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Condition‑based opportunistic 
maintenance strategy 
for multi‑component wind turbines 
by using stochastic differential 
equations
Hongsheng Su , Qian Cao * & Yuqi Li 

The components of wind turbines are complex in structure and the working environment is harsh, 
which makes wind turbines face problems such as high failure rates and high maintenance costs. In 
this paper, the stochastic differential equation model has been established for the harsh operating 
environment of wind turbines, and used Brownian motion to simulate random disturbances; aiming 
at the problem of high failure rate of wind turbines, based on Weibull distribution, a new model has 
been established by combining operating time and equipment state to calculate the failure rate; in 
the analysis of monitoring data, the Higher‑Order Moment method and Bayesian method were used 
to solve the parameters. The opportunity maintenance threshold curve and preventive maintenance 
threshold curve were obtained by analyzing Time‑Based Maintenance and Condition‑Based 
Maintenance. Therefore, the Condition‑Based Opportunistic Maintenance strategy was obtained. The 
effectiveness of the proposed method was finally verified by arithmetic examples.

Nowadays, wind power generation technology has good development space and huge market potential, and it 
is a clean energy power generation technology. In 2022, 77.6 GW of newly installed wind power capacity had 
been connected to the grid globally, which made the total installed capacity of wind power reach 906  GW1. Wind 
power technology has developed rapidly. However, due to the fact that wind farms are usually built in moun-
tainous areas with harsh environments and limited early production capacity, the failure rate of wind turbines 
is high. In addition, wind farms are generally located in remote areas, making maintenance of wind turbines 
very difficult and  expensive2,3. Therefore, a reasonable maintenance strategy is needed to solve these problems.

Preventive maintenance refers to the prevention of functional failures of systems through systematic inspec-
tion or regular replacement of products. Spinato’s  research4 on the WMEP database showed that blades, hub, 
and pitch control systems were some of the important aspects that affect the fault of wind turbines.  Tavner5 used 
the historical data of Germany and Denmark collected from the Windstats survey to analyze the reliability of 
wind turbine components.  Echavarria6 showed the changes in reliability of some main components with time 
by using the database of the German “250 MW wind power generation” test project. In wind farms, the tradi-
tional preventive maintenance was TBM. Once the inspection interval was determined, it would not  change7–9. 
This strategy couldn’t describe the operation of the system in real-time and may lead to over-maintenance or 
under-maintenance10–12. In recent years, there have been many people doing preventive maintenance based on 
the condition of the  system13–15. CBM is the process of determining whether a system needs to be repaired by 
judging its condition, without any over-maintenance or under-maintenance.  Gao16 conducted a comprehensive 
analysis of the theory, maintenance methods, and strategy models of CBM for complex equipment.  Harsh17 
established an anomaly detection system for wind turbine gearboxes based on the adaptive threshold, which 
described the change in the state of the gearbox. As far as a single component is concerned, CBM can reflect 
the operational status of various components of the wind turbine in real time. However, the neglect of coopera-
tion and coordination during component maintenance can easily lead to frequent shutdowns and increased 
maintenance costs. Therefore, introducing opportunistic maintenance can effectively solve these problems. 
 Zhao18 introduced opportunistic maintenance into the preventive maintenance of wind turbines and adopted a 
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deterministic opportunistic maintenance strategy to achieve optimal maintenance, effectively reducing main-
tenance costs.  Shao19 expanded the threshold into a dynamic threshold function, which made the description 
more reasonable. Zhang and  Zhao20,21 proposed a maintenance strategy based on reliability, which repaired 
units that entered opportunistic maintenance when their reliability reached the level of preventive maintenance. 
Opportunistic maintenance not only ensured the reliability of the unit but also enabled effective maintenance, 
reducing the possibility of over-maintenance and under-maintenance22–24. CBOM combined the advantages of 
CBM and opportunistic maintenance, which not only considered the state of each component but also provided 
maintenance opportunities for the remaining components when one component  failed25–27.

Because of the above problems, considering the number of failures and downtime of each component of the 
wind turbine, this study selected three key components of the wind turbine: gearbox, pitch system, and blades 
as the objects of study. When establishing the failure rate model, because the traditional Weibull distribution 
failure model only considered the influence of time on the equipment failure rate, this study introduced the 
condition index (CI) that reflected the equipment condition information and obtained a comprehensive model 
that considered the influence of time and condition index on the equipment failure rate at the same time. In data 
analysis and processing, this study used the high-order moment method and Bayesian estimation method to 
solve the model parameters. On this basis, the stochastic differential equation model was established. Through 
the SDE model, the TBM, CBM, and CBOM of wind turbines were analyzed respectively, and the principles and 
characteristics of these three strategies were explained. Finally, the effectiveness of the CBOM strategy was veri-
fied by an example, and it was compared from the time point of view, which showed that CBOM could ensure 
the stable operation of the system.

Device state modeling
Degradation model
The performance of wind turbines is greatly affected by the environment during operation, and wind farms are 
generally located in remote areas, which makes the degradation process of wind turbines very unstable and prone 
to random failures. Therefore, it is particularly important to analyze the degradation process of wind turbines.

Definition, x(t) represented the state of the device at time t, when x(t) = 1, the device was completely undam-
aged and in good working condition at time t, and when x(t) = 0, the device failed completely at time t. The state 
degradation model of the device was constructed as follows:

where f(x(t), t) represented the decline of the wind turbine itself; σ(x(t), t) was the fluctuation rate of the equip-
ment state; B(t) was Brownian motion, which represented the influence of the external environment on the device 
state, if γ obeyed normal distribution, i.e., γ ~ N(0,1), then dB(t) = γ 

√
dt.

In Eq. (1), For any T and N, all |x(t)|≤ N, |y(t)|≤ N, and 0 ≤ t ≤ T, then there was a constant K that only 
depended on T and N so that f(x(t), t) and σ(x(t), t) satisfied the following:

and x(0) was independent of (B(t), 0 ≤ t ≤ T), Ex2(0) < ∞, Then Eq. (1) there was a unique solution x(t)28.

Failure rate modeling
In the research of preventive maintenance, the Weibull distribution was suitable to represent the operation state 
of the device. However, the traditional Weibull distribution failure model only considered the influence of time 
on the failure rate of the device. This paper introduced the condition index that reflects the status information 
of the device and obtained a comprehensive model that considered both the impact of time and condition index 
on device failure rate.

The acquisition of the CI was as follows: Principal component analysis (PCA) was used to process the char-
acteristic parameters (such as amplitude, temperature, etc.) that affected the device degradation  process29, and 
the results were mapped between [0,1] through dispersion standardization, i.e., CI(t)30.

where, z represented the data when the characteristic parameters were reduced to one dimension, CI(t) = 1 meant 
that the device was completely healthy, and CI(t) = 0 meant that the device completely failed.

Assuming T(CI) satisfied the exponential relationship of Eq. (5).

where, a, b, and c were parameters, and CI was a condition index.
There were initial conditions:

(1)dx(t) = f (x(t), t)dt + σ(x(t), t)dB(t)

(2)
∣

∣f (x(t), t)− f
(

y(t), t
)∣

∣+
∣

∣σ(x(t), t)− σ
(

y(t), t
)∣

∣ ≤ K
∣

∣x(t)− y(t)
∣

∣

(3)
∣

∣f (x(t), t)
∣

∣+ |σ(x(t), t)| ≤ K(1+ |x(t)|)

(4)CI(t) = 1−
zi −min {z}

max {z} −min {z}

(5)T(CI) = a · eb·CI + c

(6)CI = 1,T = T1

(7)CI = 0,T = 0



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:2390  | https://doi.org/10.1038/s41598-024-51930-x

www.nature.com/scientificreports/

The initial conditions of Eq. (5) were given by Eqs. (6) and (7), and it could be concluded that:

where b was the parameter to be fitted, T1 was the factory design life of the device, and T1 was generally 20 years. 
The curve of T(CI, b) is shown in Fig. 1.

It can be seen from Fig. 1 that the significance of parameter b is that it has established the relationship between 
operating life, the condition index, and failure rate. When b takes different values, the T(CI, b) curve can reflect 
the characteristics of the convex function, the concave function, and the linear function respectively. In this 
paper, the b value was obtained by fitting the sample data, which could avoid errors caused by differences in the 
condition index calculation.

The traditional Weibull distribution formula was as follows:

where β was the shape parameter of the Weibull distribution; η was the curvature parameter of the Weibull 
distribution, also known as the characteristic life parameter. For the time model based on Weibull distribution, 
the operating life T(CI) was used to replace the characteristic life parameter η, and the failure rate function was 
obtained as follows:

where β and b were the parameters to be solved, t was the age of service, and CI was the condition index. The 
trend chart of failure rate is shown in Fig. 2.

Through the curve diagram of the failure rate shown in Fig. 2, when the condition index decreases, the failure 
rate increases; As time increases, the failure rate also tends to increase. Therefore, it conformed to practical laws. 
So, the expression for f(x(t), t) was obtained as follows:

State volatility model
This paper was aimed at the large-scale components that make up the wind turbine, such as blades and gearbox, 
which needed to be stopped for maintenance. Randomize the minor maintenance caused by inspection, main-
tenance, and alarm, so it was only related to the device state and had nothing to do with the operating time. 
Therefore, the state volatility rate could be set as:

(8)T(CI , b) = T1 ·
eb·CI − 1

eb − 1

(9)�(t, η,β) =
β

η

(

t

η

)β−1

(10)�(t,CI ,β , b) =
β

T1 · eb·CI−1
eb−1





t

T1 · eb·CI−1
eb−1





β−1

(11)f (x(t), t) = −�(CI , t) · x(t) = −
β

T1 · eb·CI−1
eb−1





t

T1 · eb·CI−1
eb−1





β−1

· x(t)

(12)σ(x(t), t) = kx(t)

Figure 1.  T(CI, b) curves correspond to different b values.
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Higher‑order moment method
In the following, the parameters β, b, and k were calculated using the higher-order moment  method31.

For the solution of parameters, first divided the time period [t0, T] into N equal intervals, and recorded the 
length of each segment as Δt, i.e., ti+1−ti = Δt, i = 0, …, N−1. Took one of the paths for research.

Using the Euler–Maruyama method for Eq. (1), it could be obtained that:

where, i = 0, 1, …, N−1. From Eq. (14), it could be obtained that:

where, N(·, ·) represented normal distribution. Therefore, it could be obtained that:

Because:

it could be seen that:

From Eq. (18), it could be obtained that:

Because:

it could be seen that:

(13)x(N) = (x(t0), x(t1), ..., x(tN ))

(14)x(ti+1)− x(ti) = f (ti , x(ti), b,β)�t + σ(ti , x(ti), k)[B(ti+1)− B(ti)]

(15)x(ti+1)− x(ti) ∼ N(�t · f (t, x(ti), b,β),�t · σ 2(t, x(ti), k))

(16)
x(ti+1)− x(ti)− f (ti , x(ti), b,β)�t

σ(ti , x(ti), k)
= B(ti+1)− B(ti)

(17)
[B(ti+1)− B(ti)]√

�t
∼ N(0, 1)

(18)
x(ti+1)− x(ti)− f (ti , x(ti), b,β)�t

σ(ti , x(ti), k)
√
�t

∼ N(0, 1)

(19)Yi �
x(ti+1)− x(ti)− f (ti , x(ti), b,β)�t

σ(ti , x(ti), k)
√
�t

∼ N(0, 1)

(20)E[Yn] =
{

0 (n is an odd number)

(n− 1)!! (n is an even number)

Figure 2.  Trend chart of failure rate.
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The estimated values of β, b, and k could be obtained by making the h equations in (21) equal to zero.

Bayesian estimation method
The above method was a point estimation method for the parameters and the following Bayesian estimation 
method was used to consider the quantification of parameter  uncertainty32–36.

The following deformation was done:

Then the reliability function was as follows:

According to the Bayesian assumption, the uniform distribution was taken as the prior distribution of β.

where the values of β1 and β2 were determined based on engineering experience. Under the given conditions, 
the conjugate prior distribution Ga(y,z) was obtained for q.

where y and z were determined using two quantiles, which could be determined from a priori information and 
historical information. In this paper, using the upper and lower quartiles qU and qL, y and z satisfied the follow-
ing system of equations:

Thus, the joint prior distribution density of q and β was obtained:

The n samples were taken from the sample and divided into k groups, and the number of samples in each 
group was n1, n2, …, nk, and n1 + n2 +· · ·  + nk = n, each group of samples was independently carried out a timed 
cut-off test, cut-off time was t1, t2, …, tk, and none of the results failed, in which case the corresponding likeli-
hood functions were as follows:

According to Eqs. (27) and (28) and combined with Bayes’ formula, the joint posterior distribution density 
of q and β was obtained:
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The marginal distribution density of β was obtained from the joint distribution density of q and β.

The one‑sided confidence interval for β
For a given α (0<α<1), βL solved by the following equation

Therefore, Therefore, the one-sided lower confidence limit for a confidence level of 1-α for β was [βL, β2]. 
Similarly, the one-sided upper confidence limit for a confidence level of 1-α for β was [β1, βU], where, βU was 
given by the following equation:

The shortest confidence interval for β
The following system of equations was obtained through the density of the marginal distribution of β.

Therefore, the shortest confidence interval for a confidence level of 1-α for β was [βL, βU].

The one‑sided confidence interval for b
The joint distribution density of b and β could be obtained from Eqs. (22) and (29).
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Therefore, the marginal distribution density of b is obtained:

For a given α (0 < α < 1), the lower confidence limit of b satisfied Eq. (36)

The shortest confidence interval for b
From the density of the marginal distribution of b, the following system of equations was obtained:

Therefore, the shortest confidence interval for a confidence level of 1-α for b was [bL, bU].

Example analysis
In wind turbines, the gearbox, as a power transmission device, was the key to achieving wind turbine growth. 
Therefore, the gearbox was taken as an example for analysis. The gearbox had been running under the harsh 
working conditions of variable speed and variable load for a long time, so the faults that were easy to occur 
include: unbalanced shaft and over-high oil temperature. Therefore, bearing amplitude and oil temperature 
were selected as monitoring quantities. The simulation analysis data of this paper used the real operation and 
maintenance data of a wind farm in a period of time. Table 1 shows the operating life of the same type of gearbox 
during the monitoring period. Table 2 shows the characteristic parameters of this type of gearbox during the 
monitoring period.

Because the influence of each characteristic parameter on the device was inconsistent, the PCA method was 
first used to reduce the dimensionality of the data, and then the condition index of the gearbox was calculated 
according to Eq. (4).

The state deterioration of the gearbox was modeled as:

Table 3 shows the historical failure records of some equipment of wind power plants under the EDP Opendata 
plan in 2016.

The reliability curve and state curve of the device were obtained by using MATLAB simulation, and the 
changing trend of the curves is shown in Fig. 3.

(35)f (b|0 ) =
∫ β2

β1

π(b,β|0 )dβ

(36)
∫ ∞

bL

f (b|0 )db = 1− α

(37)











f (bL) = f (bU )
� bU

bL

f (b|0 )db = 1− α

(38)dx(t) = −
2.01

T1 · e(−1.2)·CI−1
e(−1.2)−1





t

T1 · e(−1.2)·CI−1
e(−1.2)−1





1.01

· x(t)dt + 0.0013 · x(t)dB(t)

Table 1.  Operating life of the same type gearbox.

Number 1 2 3 4 5

Operating life (h) 4855 4732 5064 4906 5146

Table 2.  Characteristic parameters of this type of gearbox.

Number Operation Time (h) Oil temperature (°C) Amplitude (mm)

1 150 23.9 0.355

2 309 25.0 0.365

3 500 26.3 0.470

4 757 26.5 0.603

5 906 27.1 0.743

6 1014 27.4 0.785

7 1540 31.9 1.573

8 2475 37.0 1.704

9 3864 48.2 3.437

10 4855 60.8 5.335
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From the curve trend of Fig. 3, it can be concluded that the reliability and status of the gearbox are gradu-
ally decreasing, and it can be seen from the decreasing rate that the failure rate increases with time. In actual 
operation, the longer the operation time, the more likely the gearbox will fail; According to the requirements of 
reliability, when the reliability of the gearbox is reduced to 0.9, it is necessary to carry out preventive maintenance 
on gearbox. It can be seen from Fig. 3 that the time when the gearbox reliability reaches the threshold is about 
5000 h, which is close to the fault time of 4855 h in Table 1 and close to the failure time of the equipment gearbox 
in 200 days and 285 days respectively in EDP Opendata 2016, which shows that the model has certain accuracy.

Currently, most researchers use the traditional Weibull proportional risk model in modeling the failure 
rate. Introducing this model into the SDE model, the state transformation model of the gearbox was obtained 
as shown below:

According to Eq. (39), the state transformation model of the gearbox was simulated, and the difference 
between the real state and the predicted state of the gearbox is shown in Fig. 4.

As can be seen from Fig. 4, the two models are basically similar at the initial stage of equipment operation, 
which shows that the equipment is relatively less affected by the state at this time. After 3000 h, the state residual 
of the transformation model using the traditional Weibull proportional risk model has a large mutation, while 
the residual of the transformation model using the condition index model is relatively stable, which shows that 

(39)dx(t) = −
β

η

(

t

η

)β−1

exp (x(t))dt + kx(t)dB(t)

Table 3.  Historical failure records of some equipment of wind power plants.

Turbine_ID Component Timestamp Remarks

T01 GEARBOX 2016-07-18T02:10:00 + 00:00 Gearbox pump damaged

T06 GENERATOR 2016-07-11T19:48:00 + 00:00 Generator replaced

T06 GENERATOR 2016-07-24T17:01:00 + 00:00 Generator temperature sensor failure

T06 GENERATOR 2016-09-04T08:08:00 + 00:00 High temperature generator error

T06 GENERATOR 2016-10-27T16:26:00 + 00:00 Generator replaced

T06 GENERATOR 2016-10-02T17:08:00 + 00:00 Refrigeration system and temperature sensors in generator 
replaced

T06 HYDRAULIC_GROUP 2016-04-04T18:53:00 + 00:00 Error in pitch regulation

T07 GENERATOR_BEARING 2016-04-30T12:40:00 + 00:00 High temperature in generator bearing (replaced sensor)

T07 TRANSFORMER 2016-07-10T03:46:00 + 00:00 High temperature transformer

T07 TRANSFORMER 2016-08-23T02:21:00 + 00:00 High temperature transformer. Transformer refrigeration 
repaired

T09 GEARBOX 2016–10-11T08:06:00 + 00:00 Gearbox repaired

T09 GENERATOR_BEARING 2016-06-07T16:59:00 + 00:00 High temperature generator bearing

T09 GENERATOR_BEARING 2016-08-22T18:25:00 + 00:00 High temperature generator bearing

T09 GENERATOR_BEARING 2016-10-17T09:19:00 + 00:00 Generator bearings replaced

T11 GENERATOR 2016-03-03T19:00:00 + 00:00 Electric circuit error in generator

T11 HYDRAULIC_GROUP 2016-10-17T17:44:00 + 00:00 Hydraulic group error in the brake circuit

Figure 3.  Reliability and state trend diagram of the gearbox.
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with the increase of time, the equipment state has a greater impact on the equipment operation. It shows that the 
transformation model based on the condition index can reflect the state of equipment more accurately.

Strategy Analysis
TBM strategy
TBM strategy refers to a maintenance strategy with a fixed maintenance cycle. Theoretically speaking, it takes 
the same time to execute TBM every time. Therefore, the TBM strategy is predictable and can be dealt with 
in advance. Combined with Eq. (1), it could be seen that under TBM, the state deterioration equation was an 
ordinary differential equation, so the failure rate λ was constant. Because B(t) was a Brownian motion, the fol-
lowing equation was obtained:

Through the above analysis, the TBM strategy was an expected strategy in theory. If the execution time of 
TBM was the same as the actual operation result, then TBM could solve the preventive maintenance problem of 
the device. Even with certain errors, because the TBM strategy was predictable and fully prepared, the expected 
effect could be basically achieved. Therefore, the TBM strategy was a scientifically preventive maintenance 
strategy.

The state of the device under the TBM strategy is shown in Fig. 5, where the device is serviced every Tp hours.
As can be seen from Fig. 5, the TBM strategy mainly monitors the time and carries out maintenance once 

it reaches the maintenance time, that is, regular maintenance. TBM can carry out maintenance effectively by 
arranging maintenance resources and planning downtime in advance. However, TBM does not take into account 
the actual operation of the device, which is easy to cause under-maintenance and over-maintenance.

CBM strategy
CBM strategy refers to the strategy of maintenance when the device status reaches the threshold of preventive 
maintenance. Assuming that the threshold of preventive maintenance was xp, the condition for the device main-
tenance at time tm was as follows:

It could be seen that tm was the first time the device status was less than the state threshold xp, which was the 
downtime of the device. To facilitate CBM analysis, through the modification of Eq. (1), x(t) could be written as:

According to Eqs. (41) and (42), the following inequality could be obtained:

(40)dE(x(t)) = E[�(E(x(t)), t)dt] = �E(x(t))dt

(41)x(tm) ≤ xp

(42)x(t) = x(ti)+
� t

ti

β

T1 · eb·CI−1
eb−1





t

T1 · eb·CI−1
eb−1





β−1

x(t)dt +
� t

ti

σ(x(t), t)dBt

Figure 4.  Residual between real state and predicted state of gearbox.
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where P(t) was the threshold function of preventive maintenance. When CI ≤ P(t), according to Eq. (43), it meant 
that the state had reached the threshold of preventive maintenance and preventive maintenance was needed. The 
status of devices under the CBM strategy is shown in Fig. 6.

As can be seen from Fig. 6, the CBM strategy monitors the device status, and once the condition index is less 
than the preventive maintenance threshold, maintenance will be carried out. However, the maintenance time of 
the device was unpredictable and could not be prepared in advance.

CBOM strategy
The opportunistic maintenance strategy is applied to multi-component systems, where when one component 
needs to be repaired, the remaining components also receive a preventive maintenance opportunity. Under this 
strategy, the simultaneous maintenance of multiple components can significantly improve the availability of the 
whole device and save total maintenance costs. CBOM combined the advantages of CBM and opportunistic 
maintenance, utilized real-time monitoring information from various components to reflect the actual operating 
status of the unit, and judged the opportunistic maintenance time of each component through the opportunistic 
maintenance threshold and preventive maintenance threshold.

Hypothesis 1 The components of the wind turbine could only be repaired after it was shut down.

(43)
CI ≤ P(t) =

ln

[

eb−1
T1

· β

√

∫ t
ti
βtβ−1x(t)dt

xp−x(ti)−
∫ t
ti
σ(x(t),t)dBt

+ 1

]

b

Figure 5.  Device status under TBM strategy.

Figure 6.  Device status under CBM strategy.
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Hypothesis 2 The components of the wind turbine obeyed the Weibull distribution of different parameters and 
were independent of each other.

Hypothesis 3 Opportunistic maintenance adopted incomplete maintenance, and preventive maintenance 
adopted complete maintenance. Due to the influence of the recovery degree of incomplete maintenance, the 
components could be repaired twice by opportunistic maintenance at most after complete maintenance.

Based on the derivation of the preventive maintenance threshold in "CBM Strategy" Section, assuming that the 
preventive maintenance threshold for component 1 was xp1 and the condition-based opportunistic maintenance 
threshold was xo1, the condition for opportunistic maintenance of component 1 at time tm was shown in (44).

Let:

Combining Eqs. (43) and (44), the following inequality could be obtained:

where O(t) was the threshold function of opportunistic maintenance and P(t) was the threshold function of 
preventive maintenance. The schematic diagram of the CBOM strategy is shown in Fig. 7.

From Fig. 7, it can be seen that the specific implementation process of the CBOM strategy is as follows: At time 
tm, the condition index CI3 of component 3 reaches the preventive maintenance threshold P3(t), and preventive 
maintenance is carried out; At this point, the condition index of component 2 satisfies P2(t) ≤ CI2 ≤ O2(t), obtain-
ing an opportunity to repair simultaneously with component 3; Meanwhile, the condition index of component 
1 satisfies CI1 > O1(t), and component 1 does not require maintenance.

Example analysis
Considering the number of failures and downtime, this paper selected three key components of the wind tur-
bine: blades, pitch system and gearbox for analysis. The simulation analysis data used the real operation and 
maintenance data of a wind farm in a period of time, the gearbox monitoring data was according to Tables 2 and 
4 shows the characteristic parameters of blades during the monitoring period; Table 5 shows the characteristic 
parameters of pitch system during the monitoring period.

The dimension of the data was reduced by the PCA method, and then the condition index of the component 
was calculated according to Eq. (4). Based on the condition monitoring data in Table 4 and Table 5 combined 
with the parameter solution method, the parameters of the blade Weibull model could be obtained: β1 = 2.31, 
b1 = − 2.5, k1 = 0.0023; the parameters of Weibull model of pitch system could be obtained: β2 = 2.00, b2 = − 0.3, 
k2 = 0.0009; the parameters of Weibull model of gearbox could be obtained: β3 = 2.01, b3 = − 1.2, k3 = 0.0013. The 
CBOM strategy obtained by MATLAB simulation is shown in Figs. 8, 9 and 10.

In Fig. 8, CI1 represents the blade condition index, O1(t) represents the blade opportunistic maintenance 
threshold curve, and P1(t) represents the blade preventive maintenance threshold curve. As can be seen in Fig. 8, 
the blades require maintenance approximately every 1,000 h due to the harsh external environment, which 
provides ample opportunity for repair of other components.

In Fig. 9, CI2 represents the pitch system condition index, O2(t) represents the pitch system opportunistic 
maintenance threshold curve, and P2(t) represents the pitch system preventive maintenance threshold curve. 
As can be seen from Figs. 8 and 9, preventive maintenance is carried out on the blades at 7755 h and 8611 h 
respectively. At this time, opportunistic maintenance is carried out on the pitch system, which delays the state 
deterioration process of the pitch system, and finally, preventive maintenance is carried out at about 10000 h.

In Fig. 10, CI3 represents the gearbox condition index, O3(t) represents the gearbox opportunistic mainte-
nance threshold curve, and P3(t) represents the gearbox preventive maintenance threshold curve. As can be 
seen from Figs. 8 and 10, preventive maintenance is carried out on the blades at 4390 h and 5560 h respectively. 
At this time, opportunistic maintenance is carried out on the gearbox, and finally, preventive maintenance is 
carried out at about 6000 h. Compared with the previous status variation of the gearbox, the life of the gearbox 
is extended by 16.67% by using opportunistic maintenance, which effectively slows down the state deterioration 
process of the gearbox.

From the above analysis, it can be concluded that CBOM can delay the deterioration process of device status. 
Opportunistic maintenance combines the maintenance of multiple components to achieve the purpose of reduc-
ing maintenance costs and delaying the deterioration process of the device; CBM solves the hidden problems of 
opportunistic maintenance and ensures the availability of components. Ultimately, the strategy can ensure the 
stable operation of the system.

(44)xp1 ≤ x1(tm) ≤ xo1

(45)
O(t) =

ln

[

eb−1
T1

· β

√

∫ t
ti
βtβ−1x(t)dt

xo−x(ti)−
∫ t
ti
σ(x(t),t)dBt

+ 1

]

b

(46)
P(t) =

ln

[

eb−1
T1

· β

√

∫ t
ti
βtβ−1x(t)dt

xp−x(ti)−
∫ t
ti
σ(x(t),t)dBt

+ 1

]

b

(47)P(t) ≤ CI ≤ O(t)
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Figure 7.  Schematic diagram of CBOM strategy.

Table 4.  Characteristic parameters of blades.

Number Operation time (h) Waving amplitude (mm) Swing amplitude (mm)

1 90 0.001 0.002

2 150 0.001 0.002

3 233 0.002 0.003

4 350 0.003 0.005

5 460 0.005 0.006

6 521 0.006 0.008

7 654 0.008 0.011

8 740 0.010 0.015

9 833 0.012 0.017

10 986 0.015 0.02
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Table 5.  Characteristic parameters of pitch system.

Number Operation time (h) Motor temperature (°C)

1 705 24.2

2 1500 24.3

3 2208 24.6

4 3090 25.2

5 4460 25.8

6 5471 26.1

7 6637 30.7

8 7540 37.1

9 8703 45.4

10 9640 54.6

Figure 8.  The blades status under the CBOM strategy.

Figure 9.  The pitch system status under the CBOM strategy.
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Conclusions
In this paper, through a profound analysis of the characteristics of the stochastic differential equation and Weibull 
distribution, combined with the multi-component system, the stochastic differential equation was established 
to describe the status of each component. On the basis of the CBM strategy, the opportunistic maintenance 
threshold function and preventive maintenance threshold function were obtained, and the CBOM strategy was 
established. Through comparative analysis, it had been verified that CBOM could delay the process of device state 
degradation and ensure stable operation of the system. This strategy is not only suitable for the maintenance of 
wind turbines but also has certain application prospects for other related fields.
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All data generated or analysed during this study are included in this published article.
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