a diminished level of 
assurance in the ability to assign accurate classifications by the model.

Evaluation against “unseen” data
To further evaluate the generalizability of a model trained on the AZ-DREAM Challenges augmented data, we 
conducted the performance evaluation against an independent dataset of 250 drug combinations selected from 
DrugCombDB75. It is important to note that since drugs in this set are chemically dissimilar to those in the 

Figure 7.   Performance of machine learning in the prediction of drug synergistic effects. Receiver operating 
characteristics plots for the Random Forest classifier against (A) the original AZ-DREAM Challenges data and 
(B) the augmented dataset, and for the Gradient Boosting Trees classifier against (C) the original AZ-DREAM 
Challenges data and (D) the augmented dataset. Blue lines were calculated for the random-split protocol, 
while purple lines were obtained for the tissue-based cross-validation. Thick lines show the mean performance 
averaged over individual folds represented by thin lines.

Table 2.   Area under the receiver operating characteristic plot (AUC) scores for each fold in the tissue-based 
cross-validation. The performance of Random Forest (RF) and Gradient Boosting Trees (GBT) classifiers is 
reported for the original and the augmented AZ-DREAM Challenges datasets.

Classifier Dataset Breast tissue Digestive system Excretory system Respiratory system Other

RF
Original 0.574 0.628 0.650 0.636 0.746

Augmented 0.613 0.640 0.664 0.658 0.849

GBT
Original 0.637 0.675 0.631 0.704 0.794

Augmented 0.648 0.715 0.649 0.752 0.904
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AZ-DREAM Challenges dataset, DrugCombDB instances can be regarded as “unseen” data. In this analysis, 
two GBT models were trained, one using the original AZ-DREAM Challenges data and the other using both 
the original and augmented instances. A GBT model trained solely on the original data correctly classified only 
76/250 drug combinations (12 synergistic and 64 antagonistic) yielding the accuracy of 0.30 and a high false 
positive rate (FPR) of 0.73. In contrast, a GBT model that incorporated augmented data during training correctly 
predicted 141/250 drug combinations (11 synergistic and 130 antagonistic) achieving a much higher accuracy 
of 0.56 and a significantly lower FPR of 0.45. This improved performance by employing augmented instances 
highlights the importance of data augmentation techniques in enhancing the ability of machine learning models 
to generalize to new drug synergy data. Through exposure to a comprehensive and diverse dataset, the model 
acquired improved pattern recognition capabilities and achieved more accurate classifications, resulting in an 
enhanced reliability for drug synergy predictions in a real-world application scenario.

Discussion
In this study, we devised a data augmentation protocol to solve the data scarcity problem in predicting synergistic 
effects of anti-cancer drug combinations with machine learning models. The augmentation protocol expands the 
synergy dataset by replacing a compound in a drug combination instance with another molecule having highly 
similar pharmacological effects. This is achieved through the use of the DACS similarity metric between two 
drugs, which incorporates both chemical structure and drug action similarities. Compared to existing techniques 
used in synergy data augmentation, such as the upsampling53, the SMILES enumeration50, and the reverse order 
of drugs52, which essentially duplicate the existing data points, our approach expands the dataset by including 
new, unbiased instances. As a results, this augmentation methodology not only enriches the available data points, 
but also enhances the diversity of the data, which is highly beneficial to improve the generalizability of machine 
learning models. Additionally, in contrast to other augmentation approaches involving a learning process54, our 
method generates data points in a shorter amount of time.

While random-split cross-validation is frequently utilized for data partitioning, it may lead to tissue-level 
overlap and elevate the possibility of model overfitting, particularly when dealing with data containing mul-
tiple cell lines from the same tissue. The reason for this is that those instances involving similar cell lines tend 
to have comparable feature representations, such as gene expression profiles and the gene-disease association. 
The overlap is likely going to occur when these instances are present in both the training and validation sets76. 
In such cases, the trained model may exhibit a strong performance due to the presence of overlapping data, but 
it will not perform well on novel, unseen data. Consequently, the model may be overestimated in terms of its 
true performance and fail to generalize to other datasets. On the other hand, a tissue-based cross-validation 

Figure 8.   Distribution of prediction probabilities across varying degrees of drug synergy. Predictions are 
generated by the Gradient Boosting Trees classifier for (A, light yellow) positive instances with an increasing 
threshold for the synergy scores from > 0 to ≥ 20 and (B, light purple) negative instances with a decreasing 
threshold for the synergy scores from < 0 to ≤ −20 . Boxes end at quartiles Q1 and Q3, Q2 is the median. 
Whiskers extend from Q1 and Q3 to the most extreme data points within Q1 − 1.5× IQR and Q3 + 1.5× IQR , 
respectively, where IQR is the inter-quartile range.

Table 3.   Statistics for the distribution of prediction probabilities across varying degrees of drug synergy. 
Predictions are generated by the Gradient Boosting Trees classifier for positive instances with an increasing 
threshold for the synergy scores from > 0 to ≥ 20 and negative instances with a decreasing threshold for the 
synergy scores from < 0 to ≤ −20 . Q2 is the median.

Quartile

Synergy score (positives) Synergy score (negatives)

> 0 ≥ 5 ≥ 10 ≥ 15 ≥ 20 < 0 ≤ −5 ≤ −10 ≤ −15 ≤ −20

Q1 0.827 0.877 0.921 0.954 0.985 0.039 0.046 0.053 0.050 0.041

Q2 0.981 0.987 0.994 0.998 0.999 0.248 0.342 0.466 0.564 0.687

Q3 0.999 0.999 1.000 1.000 1.000 0.789 0.879 0.931 0.965 0.989
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can effectively eliminate the data overlap issue. By excluding all instances originating from a validation tissue 
from the training set for each fold, the generalizability of a machine learning model can be properly evaluated.

Tree-based models (RF and GBT) employed in this study are robust, interpretable, and widely adopted by AZ-
DREAM Challenges participants16. These models have the ability to deal with complex non-linear input–output 
relationships and can handle sizable datasets to a certain degree. Neither tree-based models nor other classifiers 
like LR and SVM are designed to exploit intricate relationships between features. This limitation is especially 
notable when dealing with heterogeneous features, including protein–protein interactions, gene expression levels, 
and drug-protein associations. In such cases, these models may struggle to find the optimal decision boundaries, 
generally leading to an unsatisfactory performance. Neural networks, on the other hand, are better equipped 
to handle diverse data types and can learn complex relationships between features with hidden layers and non-
linear activation functions. This ability to integrate multiple heterogeneous data into a single model can often 
result in an improved performance compared to tree-based models. Our future research will concentrate on 
exploring this aspect.

The augmentation protocol devised in this study is not limited to anti-cancer drug data can be used to expand 
other synergy datasets as well; it has the potential to become a universal tactic for enhancing datasets in drug 
discovery and related fields. This could result in a greater amount of data being accessible and ultimately lead 
to better research results. Furthermore, the developed new drug similarity measure, the DACS score, improves 
the way drug similarity is assessed. By integrating both structural and target similarities, DACS provides a more 
exhaustive and inclusive perspective on drug similarity compared to traditional methods that only examine a 
single aspect, such as the chemical similarity. By offering a more holistic approach to analyzing and evaluating 
the similarities between drugs, DACS can help improve the accuracy and efficiency of the drug discovery process.

Deep learning, with its ability to dissect complex data and reveal underlying patterns and relationships, has 
become a pivotal tool in the field of pharmacology and drug development77,78. The varied and comprehensive 
synergy dataset created in this study has the potential to significantly aid deep learning models by offering a 
diverse range of data for training purposes. The utilization of sufficient data enables deep learning algorithms to 
recognize intricate relationships and connections among cellular, molecular, and biological system-level features, 
thereby elevating the precision and efficacy of synergistic effect predictions. Moreover, an extensive and varied 
dataset reduces the risk of overfitting, a common issue where models become too reliant on limited training 
data and struggle to generalize to new data. Thus, the utilization of a comprehensive synergy dataset can lead to 
more robust and dependable deep learning models and ultimately, more advanced outcomes in drug discovery 
and related fields.

In addition to being used in deep learning-based drug discovery, the proposed anti-cancer drug synergy data-
set has the potential to facilitate other applications, such as drug repositioning, drug target identification, toxicity 
analysis, the modeling of drug interactions, systems pharmacology, and precision medicine. By providing valuable 
insights into the interactions between drugs, targets, and biological systems, the synergy data can contribute to 
the development of more effective and safer pharmaceutics. Overall, the wide-ranging possibilities arising from 
this study may have significant implications for the drug discovery and development field. Ultimately, this could 
result in the creation of novel therapeutic approaches for a range of diseases.

Methods
Similarity of drug pharmacological effects
The Kendall τ rank correlation coefficient is employed to measure the ordinal association between the phar-
macological effects of two drugs against a set of cell lines. First, common cell lines targeted by both drugs are 
identified and two lists ranked by pIC50 values for monotherapy treatments are calculated. Next, the value of the 
Kendall τ accounting for ties (τb)79,80 is computed:

where nc is the number of concordant cell line pairs (having the same order in both drug lists), nd is the number of 
discordant cell line pairs (having different order in both drug lists), n1 is the number of pairs tied only in the first 
list, and n2 is the number of pairs tied only in the second list. τb of +1 indicates a perfectly positive association, 
i.e., the two drugs having the same pharmacological effects in terms of the inhibition of the cancer growth across 
multiple common cell lines. A value of −1 indicates a perfectly negative association, i.e., the opposite pharmaco-
logical effects, and a value of 0 indicates the lack of any association. The Kendall τ coefficient is calculated when 
pIC50 values are available for monotherapy treatments of at least two common cell lines, otherwise it is set to 0.

Similarity of drug molecular mechanism of action
Similarity of the mechanism of action of two drugs is quantified with the MCC64 computed for 19,968 proteins 
in the IHP-PING dataset65 according to chemical-protein associations obtained from the STITCH database66:

where T is the number of proteins targeted by both drugs, N is the number of proteins not targeted by any drug, 
A is the number of proteins only targeted by the first drug, and B is the number of proteins only targeted by the 
second drug. MCC ranges from −1 to +1 with high positive values indicating a significant overlap between the 
molecular targets of two drugs, thus a similar mechanism of action. The MCC for a pair of drugs having different 
mechanisms of action is going to be around 0.

(1)τb =
nc − nd√

(nc + nd + n1)(nc + nd + n2)

(2)MCC =
(T × N)− (A× B)

√
(T + A)(T + B)(N + A)(N + B)
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Drug action/chemical similarity score
The DACS measure provides a convenient and informative way to combine the drug structure similarity with 
the similarity of the molecular mechanisms of action. It is calculated as:

where TC is the Tanimoto coefficient between drug FP2 fingerprints63 and MCC is the similarity of drug mecha-
nism of action defined in Eq. (1). When one of the component metrics, either TC or MCC, is sufficiently high, 
then the other metric does not need to be as high for the DACS score to be over a predefined threshold. In rare 
cases of negative MCC values, the MCC component of the DACS score is set to 0.

Classification datasets
Following the original paper on the AZ-DREAM Challenges dataset16, we compiled the primary dataset by 
excluding those instances having ambiguous synergy scores between − 20 and 20 to create a classification dataset 
of 3210 drug combinations comprising 2461 synergistic (a synergy score ≥ 20 ) and 749 antagonistic (a synergy 
score ≤ −20 ) cases. The corresponding augmented dataset contains 1,850,037 synergistic and 465,288 antago-
nistic combinations totaling 2,315,325 labeled instances. Further, the following four datasets were constructed at 
varying degrees of drug synergy to evaluate the performance of ML against instances having ambiguous labels, 
8817 combinations comprising 5839 synergistic (a synergy score > 0 ) and 2978 antagonistic (a synergy score < 0 ) 
cases, 6974 combinations comprising 4882 synergistic (a synergy score ≥ 5 ) and 2092 antagonistic (a synergy 
score ≤ −5 ) cases, 5408 combinations comprising 3913 synergistic (a synergy score ≥ 10 ) and 1495 antagonistic 
(a synergy score ≤ −10 ) cases, and 4180 combinations comprising 3119 synergistic (a synergy score ≥ 15 ) and 
1061 antagonistic (a synergy score ≤ −15 ) cases.

In addition to the primary dataset, an independent validation set was created based on DrugCombDB75. 
Applying the same synergy score criteria and excluding molecules with the TC of ≥ 0.4 to any compound in the 
AZ-DREAM Challenges dataset resulted in 250 drug combinations with 14 synergistic and 236 antagonistic 
effects, referred to as “unseen” data.

Feature vectors
Input data for machine learning consist of drug and cell features. The former are computed with Mol2vec81 by 
encoding a drug chemical structure to a 300-dimensional vector. The latter features are calculated by embed-
ding 17,419 gene expression values for a cell line obtained from the AZ-DREAM Challenges dataset with an 
adversarial deconfounding autoencoder82. Similar to drug embeddings, the gene expression profile is encoded 
to a 300-dimensional vector. The final, 900-dimensional feature vector is generated by concatenating two drug 
feature vectors and a cell feature vector.

Cross‑validation protocols
Two cross-validation procedures are employed utilizing a random and a tissue-based data split. In the random-
split cross-validation, the classification dataset is randomly partitioned into five equal-size folds. In the tissue-
based cross-validation, the dataset is assigned to five groups according to the tissue type of cell lines, the breast 
tissue, the digestive system, the excretory system, the respiratory system, and other tissues. Note that tissue types 
in the augmented dataset are the same as in the original dataset because the augmentation process does not affect 
cell lines. A fivefold cross-validation is conducted the usual way, i.e., in each round, the machine learning model 
is trained on the augmented data for 4 subsets and then validated against the original AZ-DREAM Challenges 
instances in the remaining subset. This protocol ensures that the augmented data is used only to train classifiers 
and the validation is performed on the original data and labels. Since the original dataset is imbalanced, com-
prising 76.7% synergistic and 23.3% antagonistic instances, a stratified split is used to preserve the percentage of 
samples for each class in each fold. When augmenting the training set, the ratio is preserved by proportionally 
adding instances of each class. In the tissue-based split, although the proportions of synergistic and antagonistic 
instances are different in each tissue, the training set is augmented in a way to preserve the ratio of synergistic/
antagonistic instances in individual folds.

Machine learning
Four machine learning models are used to evaluate the performance of supervised learning algorithms on the 
original and the augmented datasets of drug combinations, Logistic Regression, Support Vector Machines, 
Random Forest, and Gradient Boosting Trees. LR is a supervised machine learning algorithm designed for 
binary classification tasks to predict the likelihood of an instance belonging to one of two classes (synergistic or 
antagonistic in our case). It employs the logistic function to transform a linear combination of input features into 
a probability score, allowing for intuitive interpretation68,69. Model training involves minimizing the logistic loss 
function through optimization techniques such as gradient descent. The coefficients of the linear equation are 
estimated during the training process to create a predictive model. The following parameters were used in the LR 
model: L2 penalty, the tolerance for stopping criteria of 0.0001, the inverse of regularization strength of 0.45, the 
maximum number of iterations of 500, and class weights set to “balanced” to deal with the imbalanced dataset.

SVM is a powerful supervised machine learning algorithm used for classification and regression tasks. In the 
classification context, it aims to find the optimal hyperplane in the feature space to maximize the margin between 
data points belonging to different classes70,71. SVM is effective in dealing with high-dimensional features and can 
handle non-linear relationships through the use of kernel functions implicitly mapping the input features into a 
higher-dimensional space. The following parameters were used in the SVM model: the regularization parameter 

(3)DACS =
√

TC
2 +MCC2
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of 0.42, a linear kernel type, the tolerance for stopping criterion of 0.001, a probability set to true to enable prob-
ability estimation, and class weights set to “balanced” to deal with the imbalanced dataset.

The RF classifier utilizes a collection of individual trees built independently to determine the final output by 
the majority vote72. In contrast, the GBT classifier builds trees additively to reduce the bias of the previous tree, 
and then combines the output of all trees scaled by the learning rate to calculate the final output73. Parameters 
of both classifiers were manually tuned to optimize their classification performance. The following parameters 
were used in RF: the number of trees in the forest of 300, the minimum number of samples per leaf node of 85, 
the number of features to consider for the best split equal to the square root of total number of features, and class 
weights set to: “balanced” in order to deal with the imbalanced dataset. The following parameters were used in 
GBT: the number of boosting stages of 650, the minimum number of samples per leaf node of 120, the number 
of features to consider for the best split equal to the square root of total number of features, the learning rate 
of 0.28, and the maximum depth of the individual regression estimators of 5. In validation calculations against 
“unseen” data, a GBT model is first trained on the AZ-DREAM Challenges dataset, utilizing either the original 
instances or the original and augmented data. The trained model is then employed to classify instances in the 
DrugCombDB dataset75.

Data availability
All data are freely available at https://​github.​com/​MengL​iu90/​Syner​gy-​Data-​Augme​ntati​on.
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