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A comparative study of clinical trial 
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A growing body of research is focusing on real‑world data (RWD) to supplement or replace randomized 
controlled trials (RCTs). However, due to the disparities in data generation mechanisms, differences 
are likely and necessitate scrutiny to validate the merging of these datasets. We compared the 
characteristics of RCT data from 5734 diabetic kidney disease patients with corresponding RWD 
from electronic health records (EHRs) of 23,523 patients. Demographics, diagnoses, medications, 
laboratory measurements, and vital signs were analyzed using visualization, statistical comparison, 
and cluster analysis. RCT and RWD sets exhibited significant differences in prevalence, longitudinality, 
completeness, and sampling density. The cluster analysis revealed distinct patient subgroups 
within both RCT and RWD sets, as well as clusters containing patients from both sets. We stress the 
importance of validation to verify the feasibility of combining RCT and RWD, for instance, in building 
an external control arm. Our results highlight general differences between RCT and RWD sets, 
which should be considered during the planning stages of an RCT‑RWD study. If they are, RWD has 
the potential to enrich RCT data by providing first‑hand baseline data, filling in missing data or by 
subgrouping or matching individuals, which calls for advanced methods to mitigate the differences 
between datasets.

Clinical real-world data (RWD) has garnered increasing interest for its use alongside clinical trial protocols in 
generating evidence in medical research. Several studies have explored the utilization of RWD in conducting 
clinical  trials1–4, providing external control groups for single-arm  studies5,6, and complementing the control 
group in randomized controlled trials (RCTs)7–9. The rationale for using RWD to augment RCTs relies on the 
assumption that RWD and RCT datasets are comparable despite potential biases. However, data generation 
mechanisms differ substantially between RWD and RCT, and systematic differences are probable. As a result, 
verifying the compatibility between datasets becomes a crucial component of data preprocessing to ensure the 
study’s feasibility.

Compared to clinical trial data, RWD’s quality can greatly fluctuate depending on its purpose and the spe-
cific dataset. Characteristics such as accuracy, completeness, and sampling intervals can vary among covariates, 
patients, and healthcare  providers10,11. Certain clinical measures, such as blood pressure and weight, are often 
available for research, but variables like outpatient medication exposure might need to be inferred indirectly from 
prescriptions and are potentially overestimated if prescriptions were left  unused11. Choices in study design, like 
index date or lookback window, can influence prevalence and incidence estimates based on claims and electronic 
health record (EHR)  databases12. These factors may not be as clearly defined in RWD as in RCTs, potentially 
affecting the temporal alignment of the datasets. There might also be other underlying time-related biases which 
complicate, for instance, the identification of event onset or exposure to  treatment13. For example, a delay between 
disease initiation and detection can introduce temporal variation and bias into the  data13.

Apart from inclusion and exclusion criteria, the discrepancy between datasets can be alleviated through 
the application of appropriate validation criteria for the relevance, reliability, and quality of the  RWD14 and by 
particularly focusing on confounders related to exposure and  outcome15. Several methods for selecting control 
patients have been suggested, such as cardinality matching of  individuals15 based on propensity  scoring16, which 
has become the preferred method for adjusting group differences and reducing confounding. However, selec-
tion criteria and computational advancements are merely parts of the solution and should not be relied upon 
unconditionally.
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In this study, we compared baseline data from a completed clinical trial on chronic kidney disease outcomes 
in individuals with type 2 diabetes to that from electronic health records (EHRs) in order to characterize their 
similarities and differences. Our focus was on five common data types: demographics, diagnoses, medications, 
laboratory measurements, and vital signs. We evaluated temporal aspects such as extent and sampling density, 
along with data completeness or missingness. In addition to comparisons between whole datasets, through 
statistical and cluster analysis, we demonstrate a partial overlap of RWD and RCT data.

Methods
Data
We used RCT data from the completed FIDELIO-DKD trial (Bayer, NCT02540993) to study the effect of finer-
enone on chronic kidney disease outcomes in type 2 diabetes in adult patients (≥ 18 years)17. Patients included in 
the trial had diabetes and fulfilled the following criteria for kidney disease at the time of randomization: a urinary 
albumin-to-creatinine ratio (UACR) of 30–300 (mg/g), estimated glomerular filtration rate (eGFR) of 25–60 
(ml/min/1.73m2), or a UACR of 300–5000 and eGFR of 25–75 (ml/min/1.73m2) along with diabetic retinopathy 
 (see17 for further details). The data were pseudonymized, and we used only baseline data prior to randomization, 
including demographics, vital signs, diagnosis history, laboratory measurements, and concomitant medications. 
We obtained internal approval for secondary research use of the trial data.

To be included in the RWD set, patients needed to have chronic kidney disease as defined by ICD-10 codes 
N18, N19, or I12, or eGFR < 45 ml/min/1.73m2 at some time point in their EHRs. Thus, the patients had moderate 
to severe impairment in kidney function based on the Kidney Disease Improving Global Outcomes (KDIGO) 
guidelines. UACR criteria were not used in the RWD set due to its low availability. Type 2 diabetes mellitus was 
also required, defined either by diagnosis code E11, the use of diabetes medication (ATC class A10), or a glycated 
hemoglobin (H-HbA1c) measurement ≥ 48 mmol/mol.

The RWD set contained data from patients who were first diagnosed with either chronic kidney disease or 
type 2 diabetes mellitus as adults. We assessed this post hoc using data from medications, diagnoses, and labora-
tory tests. We extracted these data along with demographics and vital signs from electronic healthcare records 
of HUS Helsinki University Hospital, Finland, covering a ten-year period from 2012 to 2021.

The index date in the RCT data was the date of randomization, while in the RWD, it was the date when the 
chronic kidney disease inclusion criteria were met.

Data structuring
The RCT data were structured. RWD were also structured, with the exception of smoking status, some medica-
tions, and New York Heart Association (NYHA) classes. We extracted these data from clinical documents using 
text mining and added them to the dataset with corresponding timestamps.

Data harmonization
We used SNOMED coding to harmonize the different nomenclatures of RCT and RWD. The mapping was 
straightforward for demographics, medications, laboratory measurements, and vital signs. For diagnoses, 95.9% 
of MedDRA codes in RCT and 94.1% of ICD-10 codes in RWD were successfully mapped to SNOMED coding. 
Unmapped diagnoses codes, which were primarily in the Z-category indicating factors affecting health status 
or contact with health services, were not considered critical and were excluded from subsequent analyses. For 
diagnoses, we used the latest version of the mapping table from OHDSI  Athena18. We performed standard unit 
conversions between RCT and RWD laboratory values for laboratory measurements.

Analytics environment
We stored and processed the data on the HUS Acamedic cloud-based data analytics  platform19. This platform 
enables high-performance scientific computing and can be scaled as necessary. The platform meets both Euro-
pean and national regulations (General Data Protection Regulation, Finlex 552/2019) for processing sensitive 
health and social data, it has a valid security certification, and is supervised by the National Supervisory Authority 
for Welfare and Health (Valvira).

Statistical methods
We compared the prevalence of diagnoses and medications between RCT and RWD sets and reported counts and 
proportions by category. We compared the data longitudinality and sampling density aspects, namely the length 
of pre-index time, events per year, unique codes per patient, and interval between events, between RCT and 
RWD sets as continuous variables. These were reported with medians and interquartile ranges (IQR). We used 
chi-squared tests for group comparisons with categorical variables and the Kruskal–Wallis H test for continuous 
data. Moreover, we computed odds ratios to evaluate similarity of features within different clusters of patients. We 
performed the analyses with Python 3.8.10.0 using pandas (version 1.1.5)20 and SciPy (version 1.5.3)21 libraries.

Cluster analysis of diagnoses and medications
To further examine and visually represent the differences and overlaps between the RCT and RWD sets, we per-
formed separate cluster analyses for medication and diagnosis datasets, which were formed by merging the RCT 
and RWD sets. These analyses were similar to those outlined  in22. For this purpose, we mapped diagnoses in the 
RCT data to International Classification of Diseases version 10 codes (ICD-10) as detailed in the Results section. 
Following the method  in22, we limited our analysis to ICD-10 diagnosis categories A to N with a precision of 
three characters. Hence, our focus was on disorders while excluding codes related to pregnancy, external causes, 
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malformations, and contacts with health services. For medication data, we selected the first four characters of 
the Anatomical Therapeutical Chemical (ATC) codes. In both data sets, a specific code had to have at least 1% 
prevalence to be included in the analysis. Consequently, the data sets contained 65 covariates for diagnoses and 
84 covariates for medications.

Following a two-step approach for  clustering22, we initially trained a variational autoencoder (VAE)  model23,24 
using  Keras25 (version 2.3.1). This model projected binary diagnosis vectors into a two-dimensional latent 
 space23,24. Then we clustered the projected vectors using the HDBSCAN  algorithm26.

For the encoder and decoder components of the VAE models, we utilized fully connected multilayer percep-
trons (MLPs) with a single hidden layer, with either a hyperbolic tangent (tanh) or a rectified linear unit (ReLU)27 
as the activation function. Since the purpose of the cluster analysis was to visually distinguish the data sets and 
their differences, we selected the activation function that produced visually distinct subgroups. The VAE model 
was trained using the evidence lower bound objective, which comprises a reconstruction loss and a regularizer 
on the latent space. We divided the data into a training set (90% of the data) and a validation set (10% of the 
data), with the validation data used to choose a hyperparameter for the number of gradient descent steps for 
training. Eventually, we mapped both sets to the latent space for the clustering step.

We used the HDBSCAN  algorithm26 (version 0.8.29) to extract clusters for subsequent description and inter-
pretation of the identified subgroups. HDBSCAN is a density-based clustering algorithm that groups similar 
data points together while also identifying outliers. It constructs a hierarchy of clusters by considering local 
density variations and connectivity, allowing for the automatic determination of the number of clusters. We chose 
HDBSCAN due to its ability to automatically determine the number of clusters, handle varying cluster shapes 
and sizes, as well as noise. For diagnosis data, we used the HDBSCAN parameters min_cluster_size = 220 and 
min_samples = 1, and for medications data, we used min_cluster_size = 200 and min_samples = 5. To visualize 
the results of the cluster analysis, we used  NumPy28 (version 1.21.6) to compute two-dimensional histograms, 
 SciPy21 (version 1.5.3) for kernel density estimation, and  Matplotlib29 (version 3.2.1) for plotting. To preserve 
patient anonymity, we avoided presenting the locations of individual data points and instead utilized histogram 
and density-based approaches for visualization.

Ethical aspects
According to Finnish legislation (Act on the Secondary Use of Health and Social Data (552/2019) by the Min-
istry of Social Affairs and Health), the approval of an ethical committee or informed consent is not required for 
non-interventional, observational retrospective registry studies. The study was conducted in accordance with the 
Declaration of Helsinki and the General Data Protection Regulation (GDPR). HUS Helsinki University Hospital 
approved the study (permission HUS/230/2022). The original RCT data collection was based on informed con-
sent from patients participating in the FIDELIO-DKD clinical trial (ClinicalTrials.gov identifier NCT02540993).

Results
Qualitative comparisons
We analyzed the pre-index baseline data of 23,523 RWD and 5,734 RCT patients, all of whom had both chronic 
kidney disease and type 2 diabetes. Harmonizing to common nomenclature for both RCT and RWD sets was 
straightforward, but we noted considerable qualitative differences in data generation, temporality, and com-
pleteness, as summarized in Table 1. For instance, in the RCT data, diagnoses and concomitant medications 
based on case report forms (CRFs) collected by investigators spanned up to 50 years pre-index. Conversely, in 
the RWD, all diagnoses in EHRs with precise dates were available up to 10 years pre-index, constrained by the 
research permit. Laboratory measurements and vital signs were only available near index in RCT data and up 
to 10 years pre-index in RWD.

Quantitative comparisons
Statistical analysis revealed notable differences in completeness, particularly in medications and diagnoses. After 
harmonizing the different nomenclatures of RCT and RWD, we used ATC and ICD-10 code classes for easier 
interpretation of the results. In concomitant medications (Fig. 1A), the most significant difference in prevalence 
was observed in anti-infectives for systemic use (class J, RCT 8.6%, RWD 66.0%, P < 0.001). In diagnosis history 
(Fig. 1B), the largest difference in prevalence was seen in class R, which refers to symptoms, signs, and abnormal 
clinical and laboratory findings (RCT 14.3%, RWD 57.1%, P < 0.001). Although fulfilling the inclusion criteria, 
not all patients in the RWD had both inclusion diagnoses of type 2 diabetes and chronic kidney disease, which 
belong to classes E (endocrine, nutritional, and metabolic diseases, RCT 100.0%, RWD 50.7%, P < 0.001) and N 
(diseases of the genitourinary system, RCT 100.0%, RWD 49.9%, P < 0.001), respectively.

As demographics, laboratory measurements, and vital signs in the RCT data were only available near the 
index time, we further analyzed the temporal characteristics of concomitant medications and diagnoses (Table 2). 
We defined event as a patient encounter in either the outpatient or inpatient setting. The pre-index time (in 
years) from the first event to the index date was significantly longer in RCT data for both medications (median 
7.7 vs. 4.9, P < 0.001) and diagnoses (median 20.3 vs. 5.2, P < 0.001). We also assessed the time interval between 
events and the sampling density, defined as the number of events per year. The number of events per year and 
the number of unique codes were significantly larger in RWD compared to trial data for both medications and 
diagnoses. Consequently, the time interval between consecutive events was significantly shorter in RWD for 
both medications and diagnoses compared to RCT. Additionally, we observed a significant difference between 
RWD and RCT cohorts in age at index (median 76 years in RWD, median 66 in RCT, P < 0.001) and sex male/
female ratio (RWD 47/53, RCT 70/30, P < 0.001).
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Cluster analysis of diagnoses and medications
To elucidate the overlap between RWD and RCT cohorts, we conducted cluster analyses of diagnoses and 
medications, integrating the RWD and RCT datasets for this purpose. Figures 2 and 3 graphically represent the 
outcomes of these analyses. In both the diagnosis and medication datasets, the RWD and RCT cohorts emerged 
as discernable subgroups in the latent space of the Variational Autoencoder (VAE) model. Eleven clusters were 
discerned from the diagnosis data, and seven from the medication data. For the diagnosis dataset, 5133 patients 
(18%) did not align with any cluster; a comparable figure for the medication dataset was 5487 patients (19%). 
Detailed overviews of each cluster can be found in Tables 3 and 4, and in the supplement.

From the diagnosis dataset, three clusters (0, 1, and 3) mainly consisted of RCT patients, while eight clusters 
(2, 4–10) primarily consisted of RWD patients. Cluster 4 demonstrated the most substantial overlap, with 22% 
of its patients from the RCT cohort and 78% from the RWD cohort. Cluster 3 also exhibited significant overlap, 
with 89% of its data derived from the RCT cohort and 11% from the RWD cohort. This overlap signifies the 

Table 1.  Qualitative observations between the five medical domains in the RCT and RWD data sets.

Property Data

Demographics (DM) Diagnosis history (DH)
Laboratory measurements 
(LB) Vital signs (VS)

Concomitant medications 
(CM)

Data generation
RCT: Measured from patients 
at screening. RWD: As meas-
ured in healthcare

RCT: CRF and discretion of a 
physician. RWD: All diagnoses 
during the years as in an 
institutional database

RCT: Measured from patients 
at screening. RWD: As meas-
ured in healthcare

RCT: Measured from patients 
at screening. RWD: As meas-
ured in healthcare

RCT: CRF and discretion of a 
physician. RWD: Prescrip-
tions and inpatient drugs 
administered. Mentions in 
text

Longitudinality

RCT: Values available at index 
date (time of randomization). 
RWD: Time series. Index date 
was defined to calculate age 
and other variables at index

RCT: Time series, up to 
50 years of historical data. No 
exact dates. RWD: Time series 
up to 10 years of historical 
data, limited by research 
permit. Exact dates

RCT: Only available near 
index date. RWD: Time series 
up to 10 years of historical 
data available, limited by 
research permit. Exact dates

RCT: Only available near 
index date. RWD: Time series 
up to 10 years of historical 
data available, limited by 
research permit. Exact dates

RCT: Time series, up to 
50 years of historical data. No 
exact dates.RWD: Time series 
up to 10 years of historical 
data, limited by research 
permit. Exact dates

Completeness

RCT: Values available at index 
date. RWD: Obtained from 
time series of structured 
data except smoking status 
and NYHA class which were 
extracted from structured and 
text sources

RCT: Some diagnoses under-
represented, such as infections 
(Fig. 1).RWD: Some diagnoses 
underrepresented, such as 
genitourinary diseases (Fig. 1)

RCT: All values available from 
a given set of measurements. 
RWD: Missing values with 
respect to trial design, avail-
ability depends on healthcare 
practices

RCT: All values available from 
a given set of measurements. 
RWD: Missing values with 
respect to trial design, avail-
ability depends on healthcare 
practices

RCT: Selected medications. 
Some medications under-
represented in the data, such 
as anti-infectives (Fig. 1).
RWD: All prescriptions 
and administered inpatient 
medications in institutional 
database. Selected medica-
tions extracted from text

Nomenclature
Commonly used demographic 
variables, such as age, gender, 
and smoking

RCT: MedDRA codes. RWD: 
ICD-10 codes

RCT: MedDRA codes. 
RWD: Logical Observation 
Identifiers Names and Codes 
(LOINC)

Commonly used vital sign 
variables, such as BMI, blood 
pressure and heart rate

ATC codes both in RCT and 
RWD structured data. Also, 
medication labels in text

Harmonization Same nomenclature

RCT: 95.9% of MedDRA 
codes successfully mapped 
to SNOMED. RWD: 94.1% 
of ICD-10 codes successfully 
mapped to SNOMED

Straightforward mapping 
between laboratory measure-
ments. Standard unit conver-
sions were performed between 
RCT and RWD laboratory 
values

Same nomenclature Same nomenclature

Figure 1.  Comparison of proportion (%) of RCT (N = 5 734) and RWD (N = 23 523) patients with different 
medication/diagnosis types recorded, each pair of RCT and RWD bars corresponding to an ATC class (A) or 
ICD-10 class (B). Value labels above bars correspond to P values calculated with chi-squared tests. Presented P 
values were adjusted with Bonferroni correction to address the issue of multiple comparisons.
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presence of both RCT and RWD patients within a single cluster. Importantly, over half of both the RCT and RWD 
cohorts were consolidated within Cluster 4, whereas the proportions for other clusters were substantially lower. 
Clusters 2 and 5 were distinguished by a very low prevalence for all diagnoses utilized in VAE model training.

Aside from these two clusters, those predominantly composed of RWD patients could be loosely divided into 
two groups: the larger Cluster 4 containing 17,383 patients, and a group comprising the adjacent Clusters 6–10. 
In Cluster 4, essential hypertension (I10) and non-insulin-dependent diabetes (E11) were the most prevalent 
diagnoses. Clusters 7–10 were characterized by prevalent diagnoses of pneumonia (J18) and either heart failure 
(I150), acute myocardial infarction (I21), or both. Cluster 6 differed substantially from Clusters 7–10, although 
geographically close. The most common diagnoses for Cluster 6 were other diseases of the urinary system (N39) 
and other soft tissue disorders (M79).

Table 2.  Comparison of longitudinality and sampling density variables between concomitant medication and 
diagnosis domains for the RCT (N = 5 734) and RWD (N = 23 523) patients. *Presented P values were adjusted 
with Bonferroni correction to address the issue of multiple comparisons.

Concomitant medications Diagnosis history

Variable Quartile RCT RWD P value* Variable Quartile RCT RWD P value*

Pre-index time (Years)

25% 3,6 2,4

 < 0.001 Pre-index time (Years)

25% 14,9 2,7

 < 0.001Median 7,7 4,9 Median 20,3 5,2

75% 13,7 6,5 75% 28,7 7,3

Number of events

25% 4 9

 < 0.001 Number of events

25% 4 5

 < 0.001Median 6 20 Median 5 13

75% 9 38 75% 7 25

Number of events per year

25% 0,5 2,9

 < 0.001 Number of events per year

25% 0,2 1,7

 < 0.001Median 0,8 5,4 Median 0,3 3,3

75% 1,6 10,0 75% 0,4 7,6

Number of unique medications

25% 10 14

 < 0.001 Number of unique diagnoses

25% 5 5

 < 0.001Median 14 23 Median 7 9

75% 19 34 75% 9 15

Interval between events (Days)

25% 113,3 3,0

 < 0.001 Interval between events (Days)

25% 464,6 13,0

 < 0.001Median 288,0 13,5 Median 914,0 31,0

75% 576,5 41,0 75% 1826,0 89,0

Figure 2.  Visualization of the results from the cluster analysis of the diagnosis data. (A) The two-dimensional 
histogram shows the density of the combined RCT and RWD data sets along the two dimensions of the learned 
latent representation. We truncated histogram bin counts to 150. The red and blue lines show the Gaussian 
kernel density estimates (KDE) of the RCT and RWD distributions, respectively. (B) Contour lines for the 
Gaussian KDEs fitted using the datapoints belonging to clusters 0 and 3–10, plotted at the 0.05 value of each 
probability density estimate. The datapoints in cluster 2 lie very near to each other, leading to kernel density 
estimation failing, which is why we visualized the mean of these data point locations instead.
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The RCT-dominated clusters (0, 1, and 3) shared prevalent diagnosis codes for chronic renal failure (N18), 
non-insulin-dependent diabetes (E11), and essential hypertension (I10). Additional prevalent diagnoses in Clus-
ter 0, but not in Cluster 1, included vascular dementia (F01) and depressive episode (F32). Cluster 1, but not 
Cluster 0, exhibited a higher prevalence of other specified diabetes mellitus (E13), unspecified diabetes mellitus 
(E14), and glomerular disorders in diseases classified elsewhere (N08).

We further inspected the similarity of diagnosis prevalences within Clusters 3 and 4 using odds ratio and 
chi-squared test (Supplementary Material). In Cluster 3, the prevalences of chronic renal failure (N18) and non-
insulin-dependent diabetes mellitus (E11) were in balance between RCT and RWD patients with odds ratio of 1.0 
and p = 1.0, in contrast to respective odds ratios of 5.7 and 1.9 in the original datasets. The same trend towards 
more balanced prevalences was observed in the diagnoses of Cluster 4 compared to datasets without clustering.

From the medication dataset, two clusters (2 and 4) were mostly composed of RWD patients, and five (0, 1, 3, 
5, and 6) were largely comprised of RCT patients. The most substantial overlap between RCT and RWD cohorts 
was observed in Cluster 0 (11% RWD, 89% RCT) and the largest Cluster 4 (5% RCT, 95% RWD). Over 70% of 
the RWD patients were included in Cluster 4, and the proportions for the remaining clusters were significantly 
smaller.

Conversely, RCT patients were more evenly distributed across the clusters Clusters 3, 4, and 5 each comprised 
approximately 15% of the RCT patients, with the remaining clusters containing smaller proportions. Across all 
clusters, the most frequently prescribed medications (prevalence > 60%) incorporated at least one medication 
code pertaining to the cardiovascular system (ATC codes beginning with ’C’) and at least one code related to 
diabetes medications (ATC codes beginning with ’A*’).

Contrary to other clusters, neither antithrombotic agents (B01A) nor opioids (N02A) and other analgesics 
and antipyretics (N02B) were prevalent in Clusters 0 and 3. Clusters 1, 5, and 6 all shared stomatological prepa-
rations (A01A) as their most frequent medication code, whereas this code was scarcely seen in Clusters 2 and 
4. Clusters 2 and 4 were distinctive in that they had high prevalences of other beta-lactam antibacterials (J01D) 
and hypnotics and sedatives (N05C). In addition, other antianemic preparations (B03X) and calcium (A12A) 
were among the medications specific to Cluster 2.

Discussion
This study illustrates that real-world data (RWD) and randomized controlled trial (RCT) datasets, derived from 
patients with diabetic chronic kidney disease, share common characteristics but also exhibit substantial differ-
ences in terms of data generation, completeness, and temporal dynamics. These discrepancies have implications 
for study design validity and mandate careful examination when merging RWD and RCT data.

Data generation and longitudinality
The noted differences between RCT and RWD predominantly arise from their respective data generation pro-
cesses and objectives. RCT data is prospectively collected following a specified study protocol, whereas RWD is 
extracted through queries from hospital data infrastructure. For instance, in RCT data, only the initial diagnosis 
date is recorded by the investigator on case report forms (CRFs), potentially leading to selection and recall bias. 

Figure 3.  Visualization of the results from the cluster analysis of the medications data. (A) The two-
dimensional histogram shows the density of the combined RCT and RWD data sets along the two dimensions 
of the learned latent representation. We truncated histogram bin counts to 150. The red and blue lines show the 
Gaussian kernel density estimates (KDE) of the RCT and RWD distributions, respectively. (B) Contour lines 
for the Gaussian KDEs fitted using the datapoints belonging to each cluster, plotted at the 0.05 value of each 
probability density estimate.
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Conversely, in RWD, each inpatient and outpatient diagnosis are precisely dated; however, data from a single 
institution may not encompass the patient’s entire medical history. Unlike RWD, RCT data aims to assess the 
efficacy and safety of an intervention. Therefore, data elements unrelated to the trial’s exposure and outcome, 
such as anti-infective medications and symptom diagnoses in our study, may be underrepresented. Furthermore, 
specific elements of RCT data, such as laboratory measurements, may only be cross-sectional and timed near the 
index date. Conversely, electronic health record (EHR) data chronicles patient interaction with healthcare services 
and inherently contains longitudinal data without defined start or end dates, possibly spanning decades. In our 
study, our research permit limited RWD to a ten-year range. Thus, incomplete patient history, whether derived 
from CRFs or EHRs, introduces biases and differences between RCT and RWD data. Ideally, RCT baseline data 
should utilize RWD covering the complete patient history over the relevant time range.

Data density and completeness
Diagnoses and medications were sampled significantly more densely in our RWD set compared to RCT. Conse-
quently, RWD offered a more accurate portrayal of the patients’ state by capturing all pertinent data. Nevertheless, 
data completeness and accuracy can be limited if data is sourced solely from a single healthcare provider. Despite 
all patients meeting the inclusion criteria, some lacked records of chronic kidney disease or type 2 diabetes diag-
nosis in RWD data, unlike in the RCT data. These diagnoses may be partly recorded in primary healthcare data, 

Table 3.  Results from clustering of diagnosis data. *All patients used for the clustering of diagnosis data set. 
** Diagnoses with at least 20% prevalence in the cluster are listed in descending order of prevalence out of 65 
diagnosis codes used for VAE model training. Proportion out of data set describes how the RWD and RCT 
patients are distributed along the different clusters. Cluster breakdown shows how large proportions of the 
patients belonging to a cluster come from RWD and RCT sets.

Cluster size
Proportion out 
of data set

Cluster 
breakdown

Cluster Number of patients Proportion out of all patients* RWD RCT RWD RCT Most prevalent diagnosis codes**

Patients without cluster assignment 5133 18.1% 20.5% 8.9% 90.2% 9.8% –

0 366 1.3% 0.0% 6.4% 1.1% 98.9%

Chronic renal failure (N18), Vascular 
dementia (F01), Non-insulin-dependent 
diabetes mellitus (E11), Depressive episode 
(F32), Essential (primary) hypertension 
(I10), Obesity (E66), Disorders of lipo-
protein metabolism and other lipidaemias 
(E78), Chronic ischaemic heart disease 
(I25), Sleep disorders (G47), Other anae-
mias (D64)

1 562 2.0% 0.0% 9.8% 1.4% 98.6%

Non-insulin-dependent diabetes mellitus) 
(E11), Chronic renal failure (N18), Unspeci-
fied diabetes mellitus (E14), Other specified 
diabetes mellitus) (E13), Glomerular 
disorders in diseases classified elsewhere 
(N08), Essential (primary) hypertension 
(I10), Disorders of lipoprotein metabolism 
and other lipidaemias (E78), Obesity (E66), 
Chronic ischaemic heart disease (I25), 
Other cataract (H26)

2 1622 5.7% 7.2% 0.0% 100.0% 0.0% No diagnoses with prevalence > 20%

3 453 1.6% 0.2% 7.1% 10.8% 89.2%
Chronic renal failure (N18), Non-insulin-
dependent diabetes mellitus (E11), Essential 
(primary) hypertension (I10)

4 17,383 61.5% 59.9% 67.8% 78.0% 22.0%

Essential (primary) hypertension (I10), 
Non-insulin-dependent diabetes mel-
litus (E11), Chronic renal failure (N18), 
Disorders of lipoprotein metabolism and 
other lipidaemias (E78), Heart failure (I50), 
Chronic ischaemic heart disease (I25), 
Pneumonia, organism unspecified (J18)

5 271 0.1% 1.2% 0.0% 100.0% 0.0% No diagnoses with prevalence > 20%

6 264 0.1% 1.2% 0.0% 100.0% 0.0% Other diseases of urinary system (N39), 
Other soft tissue disorders (M79)

7 399 1.4% 1.8% 0.0% 100.0% 0.0% Pneumonia, organism unspecified (J18), 
Acute myocardial infarction (I21)

8 1164 4.1% 5.1% 0.0% 100.0% 0.0% Pneumonia, organism unspecified (J18), 
Heart failure (I50)

9 386 1.4% 1.7% 0.0% 100.0% 0.0% Heart failure (I50), Pneumonia, organism 
unspecified (J18)

10 281 0.1% 1.2% 0.0% 100.0% 0.0%

Heart failure (I50), Pneumonia, organism 
unspecified (J18), Nonrheumatic aortic 
valve disorders (I35), Acute myocardial 
infarction (I21), Other chronic obstructive 
pulmonary disease (J44)
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Table 4.  Results from clustering of medications data. *All patients used for the clustering of medication data 
set. **Medications with at least 60% prevalence in the cluster are presented in descending order of prevalence 
out of 84 medication codes used for VAE model training. Proportion out of data set describes how the RWD 
and RCT patients are distributed along the different clusters. Cluster breakdown shows how large proportions 
of the patients belonging to a cluster come from RWD and RCT sets.

Cluster size
Proportion out 
of data set

Cluster 
breakdown

Cluster Number of patients Proportion out of all patients* RWD RCT RWD RCT Most prevalent medication codes**

Patients without cluster assignment 5487 19.4% 17.4% 27.5% 71.6% 28.4% –

0 630 2.2% 0.3% 9.9% 11.0% 89.0%
Ace inhibitors, plain (C09A), Blood glucose 
lowering drugs, excl. insulins (A10B), Lipid 
modifying agents, plain (C10A)

1 453 1.6% 0.0% 8.0% 0.0% 100.0%

Stomatological preparations (A01A), Topi-
cal products for joint and muscular pain 
(M02A), Antithrombotic agents (B01A), 
ACE inhibitors, plain (C09A), Other 
analgesics and antipyretics (N02B), Lipid 
modifying agents, plain (C10A), Blood glu-
cose lowering drugs, excl. insulins (A10B), 
Insulins and analogues (A10A), Beta block-
ing agents (C07A)

2 1674 5.9% 7.4% 0.2% 99.5% 0.5%

Other antianemic preparations (B03X), 
Other analgesics and antipyretics (N02B, 
Antithrombotic agents (B01A), Opioids 
(N02A, High-ceiling diuretics (C03C), 
Drugs for peptic ulcer and gastro-oesoph-
ageal reflux disease (GORD) (A02B), 
Calcium (A12A), Insulins and analogues 
(A10A), Selective calcium channel blockers 
with mainly vascular effects (C08C), Beta 
blocking agents (C07A), Drugs for constipa-
tion (A06A), Lipid modifying agents, plain 
(C10A), Other beta-lactam antibacterials 
(J01D), Vitamin A and D, incl. combina-
tions of the two (A11C), Antiemetics and 
antinauseants (A04A), Corticosteroids for 
systemic use, plain (H02A), Iron prepara-
tions (B03A), Hypnotics and sedatives 
(N05C), Anxiolytics (N05B), Beta-lactam 
antibacterials, penicillins (J01C)

3 875 3.1% 0.1% 15.1% 2.6% 97.4%

Angiotensin II receptor blockers (ARBs), 
plain (C09C), Blood glucose lowering drugs, 
excl. insulins (A10B), Lipid modifying 
agents, plain (C10A), Selective calcium 
channel blockers with mainly vascular 
effects (C08C), Insulins and analogues 
(A10A)

4 17,751 62.9% 74.8% 15.1% 95.2% 4.8%

Antithrombotic agents (B01A), Other 
analgesics and antipyretics (N02B), Beta 
blocking agents (C07A), Opioids (N02A), 
Lipid modifying agents, plain (C10A), 
High-ceiling diuretics (C03C), Drugs for 
peptic ulcer and gastro-oesophageal reflux 
disease (GORD) (A02B), Other beta-
lactam antibacterials (J01D), Insulins and 
analogues (A10A), Blood glucose lowering 
drugs, excl. insulins (A10B), Hypnotics and 
sedatives (N05C), Drugs for constipation 
(A06A), Selective calcium channel blockers 
with mainly vascular effects (C08C)

5 937 3.3% 0.0% 16.6% 0.0% 100.0%

Stomatological preparations (A01A), 
Antithrombotic agents (B01A), Other 
analgesics and antipyretics (N02B), Topi-
cal products for joint and muscular pain 
(M02A), Angiotensin II receptor blockers 
(ARBs), plain (C09C), Lipid modifying 
agents, plain (C10A), Blood glucose lower-
ing drugs, excl. insulins (A10B), Selective 
calcium channel blockers with mainly vas-
cular effects (C08C), Insulins and analogues 
(A10A)

6 436 1.5% 0.0% 7.7% 0.7% 99.3%

Stomatological preparations (A01A), Lipid 
modifying agents, plain (C10A), Antithrom-
botic agents (B01A), Topical products for 
joint and muscular pain (M02A), Other 
analgesics and antipyretics (N02B), Blood 
glucose lowering drugs, excl. insulins 
(A10B), Selective calcium channel blockers 
with mainly vascular effects (C08C), Insu-
lins and analogues (A10A), Angiotensin II 
receptor blockers (ARBs), plain (C09C)
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which was not included in this study. Additionally, text mining was necessary to extract data from unstructured 
texts in RWD. Despite these limitations, our findings suggest that, in certain scenarios, RWD could supplement 
RCT data through EHR to electronic data capture (EHR2EDC)  automation30.

The harmonization process resulted in a minor loss of diagnoses, with 94.1% of RWD and 95.9% of RCT 
diagnosis codes successfully mapped to SNOMED codes. The mapping process for the remaining data types 
was straightforward.

Cluster analysis
We utilized cluster analysis on the combined real-world and randomized controlled trial (RCT) datasets to illus-
trate the heterogeneity of the study population, discover patient subgroups, and assess the overlap between the 
two datasets. The clustering was essentially based on the idea that Variational Autoencoders can learn nonlinear 
mapping between high-dimensional feature vectors representing patient characteristics and low-dimensional 
latent space representation. Similar feature vectors are basically located close to each other in the latent space. 
Our analysis revealed that the datasets were largely distinct. Both RCT and real-world data (RWD) sets com-
prised unique subgroups, with an overlap observed in only a few clusters. This was true for both diagnosis and 
medication datasets. However, clustering enabled us to extract from RCT and RWD datasets subgroups of 
patients who had more similar characteristics than original datasets. In the diagnosis data, Cluster 3 and the 
largest cluster (Cluster 4) contained a significant number of patients from both RWD and RCT sets. Hence, 
even though overlap was not present in all clusters, many RWD and RCT patients were grouped together in the 
cluster analysis. Clusters represented different patient characteristics and tended towards balanced prevalences 
of features between RCT and RWD sets in cluster-specific manner. Thus, clustering was found useful in under-
standing and mitigating group differences by selecting subgroups of patients with similar characteristics. Due to 
low availability of specific parameters in RWD, we did not apply the whole set of trial criteria, which is possibly 
reflected in the extent of overlap between the datasets. On the other hand, RWD contained a wider spectrum 
of recorded diagnoses than RCT. We conclude that much of the observed differences are due to different data 
generation mechanisms of RWD and RCT data.

The cluster analyses underscore the challenges in finding overlaps between real-world and RCT data, empha-
sizing the necessity for advanced methods to identify matching external controls. In the cluster analyses, we 
chose input covariates using a prevalence threshold of 1%, leading to 65 and 84 input covariates for diagnoses 
and medications data, respectively. A higher threshold would yield fewer covariates that could potentially dif-
ferentiate the real-world and RCT datasets. The covariate set chosen for aligning RCT and RWD can influence 
the outcome and therefore requires careful selection. In addition to clinical differences between groups, there 
could be disparities in data completeness, i.e., how well the selected covariates are captured in the different data 
sources. It’s important to note that the clustering results are influenced by our choices made in the VAE model 
training and cluster analysis and represent one set of possible options. Furthermore, we conducted the cluster 
analyses without considering possible demographic differences between RCT and RWD, which could account 
for some of the identified differences. To assess the robustness of clustering, subsampling-based analysis as 
 in22 would be preferable. However, cluster analysis proved beneficial in identifying patients with overlapping 
characteristics in RCT and RWD. Our results indicate the overlap and discrepancies in one trial and RWD pair 
but cannot be directly generalized. Nevertheless, similar observations are likely in any study that merges RCT 
and RWD sources. The clustering method could be used to identify the characteristics of the most common 
phenotype of patients in a selected therapeutic area of a healthcare provider and compare it to the characteris-
tics of the patients in a global clinical trial. On the other hand, the method could be used to identify more rare 
patient phenotypes to enable application of precision medicine and further expansion of the research to rare 
subpopulations of a disease.

Conclusion
In this study, we successfully elucidated the differences and demonstrated the feasibility of combining RCT and 
RWD, highlighting the potential for enriching RCT data using first-hand baseline information, filling missing 
data, and effectively mitigating discrepancies between datasets. RCT and RWD exhibit substantial differences in 
data longitudinality, completeness, sampling density, among other factors, all of which should be considered when 
designing studies that amalgamate data from these sources. Despite their inherent limitations, RWD sources 
could be used to enrich RCT datasets, for instance, to enhance the longitudinality and completeness of patient 
history. RCT and RWD sets were distinct and could form unique patient subgroups, which must be considered 
in studies merging RCT and RWD and in patient matching.

Data availability
Regarding the RWD, according to the Finnish legislation, access to individual-level data is restricted only to 
individuals named in the study permit. The study protocol is available upon request from the corresponding 
author. Regarding the RCT data, the data are not publicly available due to containing information that could 
compromise research participant privacy/consent.
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