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Metabolomic signatures of ideal 
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Plasma metabolomics profiling is an emerging methodology to identify metabolic pathways 
underlying cardiovascular health (CVH). The objective of this study was to define metabolomic 
profiles underlying CVH in a cohort of Black adults, a population that is understudied but suffers 
from disparate levels of CVD risk factors. The Morehouse‑Emory Cardiovascular (MECA) Center for 
Health Equity study cohort consisted of 375 Black adults (age 53 ± 10, 39% male) without known 
CVD. CVH was determined by the AHA Life’s Simple 7 (LS7) score, calculated from measured blood 
pressure, body mass index (BMI), fasting blood glucose and total cholesterol, and self‑reported 
physical activity, diet, and smoking. Plasma metabolites were assessed using untargeted high‑
resolution metabolomics profiling. A metabolome wide association study (MWAS) identified 
metabolites associated with LS7 score after adjusting for age and sex. Using Mummichog software, 
metabolic pathways that were significantly enriched in metabolites associated with LS7 score were 
identified. Metabolites representative of these pathways were compared across clinical domains of 
LS7 score and then developed into a metabolomics risk score for prediction of CVH. We identified 
novel metabolomic signatures and pathways associated with CVH in a cohort of Black adults without 
known CVD. Representative and highly prevalent metabolites from these pathways included 
glutamine, glutamate, urate, tyrosine and alanine, the concentrations of which varied with BMI, 
fasting glucose, and blood pressure levels. When assessed in conjunction, these metabolites were 
independent predictors of CVH. One SD increase in the novel metabolomics risk score was associated 
with a 0.88 higher LS7 score, which translates to a 10.4% lower incident CVD risk. We identified novel 
metabolomic signatures of ideal CVH in a cohort of Black Americans, showing that a core group of 
metabolites central to nitrogen balance, bioenergetics, gluconeogenesis, and nucleotide synthesis 
were associated with CVH in this population.
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Cardiovascular disease (CVD) is the leading cause of death in the United States, and there are marked disparities 
in CVD prevalence and outcomes between Black Americans and other racial  groups1,2. High resolution metabo-
lomic profiling is an emerging technology that has the potential to identify pathways underlying cardiovascular 
health (CVH). The metabolome consists of endogenous, pharmaceutical, and chemical metabolites that fall 
downstream of genomic, transcriptomic, and proteomic  variations3. Metabolomic profiling has shown great 
promise in elucidating novel mechanisms underlying cardiometabolic and subclinical or clinically apparent 
 CVD4–6. Although Black adults suffer from a greater burden of cardiometabolic risk  factors1, the metabolic 
signatures associated with CVH remain understudied in this vulnerable  population7,8.

The purpose of this study was to determine the metabolomic signatures for CVH in Black adults without 
known CVD and living in the greater metropolitan area of Atlanta,  GA9. For this study, CVH was defined by 
the American Heart Association’s Life’s Simple 7 (LS7) metric (score of 0 to 14 with 14 being ideal CVH), which 
encompasses a set of seven CVH clinical domains (four health behaviors—smoking, weight, physical activity, 
and diet; three health factors—blood pressure, total cholesterol, and glucose), and has been shown to predict 
CVD and all-cause  mortality10–13.

Methods
Study design
We studied metabolomic profiles in plasma samples from participants of the Morehouse-Emory Cardiovascular 
(MECA) Center for Health Equity study. Platelet-free plasma samples were obtained from 375 adults living in 
the greater Atlanta region, aged 30 to 70, who self-identified as Black or African American. Details on study 
design and recruitment strategy have been described  previously9. In brief, exclusion criteria included known 
CVD (e.g., myocardial infarction, congestive heart failure, cerebrovascular accident, coronary artery disease, 
peripheral arterial disease, atrial fibrillation, and cardiomyopathies), concomitant chronic diseases (e.g., human 
immunodeficiency virus, lupus, or cancer), substance abuse (alcohol or illicit drug), psychiatric illness, pregnant 
or lactating females, and immobility such that individuals could not increase physical activity.

Enrolled participants visited either Emory University School of Medicine or Morehouse School of Medicine 
where they completed a physical examination, blood draw, and questionnaires. Vital signs and anthropometric 
measures were recorded. All blood draws were performed after > 6 h of fasting, and cholesterol and glucose levels 
were measured. The presence of hypertension was verified by any of the following: current use of anti-hyper-
tensive medications, systolic blood pressure ≥ 130 mmHg, or diastolic blood pressure ≥ 80 mmHg. The presence 
of diabetes mellitus was determined by either current use of diabetes medications or fasting glucose ≥ 126 mg/
dL. Finally, the presence of hyperlipidemia was defined by either current use of lipid-lowering medications or 
fasting total cholesterol ≥ 240 mg/dL. The protocol was approved by the Institutional Review Boards at More-
house School of Medicine and Emory University and all participants provided written informed consent. The 
study was conducted in accordance with the relevant guidelines and regulations of these respective institutions.

Life’s Simple 7 score
Life’s Simple 7 (LS7)  score10, developed by the American Heart Association, was calculated for the participants 
as their metric of clinical CVH. Seven clinical domains of CVH (physical activity, diet, smoking history, blood 
pressure, glucose, cholesterol, and BMI) were scored as 0 (poor), 1 (intermediate), or 2 (ideal), using the previ-
ously published scoring  algorithm10. The summary score was computed by the summation of the 7 sub-scores 
with the range of 0 to 14, with higher scores indicating greater CVH (Table S1).

High‑resolution metabolomics (HRM)
Untargeted low molecular weight metabolic profiles (85–1250 daltons) were obtained from platelet free plasma 
(PFP) samples using the HRM platform described  previously14–16. Blood was drawn into sodium citrate tubes 
and PFP was collected by centrifugation at 2,500 × g for 15 min followed a second centrifugation at 2,500 × g 
for 15 min before storage at − 80 °C. For metabolomics profiling, PFP samples were thawed and treated with 
acetonitrile (2:1, v/v), spiked with internal standard mix, and centrifuged at 14,000 × g for 5 min at 4 °C to 
remove proteins. Samples were maintained at 4 °C in an autosampler until injection and were randomized to 
minimize effects of instrumental drift during analysis. Three technical 10 μL aliquot replicates were analyzed on 
a Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer using a Thermo Dionex Ultimate 3000 liquid 
chromatography system with HILIC (hydrophilic interaction liquid chromatography; ThermoFisher Scientific, 
Accucore, 50 × 2.1 mm, 2.6 μm) separation and electrospray ionization operated in positive mode. The flow rate 
of the HILIC column was maintained at 0.35 mL/min until 1.5 min, increased to 0.4 mL/min at 4 min and held 
for 1 min, resulting in a total analytical run time of 5 min. Mobile Phases A and B were LCMS grade water and 
acetonitrile, respectively. Mobile phase C was composed of 2% formic acid (v/v) in water. Mobile phase condi-
tions consisted of 22.5% A, 75% B, 2.5% C which was held for 1.5 min, with a linear gradient to 77.5% A, 20% 
B, 2.5% C at 4 min, and held for 1 min. The HILIC column was then flushed for 5 min with a wash solution of 
77.5% A, 20% B, 2.5% C before another injection. Mass spectral detection was completed at 120,000 resolution 
over a mass-to-charge ratio (m/z) range of 85–1275. A quality control pooled reference plasma sample (Q-Std3) 
was included at the beginning and end of each batch of 20 samples for quality control and quality  assurance17. 
Raw data files were extracted using apLCMSv6.3.318 with xMSanalyzer v2.0.719, followed by batch correction with 
 ComBat6. Uniquely detected ions consisting of m/z and retention time (RT) are referred to as metabolic features 
or respective metabolites, as appropriate. Metabolic feature annotation was performed using  xMSannotator20 
based on the Human Metabolome  Database21, with only medium to high confidence (score 2 or 3) considered. 
Further, annotations were also conducted by matching to an in-house library of previously confirmed metabolites, 
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allowing m/z difference of 10 ppm and retention time difference of 60 s, which can be considered Level 1 (highest 
degree of confidence in metabolite identification) per criteria of Schymanski et al.22.

Metabolome wide association study (MWAS)
Prior to data analysis, feature intensities in triplicates were median summarized based on the nonzero readings, 
and metabolic features that had > 20% zero readings were removed. Feature intensities were log2 transformed, 
mean centered and scaled by standard  deviation23. Feature intensities were regressed on the LS7 score, adjusting 
for age and sex or age, sex, and estimated glomerular filtration rate (eGFR)24. Benjamini–Hochberg false dis-
covery rate (FDR) method was used for correction of multiple hypothesis testing. Associations were considered 
significant at FDR < 0.2  threshold25.

Pathway enrichment analysis
After MWAS, metabolites associated with LS7 score at FDR < 0.2 were characterized for pathway enrichment 
using Mummichog v2.0.6  software26. Pathways including a minimum of 3 matched metabolites were selected and 
annotated using the criteria described above. Five confirmed (Level 1) metabolites (glutamine, glutamate, urate, 
tyrosine and alanine), selected based on significant association with LS7, enrichment in pathways identified by 
Mummichog, and central to the metabolite activity network (Figure S1), were converted into concentrations as 
previously  described27.

Statistical analysis
Demographic and clinical characteristics were presented by the poor (≤ 6), intermediate (7–9) and ideal (> 10) 
LS7 scores for descriptive purposes  only28. Continuous variables were reported as means (± standard deviation 
[SD]) and compared using ANOVA across the three categories. Categorical variables were reported as propor-
tions (%) and compared using Chi-square tests. Concentrations of select metabolites were compared across the 
three scores (0 = poor health, 1 = intermediate health, 2 = ideal health) of each of the seven clinical domains of 
the LS7 using ANOVA. Then, using linear regression models adjusted for age and sex, concentrations of these 
select metabolites were compared across the three levels of each clinical domain based on the least squares means. 
Finally, multivariable models were built including these select metabolites adjusting for age and sex or age, 
sex, and eGFR, with the dependent variable being the LS7 score. Using the beta coefficient for each metabolite 
derived from the linear regression as weights, a metabolomics score was created summing over the weighted 
select metabolites. The score was standardized to a mean of 0, with a standard deviation of 1. It was then ana-
lyzed in linear regression of dependent variable LS7 score to explore the composite association of metabolites, 
adjusting for age and sex.

We performed all statistical analyses using R version 4.0.2 (R Foundation for Statistical Computing, Vienna, 
Austria). FDR corrected q value < 0.2 was considered statistically significant for the  MWAS29. For the other 
analyses, p-values < 0.05 were considered statistically significant.

Results
Baseline characteristics
The mean age of the 375 of participants was 53.2 ± 10.2 years with 38.9% male. Mean LS7 score was 8.0 ± 2.2 
(Table 1). Lower BMI, younger age and nonsmoking status were observed in participants with higher LS7 scores. 
In the overall cohort, the prevalence of hypertension was 51.2%, hyperlipidemia was 30.5%, diabetes was 20.6%, 
and smoking was 24.3%. The mean BMI was 32.9 kg/m2.

Metabolome‑wide association study (MWAS)
Untargeted, high resolution plasma metabolomics profiling of 375 MECA participants was performed using 
liquid chromatography/mass spectrometry. A total of 14,501 metabolic features were detected; metabolic features 
that had > 20% zero readings were removed and 8,211 underwent further analysis. After adjusting for age and 
sex, MWAS identified 301 metabolic features that were associated with the LS7 score at FDR cutoff < 0.2; 232 
metabolic features were lower and 69 metabolic features were higher with higher LS7 (Fig. 1, Table 2, Table S2).

Metabolic pathways analysis
Using Mummichog, pathway enrichment analysis of the 301 metabolic features associated with LS7 identified 
10 metabolic pathways (p-value < 0.05), including those involved in metabolism of glutathione, several amino 
acids, vitamin A, and purine (Fig. 2). Several metabolites identified by MWAS and listed in Table 2 matched to 
multiple pathways (Table S3). For example, alanine, glutamine, and glutamate matched to the glutathione, gluta-
mate, alanine and aspartate, and tyrosine metabolism pathways. Visualization of the metabolite activity network, 
which combined analyses of identified pathways with metabolite modules showed that the amino acids gluta-
mate, glutamine, alanine, and tyrosine were central nodes connecting different metabolic pathways (Figure S1).

Association of metabolite concentrations with clinical domains of LS7
To further examine the relationship between plasma metabolite levels and CVH, we compared concentrations of 
five confirmed (Level 1) metabolites (alanine, glutamine, glutamate, tyrosine, and urate) across clinical domains 
of LS7. All five metabolites were identified by MWAS to be associated with LS7 score when adjusted for age and 
sex (Table 2) or adjusted for age, sex, and eGFR (Table S5), were enriched in the metabolic pathways identified 
by Mummichog (Fig. 2, Table S3), and were central nodes of the metabolite activity network (Figure S1). Further-
more, the levels of these metabolites were stable across the samples as indicated by relatively low coefficients of 
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variation (CV)—glutamine, 1.24%; glutamate—3.06%; Urate—3.39%; tyrosine—1.58%; alanine—1.89%. Metabo-
lite concentrations were determined as described by Liu et al.27 When we compared metabolite concentrations 
across the three scores (0 = poor health, 1 = intermediate health, or 2 ideal health) for each clinical domain of 
the LS7, we found that glutamate concentrations were higher with poor blood pressure, glucose and BMI scores, 
while glutamine concentrations were lower with poor glucose score. Urate concentrations were higher with poor 
BMI score, and tyrosine concentrations were higher with poor cholesterol and BMI scores. Alanine concentra-
tions were higher with poor cholesterol, glucose, and BMI scores and lower with ideal physical activity (Fig. 3, 
Table 3). Analysis of concentrations across LS7 clinical domains adjusted for age and sex demonstrated showed 
similar results (Table S4). These data suggest that plasma metabolite levels were influenced by individual clini-
cal domains of LS7, indicating that the expression profile of these five metabolites can reflect individual CVH.

Metabolite risk score and cardiovascular health in black adults
A multivariable model using the concentrations of the five metabolites demonstrated that all five were associated 
with LS7 score, independent of each other (Tables 4, S7). After adjusting for age and sex, the model demonstrated 
that one standard deviation increase in the respective metabolite concentration was associated with a 0.45 unit 
higher LS7 score for glutamine, and 0.28 to 0.54 unit lower LS7 scores for the other metabolites (Table 4). Similar 

Table 1.  Demographic and clinical characteristics of the cohort stratified by high (≥ 10), intermediate (7–9) 
and low (≤ 6) categories of LS7 Scores.

Low (n = 97) Intermediate (n = 182) High (n = 96) Total (n = 375) p value

Demographics
n(%) or mean (SD)

 Age, years 55.5 (8.1) 54.4 (9.5) 48.6 (12.0) 53.2 (10.2)  < 0.001

 Male 36 (37.1) 65 (35.7) 45 (46.9) 146 (38.9) 0.176

Objective/Clinical Measures
n(%) or mean (SD)

 Hypertension 81 (83.5) 95 (52.2) 16 (16.7) 192 (51.2)  < 0.001

 Hyperlipidemia 45 (46.4) 60 (33.0) 9 ( 9.5) 114 (30.5)  < 0.001

 Diabetes Mellitus 46 (47.9) 28 (15.4) 3 ( 3.1) 77 (20.6)  < 0.001

 Current Smoker 40 (41.2) 42 (23.1) 9 ( 9.4) 91 (24.3)  < 0.001

 Body Mass Index (BMI) 36.4 (7.5) 34.0 (8.3) 27.2 (5.7) 32.9 (8.2)  < 0.001

 Systolic Blood Pressure (mmHg) 140.2 (19.5) 131.5 (18.4) 119.7 (15.5) 130.7 (19.4)  < 0.001

 Diastolic Blood Pressure (mmHg) 85.1 (12.2) 81.4 (11.0) 73.3 (9.4) 80.3 (11.8)  < 0.001

 Total Cholesterol (mg/dL) 200.9 (43.9) 196.8 (37.9) 172.9 (30.4) 191.7 (39.4)  < 0.001

 HDL (mg/dL) 54.1 (16.8) 56.49 (16.6) 61.5 (17.9) 57.1 (17.1) 0.008

 LDL (mg/dL) 121.7 (38.1) 119.5 (34.5) 95.3 (25.2) 113.8 (35.0)  < 0.001

 Triglycerides (mg/dL) 129.0 (83.4) 104.9 (46.9) 75.5 (37.7) 103.6 (59.9)  < 0.001

 Fasting Glucose (mg/dL) 121.4 (43.7) 98.9 (31.9) 90.0 (23.8) 102.4 (35.6)  < 0.001

 Total LS7 score 5.2 (0.82) 7.9 (0.82) 10.8 (0.92) 7.97 (2.20)  < 0.001

Figure 1.  Manhattan plot (− log p vs (a) m/z or (b) retention time) of metabolites determined by MWAS 
to be associated with LS7 (as a continuous variable) after adjusting for age and sex. 8211 metabolic features 
underwent MWAS analysis. 301 metabolic features were differentially expressed at FDR < 0.2; 232 metabolic 
features colored red were lower with higher LS7 and 69 metabolic features colored blue were higher with higher 
LS7. Retention time is expressed in seconds.
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results were observed for a multivariable model that adjusted for age, sex, and eGFR (Table S7). The weighted 
metabolite risk score comprised of these five metabolites continued to be associated with total LS7 score, where 
one standard deviation increase in the score corresponded to a 0.88 unit higher LS7 score (p < 0.001, Fig. 4), which 
translates to a 10.4% lower incidence of lifetime  CVD30. A similar relationship between metabolite risk score and 
LS7 score was observed when the metabolite risk score was adjusted for age, sex, and eGFR—estimate 0.88 unit 
higher LS7 score for one standard deviation increase in metabolite risk score (95% CI 0.69, 1.08; p = 5.69E-17). 
These findings emphasize the importance of non-essential amino acid and purine metabolism in CVH and dem-
onstrate the ability of plasma concentrations of glutamate, glutamine, alanine, tyrosine, and urate to predict CVH.

Discussion
Herein, we used high resolution metabolomics profiling, advanced data extraction algorithms, and pathways 
analysis to examine metabolites and pathways underlying CVH in a cohort of Black participants without known 
CVD and living in the greater metro area of Atlanta, GA. CVH was assessed by AHA LS7 score, which incor-
porates key clinical risk factors for CVD and has been previously demonstrated to be a surrogate for  CVH30. 
We identified novel metabolomic signatures that included five key metabolites (glutamine, glutamate, urate, 
tyrosine, and alanine) linked to energy production, nitrogen balance, gluconeogenesis, and the metabolic syn-
drome (Fig. 5)5,31–40. Subsequently, we created a novel metabolomics risk score to predict CVH in Black adults.

Table 2.  Select metabolites from the metabolome wide association study (MWAS) that were significantly 
associated with ideal cardiovascular health as defined by AHA Life’s Simple 7 (LS7). For list of other 
metabolites, please refer to Table S2. HMDB ID- Human Metabolome Database Identification; m/z- mass-to-
charge ratio; RT- Retention time, expressed in seconds; NA- Not Annotated in HMDB;

Name m/z_RT(sec) Beta Standard Error p value FDR Q value HMDB ID

Lower expression with higher LS7

 5-Deoxyadenosine mz252.1078_t72.7  − 0.131 0.023 3.68E-08 7.56E-05 HMDB00101

 Alanine mz90.055_t55.2  − 0.124 0.024 2.22E-07 0.00026 HMDB00056

 Glutamate mz148.0605_t61.2  − 0.117 0.023 8.51E-07 0.00070 HMDB00148

 Urate mz169.0359_t50.8  − 0.087 0.023 0.00018 0.023 HMDB00289

 N-amidino-L-aspartate mz176.0659_t38.7  − 0.086 0.024 0.00037 0.039 HMDB03157

 Ferulate mz195.0655_t59.4  − 0.082 0.024 0.00072 0.061 HMDB00954

 Leucine/Isoleucine mz132.1019_t39.1  − 0.078 0.023 0.00086 0.064 HMDB00172

 Indole-3-acetate mz176.0705_t24.9  − 0.076 0.024 0.0017 0.097 HMDB00197

 Proline mz116.0707_t60.4  − 0.075 0.024 0.0020 0.102 HMDB00162

 Tyrosine mz182.0811_t49.6  − 0.073 0.024 0.0027 0.119 HMDB00158

 3-Hydroxybenzaldehyde mz123.0441_t49.6  − 0.073 0.024 0.0026 0.119 HMDB01870

 Phenylpuruvate mz165.0546_t49.3  − 0.071 0.024 0.0036 0.138 HMDB00205

 1-Methyladenosine mz282.1189_t54.1  − 0.066 0.024 0.0060 0.183 HMDB03331

Higher expression with higher LS7

 Maleamate mz116.0343_t74.3 0.067 0.024 0.0057 0.179 NA

 Oxoproline mz130.05_t65.3 0.068 0.024 0.0050 0.165 HMDB00267

 Glutamine mz147.0766_t70.5 0.071 0.024 0.0033 0.133 HMDB00267

 Homocysteine mz136.0427_t53.5 0.102 0.024 2.00E-05 0.0064 HMDB00742

 Methyladenine mz150.0766_t62.1 0.110 0.023 4.08E-06 0.0026 HMDB02099

Figure 2.  Metabolic pathways enriched for metabolites associated with LS7. Pathway analysis was performed 
using Mummichog software (version 2.0.6). The 301 metabolic features associated with LS7 by MWAS were 
entered into the analysis. Significantly enriched pathways (p < 0.05) are shown.
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Figure 3.  LS7 clinical domains associated with metabolite concentrations. Concentrations were compared 
across three scores (0, 1, 2) of the seven clinical domains of the LS7 using ANOVA. Upward arrows indicate that 
metabolite concentration increased with respective increase in clinical domain score, while downward arrows 
indicate metabolite concentration decreased with respective increase in LS7 score.

Table 3.  Concentrations in μM of select metabolites compared across LS7 clinical domains (unadjusted).

Glutamine Glutamate Urate Tyrosine Alanine

Blood Pressure

Poor 412 ± 121 35 ± 19 154 ± 77 71 ± 22 269 ± 81

Intermediate 406 ± 146 29 ± 14 155 ± 73 69 ± 23 261 ± 89

Ideal 417 ± 140 28 ± 13 142 ± 60 70 ± 22 246 ± 64

p value 0.87 0.001 0.37 0.77 0.09

Cholesterol

Poor 431 ± 102 34 ± 14 155 ± 72 79 ± 21 279 ± 97

Intermediate 399 ± 143 33 ± 19 153 ± 82 68 ± 23 270 ± 85

Ideal 417 ± 129 30 ± 15 149 ± 64 70 ± 22 250 ± 70

p value 0.27 0.13 0.88 0.03 0.02

Glucose

Poor 373 ± 137 37 ± 20 167 ± 91 68 ± 22 301 ± 110

Intermediate 417 ± 127 36 ± 17 157 ± 74 73 ± 23 277 ± 70

Ideal 419 ±132 29 ± 15 146 ± 66 70 ± 23 247 ± 70

p value 0.045  < 0.001 0.10 0.39  < 0.001

Body Mass Index (BMI)

Poor 410 ± 131 33 ± 16 159 ± 75 74 ± 23 276 ± 85

Intermediate 415 ± 129 29 ± 15 143 ± 63 65 ± 19 248 ± 71

Ideal 411 ± 146 29 ± 21 136 ± 72 65 ± 21 228 ± 64

p value 0.96 0.05 0.038 0.001  < 0.001

Exercise

Poor 386 ± 136 36 ± 15 158 ± 88 70 ± 22 266 ± 57

Intermediate 415 ± 123 33 ± 19 146 ± 71 72 ± 22 279 ± 89

Ideal 412 ± 138 30 ± 16 154 ± 71 70 ± 23 250 ± 76

p value 0.54 0.068 0.52 0.75 0.005

Diet

Poor 424 ± 126 29 ± 14 154 ± 71 72 ± 20 271 ± 83

Intermediate 405 ± 132 32 ± 18 149 ± 74 69 ± 23 256 ± 80

Ideal 405 ± 168 36 ± 19 161 ± 61 76 ± 26 262 ± 71

p value 0.45 0.12 0.68 0.19 0.26

Smoking

Poor 409 ± 129 33 ± 20 156 ± 81 745 ± 24 255 ± 80

Intermediate 341 ± 141 33 ± 13 158 ± 89 71 ± 28 277 ± 71

Ideal 416 ± 133 31 ± 16 150 ± 68 69 ± 21 263 ± 81

p value 0.10 0.41 0.75 0.09 0.55
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We found that the concentrations of these five metabolites in the plasma were specifically associated with 
poor, intermediate, or ideal scores in the cardiometabolic domains of the LS7 score. Prior studies have dem-
onstrated similar association between levels of non-essential amino acids (e.g. glutamate, glutamine, alanine, 
etc.) and cardiometabolic risk or disease, such as diabetes, in multiethnic populations not enriched for Black 
 adults8,31–34. Cheng et al. corroborated a metabolomic signature involving non-essential amino acids, such as 
alanine, with metabolic syndrome within a mainly white cohort enrolled in the Framingham Heart  Study31. 

Table 4.  Multivariable linear regression demonstrated that in a model adjusting for age and sex, all five of the 
metabolites were independently associated with LS7. *Beta: increase in LS7 per one standard deviation increase 
in respective metabolite concentration.

Name m/z_RT(sec) Beta* Standard Error p value

Glutamine mz147.0766_t70.5 0.45 0.12  < 0.001

Glutamate mz148.0605_t61.2  − 0.32 0.11  < 0.001

Urate mz169.0359_t50.8  − 0.38 0.11  < 0.001

Tyrosine mz182.0811_t49.6  − 0.28 0.12 0.02

Alanine mz90.055_t55.2  − 0.54 0.12  < 0.001

Figure 4.  Relationship between metabolite risk score and LS7. One standard deviation increase in the score 
corresponded to 0.88 higher LS7 score.

Glutamate Glutamine

NH3

NH3 ADPATP

-ketoglutarate

TCA cycle
ATP/NADH production

Hexosamine biosynthesis pathway

Urea cycle
NO production
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Serine
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Arginine
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α

Figure 5.  Metabolites predictive of CVH in MECA are central to essential metabolic pathways. Five metabolites 
(red rectangles) that were associated with CVH and were the focus of current study are central components of 
key metabolic processes.
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They also demonstrated an association of high glutamine to glutamate ratio with lower risk of incident diabetes. 
Similar associations between non-essential amino acid levels and cardiometabolic risk were noted in  Asian32,33 
and  Mediterranean34 cohorts. To our knowledge, only two other studies, both conducted within the Jackson 
Heart Study cohort, have assessed metabolomic signatures in Black adults but in the context of incident coronary 
heart  disease7 and heart  failure8. Thus, the current study is the first to demonstrate that CVH (or CV risk factors) 
in Black Americans is associated with metabolomic signatures similar to those reported for other racial/ethnic 
cohorts. In particular, the current study demonstrated the importance of glutamate and glutamine metabolism 
in this cohort. In addition, other novel metabolic pathways associated with CVH were identified. Whether these 
other pathways are only relevant to CVH in Black adults require further study in multi-ethnic cohorts.

We found that concentrations of both glutamine and glutamate varied with glucose levels, while glutamate 
concentrations also correlated with blood pressure and BMI. Glutamine is one of the most abundant amino 
acids in the body, classified as a conditionally essential amino acid, and has a critical role in nitrogen balance, 
providing intermediates to the tricarboxylic acid (TCA) cycle (anapleurosis), immunity, and pH  homestasis5,35–40. 
Glutamine is mainly synthesized from glutamate and ammonia by the enzyme glutamine synthetase (Fig. 5)7. 
The pathophysiology of cardiometabolic disease is complex and disturbances in glutamine/glutamate metabo-
lism have been implicated in the development of metabolic risk in multiethnic  communities5,31–34. The role of 
glutamine/glutamate in CVH is likely mediated through multiple mechanisms. First, glutamine has potent 
antioxidant, anti-inflammatory, and anti-apoptotic effects by stimulating glutathione, heat shock proteins, and 
heme oxygenase-15,41. Glutamine also stimulates nitric oxide bioavailability by increasing arginine synthesis 
that may maintain normal blood  pressure42. We note here that in the current study glutamate levels were higher 
with higher blood pressure.

Glutamine can improve glucose homeostasis by stimulating release of glucagon-like peptide-1, externaliza-
tion of glucose transporters, insulin release by pancreatic β-cells, transcription of insulin-dependent genes, 
and increased insulin  disposition43. Glutamine also increases the transamination of pyruvate to alanine, which 
is directly involved with the TCA cycle and is involved in modulating obesity by being a strong promoter of 
 gluconeogenesis44. Dysregulation in glutamate/glutamine metabolism can lead to higher levels of  alanine45, 
which has been shown to be associated with increased Type 2 diabetes  risk46. In our study, we noted that lower 
levels of alanine were associated with ideal glucose, BMI, cholesterol scores, as well as the modifiable component 
of physical activity. Based on these data, we hypothesize that the well-recognized beneficial effects of physical 
activity on CVH are mediated through changes in the metabolome, including changes in alanine metabolism, 
but future studies are required to determine whether health interventions that involve increased physical activity 
can modify alanine levels.

Tyrosine was another one of the select metabolites that was associated with BMI, as well as the cholesterol 
subcomponent of LS7 score. Previously, elevated levels of tyrosine have shown positive associations with insulin 
resistance and Type 2 diabetes in multiple non-Black  cohorts31,47–50. Catecholamines (dopamine, norepineph-
rine, epinephrine) are neurotransmitters synthesized from  tyrosine51,52. We speculate that changes in tyrosine 
can likely lead to changes in physiological and behavioral functions that can impact CVH in Black adults but 
future studies are required.

Our final metabolite of interest was urate or uric acid, the concentration of which was associated with BMI. 
Urate has long been established as associated with cardiovascular  disease53. Urate is a major product of purine 
metabolism and has been found to impair nitric oxide synthesis and promote endothelial dysfunction, which is 
pro-thrombotic, pro-inflammatory, pro-vasoconstrictive, and increases risk of incident  CVD54,55. While we did 
not find an association between urate levels and risk factors directly linked to endothelial dysfunction such as 
hypertension, we did note, in accordance with prior studies, that high urate levels were associated with obesity 
and as such, remain an important marker for  CVH56.

As shown in Fig. 5, the five metabolites (glutamine, glutamate, alanine, tyrosine, and urate) that were the focus 
of this study are known to be central elements to key metabolic processes. Each of them has been previously 
shown to be associated with CVH. While Pearson correlation analysis revealed associations between expression 
of each metabolite and expression of other metabolites (Table S6), we uniquely demonstrate that when assessed 
together, these metabolites were independent predictors of CVH in Black adults, and the novel metabolomics 
risk score derived from the concentrations of these metabolites was similarly predictive. Prior risk scores have 
been developed from metabolomic signatures to predict incident coronary heart  disease29,57,58, but, to our knowl-
edge, we are the first to incorporate the concentration of these metabolites into a risk prediction tool for CVH.

While major limitations of this study are that it is single center, and it examined a relatively small cohort, we 
are among the first to demonstrate the molecular basis of CVH within Black Americans, a population under-
represented in scientific literature but suffers from disparate levels of CVD. Other limitations of the study are the 
need for replication in a separate cohort, and, given the cross-sectional design, the inability to address causality, 
which would require longer term follow-up. This study used the LS7 score as a surrogate for CVH, so longer-term 
follow-up of participants’ outcomes would also be needed to determine whether the five highlighted metabolites 
can predict CVH better than clinical risk factors. Furthermore, while we explored several metabolic pathways 
that were associated with CVH, we did not further explore others that were identified in our analysis, including 
pathways responsible for retinol and arginine metabolism, which require consideration in future studies. Lastly, 
while the concentrations of the metabolites examined in this study varied with cardiometabolic risk factors, 
none of them varied with diet or smoking, factors known to be important determinants of CVH. Future study 
involving a more detailed assessment of diet will be needed to determine its influence on the metabolomic signa-
ture associated with CVH in Black adults. Future studies will also need to examine the interaction of social and 
environmental factors with metabolomic signatures. Despite these limitations, we report several novel findings 
and present a new metabolomics risk score, which demonstrated that CVH was associated with concentrations of 
five metabolites, pointing to the importance of non-essential amino acid and purine metabolism in CVH and the 
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potential of the five highlighted metabolites as therapeutic targets. Additional studies are required to validate this 
score in multiethnic populations and prospectively follow participants for development of cardiovascular disease.

Data availability
The datasets generated during and/or analyzed during the current study are not publicly available due to sensitive 
nature of personalized healthcare data but are available from the corresponding author on reasonable request.
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