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Tracking an untracked space debris 
after an inelastic collision using 
physics informed neural network
Harsha M 1*, Gurpreet Singh 2, Vinod Kumar 3, Arun Balaji Buduru 1 & Sanat K. Biswas 1

With the sustained rise in satellite deployment in Low Earth Orbits, the collision risk from untracked 
space debris is also increasing. Often small-sized space debris (below 10 cm) are hard to track using 
the existing state-of-the-art methods. However, knowing such space debris’ trajectory is crucial to 
avoid future collisions. We present a Physics Informed Neural Network (PINN)—based approach for 
estimation of the trajectory of space debris after a collision event between active satellite and space 
debris. In this work, we have simulated 8565 inelastic collision events between active satellites and 
space debris. To obtain the states of the active satellite, we use the TLE data of 1647 Starlink and 66 
LEMUR satellites obtained from space-track.org. The velocity of space debris is initialized using our 
proposed velocity sampling method, and the coefficient of restitution is sampled from our proposed 
Gaussian mixture-based probability density function. Using the velocities of the colliding objects 
before the collision, we calculate the post-collision velocities and record the observations. The state 
(position and velocity), coefficient of restitution, and mass estimation of un-tracked space debris after 
an inelastic collision event along with the tracked active satellite can be posed as an optimization 
problem by observing the deviation of the active satellite from the trajectory. We have applied the 
classical optimization method, the Lagrange multiplier approach, for solving the above optimization 
problem and observed that its state estimation is not satisfactory as the system is under-determined. 
Subsequently, we have designed Deep Neural network-based methods and Physics Informed Neural 
Network (PINN) based methods for solving the above optimization problem. We have compared 
the performance of the models using root mean square error (RMSE) and interquartile range of 
the predictions. It has been observed that the PINN-based methods provide a better estimation 
performance for position, velocity, mass and coefficient of restitution of the space debris compared to 
other methods.

Since the launch of Sputnik in 1957, approximately 13,000 satellites have been deployed in the Low Earth orbit1. 
With collisions, explosions and fragmentations, the number of space debris sized less than 1 cm is now estimated 
to be more than 1,000,0001. The US Space Surveillance Network has a catalogue of about 30,000 resident space 
objects only1. Since 97% of space debris is not tracked, they pose a greater threat to active satellites as well as 
future space missions.

With this large number of space debris, the risk of in-orbit collision has increased, and the number of collision 
events has seen a rise in the past decade. Collision in space can be destructive, for example, Iridium-Cosmos 
collision2 of 2009, or non-destructive, for example, Canadarm2 of the International Space Station hit by a small 
piece of space debris in 20213. Another incident which was catalogued as a non-destructive collision was in 2013 
when Blits satellite was possibly hit by un-tracked space debris4. In non-destructive collision events, fragmenta-
tion does not happen. While there has been exhaustive research on modelling destructive collisions5,6, on risk 
assessment due to small space debris7, and reconnecting fragments in space to their parent satellite body8, the 
extraction of trajectory information of untracked space debris observing a non-destructive collision has not 
been studied extensively.

Recently, Harsha et al.9 formulated a space debris position, velocity and mass estimation problem considering 
the position and velocity deviation of an active satellite as observation with non-destructive and elastic collision 
assumption. The performance of the classical estimation methods as well as deep learning (DL) based approaches, 
were examined for this problem. It was observed that the position, velocity, and mass estimation performance 
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of the Ensemble Neural Network-based technique are similar to those of classical methods. It should be noted 
that the elastic collision assumption in the above preliminary study was idealistic. The above estimation prob-
lem becomes complex when a more rigorous inelastic collision model is considered where the momentum is 
conserved, but the kinetic energy is not conserved. Hence, it is of interest to examine the trajectory estimation 
performance of both classical and ML-based methods under the inelastic collision assumption.

Deep Neural Network (DNN)-based techniques have already been proposed for asteroid exploration, space-
craft rendezvous and terrain navigation10. The convolutional neural network (CNN) has been proposed for pose 
estimation of uncooperative spacecraft11 and for object detection and tracking in space12. ESA’s Hera mission is 
planning to carry out image processing of double asteroid system Dimorphos-Didymos using CNN13 and dem-
onstrate optical navigation. This mission will also investigate the impact of kinetic impactor released by NASA’s 
Double asteroid redirection test (DART) mission using deep learning techniques14.

Deep learning techniques have also been demonstrated to carry out initial screening of conjunction assess-
ment among 170 million space-object pairs15, which otherwise is a computation intensive process in the 
domain of Space Situational Awareness. Automatic collision avoidance maneuver have been proposed using 
ML algorithms16 combining with Dempster-Shafer theory of evidence. Deep Neural network achieve satisfactory 
performance when trained with large amounts of data. However, these standard neural network-based methods 
inevitably face the challenge of drawing conclusions and making decisions under partial information, where the 
data acquisition is costly and scarce while dealing with complex and non-linear physical systems17. In addition, 
the solution of the traditional neural network does not guarantee adherence to the underlying physical properties 
in problems involving physical systems. To address these issues, the Physics informed Neural network (PINN) 
was proposed17. PINN18,19 uses the laws governing the system dynamics in the loss function as prior informa-
tion. Note that the training of a neural network essentially implies finding the set of weights and biases for all 
the nodes in the network, which minimises the loss function. Hence, the inclusion of the system dynamics based 
on physical laws in the loss function act as a constraint for the output while training the neural network using 
the training data set. The PINNs can be used as surrogates in learning models used for autonomous navigation, 
uncertainty quantification and any real-time application that need inference20.

In this article, we have studied the problem of tracking unknown space debris, observing an inelastic and non-
destructive collision event. Additionally, we assumed the space debris was in a stable orbit before the collision. 
Under the inelastic collision assumption, the coefficient of restitution21 is an unknown parameter in addition to 
the variables that need to be estimated under the elastic collision assumption. We have examined the performance 
of the classical estimation technique and various DNN and PINN-based methods for estimating the position, 
velocity, and mass of the space debris and the coefficient of restitution for the inelastic collision for the above-
mentioned problem using 8235 collision simulations for training and 330 collision simulations for testing. The 
inelastic collisions were simulated using the model described by Schwager et al.22 The performance of the DNN 
and PINN-based methods are compared with the classical method for the inelastic and non-destructive collision. 
Towards tracking unknown space debris, we have made the following key contributions: 

1.	 Formulation of space debris tracking problem observing a non-destructive and inelastic collision: We have 
posed the unknown space debris tracking problem after an inelastic event as a position, velocity, mass, and 
the coefficient of restitution estimation problem considering the active satellite position and velocity devia-
tion as observations.

2.	 Formulation of an appropriate physics loss function and application of PINN: We have formulated a physics 
loss function for the above problem and trained a PINN using the developed loss function to solve the above 
estimation problem.

3.	 A velocity sampling method for simulating random in-orbit collision events: For the training of DNN 
and PINN-based models as well for testing the performance of the ML-based approaches and the classical 
approach, we simulated a total of 8565 inelastic collision events. Note that, for a collision event, the active 
satellite position and the space debris position will be approximately the same at the time of the collision, 
while the velocities will be different. However, any random velocity vector at the given position does not 
necessarily result in a stable elliptical orbit. We have proposed a velocity sampling method to generate the 
velocity vector of space debris for a given active satellite position at the time of the collision, which guarantees 
an elliptical orbit with a periapsis above a given minimum allowable altitude from the mean sea level.

The rest of the article is organised as follows: We have formally defined the problem in the next section, and then 
discussed the classical estimation method and various DNN-based approaches and provided the physics loss 
function for the PINN for solving the problem. Then we have discussed the collision data generation method, 
including the formulation of the velocity sampling algorithm and simulation of collision in space. Next, we 
have compared the performance of the classical estimation technique as well as the gradient boosting, DNN 
and PINN-based methods for solving the estimation problem. We conclude the article by consolidating our 
observations and delineating the future research direction.

Problem definition
Consider a satellite and space debris undergoing an inelastic collision in space as depicted in Fig. 1. Our objec-
tive is to find the trajectory of the space debris by observing the position and velocity deviation of the active 
satellite after the collision.

Let rsat and vsat be the position and velocity of the satellite, and rd and vd be the position and velocity of the 
space debris. We assume satellite and space debris are spherical for ease of the analysis. Let t−c  and t+c  denote the 
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time before collision and time after collision respectively. At the time of the collision, the position of the satellite 
and the position of debris can be written as

where ρsat and ρd are radii of the satellite and debris, respectively and v̂rel is the unit vector along the relative 
velocity of debris with respect to the satellite and is given by

The velocity of the satellite and debris after an inelastic collision is21

where vsat(t−c ) indicates velocity of satellite just before the collision and vsat(t+c ) indicates velocity of satellite 
just after the collision and ǫ is the coefficient of restitution22 of the inelastic collision. Then change in velocity of 
the active satellite can be written as

Define the measurement Z as

where ω(t+c ) is noise in measurement. As the active satellite is being tracked, vsat(t+c ) and vsat(t−c ) can be meas-
ured, and therefore measurement Z is available. Using Eqs. (2), (4) and (5), Z can be written as

Obtaining rd(t−c ), vd(t−c ),md and ǫ from Z is essentially an estimation problem. Using the estimated parameters, 
vd(t

+
c ) can be obtained and thus the trajectory of the space debris after the collision can be computed.

(1)rsat(t
+
c ) = rsat(t

−
c )

(2)rd(t
+
c ) = rd(t

−
c ) = rsat(t

−
c )− (ρsat + ρd)v̂rel
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−
c )− vd(t

−
c )
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−
c )− vd(t

−
c )||
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c )+mdvd(t

−
c )+ ǫmd(vd(t
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−
c ))
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−
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Figure 1.   Illustration of a collision in space.
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Classical approach
One can estimate rd(t−c ), vd(t−c ),md and ǫ from observation Z using the Least Squared Estimation (LSE):

where r̂d(t−c ), v̂d(t−c ), m̂d , ǫ̂  are the estimate of the desired quantities and

Note that the above estimation problem formulation does not consider any mass constraints for the debris. 
However, we are particularly interested in the untracked debris, which is of small size and essentially has a very 
small mass. The inclusion of the mass constraint transforms the original problem into a constrained optimization 
problem, which can be solved using the Lagrange Multiplier approach9. The Lagrangian L for this constrained 
optimization problem can be defined as

which includes the mass constraint δm < md < 1 kg . Here, �1 and �2 are Lagrange multipliers. The position, 
velocity, mass and coefficient of restitution of the debris can be estimated by solving

There are various techniques available to solve this minimisation problem. We have used the gradient descent 
approach to solve the problem numerically.

Deep Learning‑based approaches
An alternate approach for estimating the position, velocity, mass and coefficient of restitution of the debris after 
a collision can be based on a DNN model. Using (8) one can write

considering ω(t+c ) as a zero mean noise vector. Essentially the trained DNN model approximates the inverse 
function f −1(·) . The DNN model can be trained using simulated collision data. We consider Z as the input to 
the DNN and �r,�v,md , ǫ as the output of the DNN, where

and

We consider two distinct DNN architectures for this problem. The first architecture is the usual DNN with an 
input layer with 6 inputs, multiple hidden layers and an output layer with 8 outputs as shown in Fig. 2. The second 
architecture comprises of 8 parallel DNNs with 6 inputs, multiple hidden layers and 1 output. Essentially, each of 
these parallel DNNs learns one of the 8 outputs. The outputs of these 8 parallel DNNs are connected to another 
DNN with 8 inputs and 8 outputs. The last DNN block ensures learning the dependency of each output variable 
with other output variables. The architecture is shown in Fig. 3.

We refer to this architecture as the stacked Deep Neural Network (StackDNN). For both architectures, Mean 
Squared Error (MSE) loss function is used for training the models. We define the MSE loss for this problem as

(9)r̂d(t
−
c ), v̂d(t

−
c ), m̂d , ǫ̂ = argmin
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−
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−
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Figure 2.   Deep Neural Network (DNN) architecture.
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where (·)di and (̂·)di denote the output data for the ith collision event and the corresponding predicted output 
data using the DNN. N is the number of collision events used to generate the training data.

Physics informed neural network
Having discussed the DNN-based method for estimating the position, velocity, mass and coefficient of restitution 
of debris after the collision, it is essential to note that the estimated position and velocity must be the solution 
to the differential equation that governs the motion of the debris. Based on Newton’s Law of Gravitation, the 
debris dynamics can be written as

However, DNN-based solutions do not guarantee the above constraint. The Physics Informed Neural Network18 
preserves the laws of physics in the solution by incorporating a physics loss in the loss function used to train the 
DNN. Using (18), we defined the physics loss for the PINN as

for the problem under consideration. The significance of this loss function is that the minimisation of Lphy(r̂d , v̂d) 
minimises the difference between the acceleration computed using the output of the training data and the PINN 
output, and the difference between the velocity computed using the output of the training data and the PINN 
output. As a result, this loss function minimises the distance between the derivative of the vector [rd vd]

T com-
puted using the training data, and the derivative of the same computed using the PINN predicted output. Since 
the velocity loss is already included in Lphy(r̂d , v̂d) we define the MSE loss for the PINN as

The complete loss function for the PINN is

We use this loss function in both DNN and StackDNN for performance comparison.

(17)
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Figure 3.   Stacked Deep Neural Network (StackDNN) architecture.
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Collision data generation
Having discussed the DNN, StackDNN, PINN, and StackPINN approaches for tracking the debris after an inelas-
tic collision event, let us now turn to the preparation of the training data. Publicly available data on inelastic and 
non-destructive collision events are very few and not sufficient to train the neural networks. Hence simulated 
collision data are required for training the deep learning models.

The position and velocity information of active satellites can be obtained from publicly available catalogues. 
However, the position and velocity of the debris which collides with an active satellite at a given epoch must 
be simulated. The simulated debris must be in a complete orbit, i.e. the orbit eccentricity must be less than 1. 
Additionally, to form a stable orbit, the periapsis of the debris cannot be at a very low altitude.

The debris position is given by (2) at the time of the collision. From (2), we can approximate that the debris 
position as nearly equal to the active satellite position because rsat ≫ ρsat , ρd . Corresponding to this position, 
infinitely many velocity vectors are possible for which the debris will be on a complete orbit. However, the mag-
nitude and the direction of the velocity vector can not be any arbitrary magnitude and direction. In the next 
subsection, we describe a method of sampling the velocity of debris for a given position vector in space and a 
given minimum periapsis altitude.

Velocity sampling
Consider r is the norm of the active satellite as well as the debris position vector r at the time of the collision, h 
is the norm of the angular momentum vector h of the colliding debris, e is the eccentricity of the debris orbit, φ 
is the true anomaly of the debris during the collision, Re is the radius of the Earth and amin minimum allowable 
periapsis altitude. If the semi-major axis for the debris orbit is a, then the periapsis rp = a(1− e) . Also

and

Considering Rmin = Re + amin as the minimum allowable distance from the earth centre

then

and

Fig. 4 shows the variation of maximum possible eccentricity with the true anomaly.
Now, the position of the debris at the time of collision is

(22)
h2

µ
= rp(1+ e)

(23)r =
h2

µ

1

1+ e cosφ

(24)rp =
r(1+ e cosφ)

1+ e
> Rmin

(25)0 < e <
r − Rmin

Rmin − r cosφ
< 1

(26)cos−1 2Rmin − r

r
< φ < 2π − cos−1 2Rmin − r

r

Figure 4.   Maximum eccentricity vs. True anomaly.
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and velocity of the debris is

where 
[
rux ruy ruz

]T and 
[
vux vuy vuz

]T are the position and velocity unit vectors respectively, and

The angle between r and v is θ23

The angular momentum vector of the debris is

and

then the cosine of the inclination i of the orbit

Consequently, the velocity unit vector needs to satisfy the following:

Geometrically, the condition for forming a complete orbit is - the line of intersection of planes (34) and (35) 
must lie within the unit sphere defined by (36). We can write (35) in the normal form:

Since 
√
r2ux + r2uy + r2uz = 1 , (34) is already in the normal form. Observing (34) and (37), one can deduce that 

the angle between the two planes is 90◦ . Then from the cross-sectional geometry shown in Fig. 5, the criteria for 
the intersection of the two planes within the unit sphere is

Then

Using the ranges of φ , e and cos i given by (26), (25) and (39) one can independently sample these quantities 
and subsequently solve for vux , vuy and vuz from (34), (35) and (36). Note that the solution will result in two 
unit vectors for velocity. Finally, the velocity magnitude can be calculated using (29). Algorithm 1 describes the 
velocity sampling steps.

(27)rd = r = r




rux
ruy
ruz





(28)vd = v




vux
vuy
vuz




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√
µ

r

(
2−

1− e2

1+ e cosφ

)

(30)θ = sin−1 1+ e cosφ√
1+ 2e cosφ + e2

(31)

h = r × v
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


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ruzvux − ruxvuz
ruxvuy − ruyvux





(32)h = rv sin θ

(33)cos i =
rv(ruxvuy − ruyvux)

rv sin θ

(34)ruxvux + ruyvuy + ruzvuz = cos θ

(35)−ruyvux + ruxvuy + 0vuz = sin θ cos i

(36)
√
v2ux + v2uy + v2uz = 1

(37)−
ruy√

r2ux + r2uy

vux +
rux√

r2ux + r2uy

vuy + 0 · vuz =
sin θ cos i√
r2ux + r2uy

(38)cos2 θ +
sin2 θ cos2 i

r2ux + r2uy
≤ 1

(39)−

√
r2ux + r2uy

sin2 θ(1− cos2 θ)
≤ cos i ≤

√
r2ux + r2uy

sin2 θ(1− cos2 θ)



8

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3350  | https://doi.org/10.1038/s41598-024-51897-9

www.nature.com/scientificreports/

Algorithm 1.   Velocity sampling
Using this algorithm, we have sampled 2000 velocity vectors for an active satellite position at

and a minimum perigee altitude of 300 km. Figure 6 shows that the generated samples have perigees at altitudes 
higher than 300 km. Fig. 7 shows the relative velocities for the samples with respect to the active satellite. It can be 
deduced from Fig. 7 that collision cannot occur from any arbitrary direction for a given position vector in space.

Simulation of the collision
We have generated inelastic collision observations considering the collision model described in the “Problem 
Definition” section. We have used Python 3.7 with astropy24 and poliastro25 libraries for orbit simulations of the 
active satellites as well as the debris.

We have considered 5 collision epochs tc each at 1200 UTC, starting from April 29, 2023, to May 3, 2023. We 
consider 1647 satellite orbits from the Starlink constellation and 66 satellite orbits from the LEMUR constellation 
for generating collision simulations. The Two Line Element (TLE) data for each constellation were obtained from 
www.spacetrack.org on April 27, 2023. Using TLE data, we have calculated the time difference �t between the 
collision time tc and the the TLE time, and propagated the active satellites. The orbits are propagated considering 
J2 and J3 zonal harmonics and the exponential atmospheric drag model.

For the debris simulations, we sampled the mass of each untracked debris from a normal distribution with 
0.5 kg mean and varying standard deviations of (0 kg, 0.001 kg, 0.002 kg, 0.003 kg, 0.004 kg, 0.005 kg, 0.006 kg). 

(40)r =
[
3664.75536654 3893.60049258 5062.87536598

]T
km

Figure 5.   Cross-section of the intersection of the unit sphere and planes (34) and (35).
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For simplicity, satellites and debris are considered spherical objects of radius 0.5 m and 0.1 m, respectively, and 
the mass of the satellite is 100 times that of sampled mass of debris. The position of the debris rd is considered 
to be the same as rsat , whereas the velocity of the debris vd is obtained using algorithm 1. The minimum perigee 
altitude for the debris corresponding to the Starlink satellites was set at 250 km, and for LEMUR, it was 200 
km. The Gabbard plots for the debris generated for the Starlink and LEMUR constellations are shown in Fig. 8.

Figure 6.   Gabbard chart for the generated velocity samples.

Figure 7.   Relative velocities for the sampled space debris velocity with respect to the active satellite.

Figure 8.   Gabbard plot of space debris.
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Coefficient of restitution ( ǫ ) values for each of the collisions have been sampled from a Gaussian mixture 
distribution, as shown in Fig. 9. It consists of 4 Gaussian distributions with 0.015 standard deviations sampled 
around uniformly distributed means ranging from 0.5 to 1 where the mean has been assumed based on the ǫ 
values of the satellite materials (6061-T6 Aluminium, Stainless Steel 304, Nitronic 60A and Titanium)21.

Inelastic collision simulations are generated using the position, velocity, mass and coefficient of restitution 
values for the respective satellite and debris pairs in Eqs. (4) and (5). Post-collision at time t+c  , the observations 
are generated using Eq. (7). Here, the noise ω(t+c ) signifies the tracking uncertainty of the active satellite. We 
consider varying standard deviation (0m, 100 m, 200 m, 300 m, 400 m, 500 m) for position and (0 m/s, 50 m/s, 
100 m/s, 150 m/s, 200 m/s, 250 m/s) for velocity in each axis.

A total of 8235 collision events were simulated for the orbits of the Starlink constellation using Param Pravega 
Super Computer. 66 collision events with 6 varying noise factors were simulated for the LEMUR constellation 
using a local workstation. For each collision, we have recorded Z and rd , vd , md and ǫ . We consider the collision 
data corresponding to the orbits of the Starlink constellation as the training data and the same corresponding to 
the orbits of the LEMUR constellation as the test data.

Results and discussion
We used the training data described in the previous section for training the DNN, PINN, StackDNN, and Stack-
PINN models. We trained four different models with 2, 4, 6, and 8 hidden layers for each of the ML models, with 
5 nodes in each hidden layer. Rectified Linear Unit (ReLU) is selected as the activation function for each node. 
We have used adaptive moment (adam) optimizer with the learning rate equal to 1e−3 for all the models. All 
the models are trained for 50 epochs with a batch size equal to 32. We have also trained the Extreme Gradient 
Boosting (XGBoost)26 regressor model with the same training data.

The training is performed in a workstation with 8 Intel Xeon processor cores and 62GB of RAM. The training 
of all the ML models is done using 5-fold cross-validation for different sizes of training data. All the ML models 
are trained with 8235 samples and 4000 samples (All results analysed during the current study are available in 
the collisionAI repository, https://github.com/HarshaSSL/collisionAI.). Figure 10 shows the change in training 
loss with respect to training epochs for the DNN and the PINN models trained using 8235 samples. Similarly, 
Fig. 11 shows the change in training loss with respect to training epochs for the StackDNN and the StackPINN 
models trained using 8235 samples. It is observed in most of the folds, for models with an increased number 
of hidden layers, the training epochs decreases for the training loss to converge. In StackDNN and StackPINN 
architectures (Fig. 3), the input to stacked NN is obtained from already trained parallel models. This reduces 
the initial loss value to the order of 101 when compared to DNN and PINN models’ initial loss value which is of 
the order 107.The results for models trained using 4000 samples can be found in the supplementary information.

After analysing the performance of the trained models, we pick the best-performing model based on the low-
est RMSE for the validation data during the 5-fold cross-validation. Inference is done using the selected model 
for the prediction of position, velocity, mass, and coefficient of restitution of inelastic collisions of the test dataset 
generated using LEMUR satellites. 

Using the observation Z for all 66 test collision events with 6 different noise standard deviations as mentioned 
in section “Simulation of the collision” in the selected ML models, rd(t−c ) , vd(t−c ) , md and ǫ were estimated. Addi-
tionally, the same variables were estimated using the Lagrange multiplier method for the same set of observations. 
We recorded the error in estimation for performance comparison.

Figure 12 shows the box plots of the position, velocity, mass and coefficient of restitution estimation errors 
recorded using selected DNN and PINN models. The position and velocity estimation errors for all the methods 
are represented by the Euclidian norm of the x, y, and z axes in the ECI frame. It can be observed that for posi-
tion estimation error, the median and the interquartile range increase for the test cases with increasing noise 
standard deviation. A similar trend in the interquartile range can be found in the mass estimation error plots . 
In position, velocity and coefficient of restitution error estimation plots, it is observed that the performance of 
DNN and PINN models with 4, 6, and 8 hidden layers does not improve compared to 2 layers. However, in mass 

Figure 9.   Coefficient of restitution ( ǫ ) distribution using Gaussian mixture.
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estimation error plots, DNN and PINN with 8 layers provide marginally better results as these models with more 
hidden layers are better function approximators27.

Figure 13 shows the box plots of the position, velocity, mass, and coefficient of restitution estimation errors 
recorded using selected StackDNN and StackPINN models. The results follow a similar trend as the DNN and 
PINN models. However, StackDNN and StackPINN provides marginally better mass estimation using 2 layers. 
Figure 14 shows the box plots of estimation errors recorded using Lagrange and XGBoost models. The results of 
the Lagrange method and XGBoost models follow a similar trend to that of DNN and PINN models for different 
noise standard deviations. However, the median and interquartile range for the estimation errors of XGBoost 
models is the least among all the models. The median and interquartile range of the estimation errors of the 
Lagrange method are the highest among all the methods.We have found through experiments that the output is 
sensitive to position noise standard deviation compared to the standard deviation for velocity and mass noises1.

The summary of 5-Fold cross-validation of the models with 2 hidden layers is shown in Table 1. The table 
shows the mean ± standard deviation of the Root Mean Squared Error (RMSE) for the validation data of the 
5-fold cross-validation analysis. We have observed that the mean RMSE across all the training is higher when 

Figure 10.   Training loss for DNN and PINN models in 5-Fold Cross-validation using 8235 samples and 50 
epochs.
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trained with smaller datasets. It is also observed that the StackPINN produces lesser variation in the RMSE when 
the smaller dataset is used.

From the above discussion, it can be discerned that, for 2 hidden layers, the PINN improves the space debris 
position, mass, and coefficient of restitution estimation performance significantly compared to the Lagrange 
multiplier-based and DNN-based methods. The performance of the DNN becomes similar to the PINN for 
higher numbers of hidden layers. However, the results show no significant advantage to increasing the number 
of layers for the problem under consideration. In addition, the StackDNN and the StackPINN performances 
are similar for the different numbers of hidden layers and comparable to the PINN model’s performance with 
2 hidden layers. However, the stacked architecture is 9 different Neural Networks, increasing the complexity of 
the implementation.

The training time required for different folds during 5-fold cross-validation, inference time for the selected 
models, and stored memory for reusability for each selected model with 2 hidden layers is shown in Table 2. 
XGBoost model requires 4000 KB of memory, which is 100 times more than the memory required to store PINN 
models.

Tables 3 and 4 summarize the inference of the selected trained models along with the Lagrange method for 
the LEMUR collision dataset. From these tables, we can conclude that the PINN with 2 hidden layers provides 

Figure 11.   Training loss for StackDNN and StackPINN models in 5-Fold Cross-validation using 8235 samples 
and 50 epochs.
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better performance to resource requirement trade-off for tracking untracked space debris from a non-destructive 
and inelastic collision with an active satellite than the DNN, Stacked neural networks, and classical methods. 
We have found that the XGBoost method provides better results than the DNN and the PINN. However, this 
method requires approximately 100 times more memory than the DNN and PINN-based techniques. As a result, 
the PINN-based model would be more suitable for on-board deployment on the active spacecraft. Additionally, 
the XGBoost is a black box model, whereas the PINN is intrinsically explainable due to the physics-based loss 
function.

Figure 12.   Error comparison of DNN and PINN models trained using 8235 samples and 50 epochs for 
multiple noise variations in LEMUR Satellites collision data.
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Conclusion
We have formulated a problem of space debris position, velocity, mass, and coefficient of restitution estimation 
from a non-destructive inelastic collision event under the assumption that the occurrence of the collision event 
is known. We have shown that this problem can be posed as a function approximation problem; hence, an ML 
model can approximate the function. We proposed a loss function based on Newton’s law of gravitation to design 
a PINN to solve this problem. We have also presented an algorithm for selecting the velocity of space debris for 
a collision simulation. Using simulated collision data, we have trained the DNN, PINN, StackDNN, and Stack-
PINN with varied numbers of hidden layers and the XGBoost model. We have also compared the estimation 
performance of these ML-based methods with the Lagrange multiplier-based optimization technique.

The results demonstrate that the PINN with 2 hidden layers performs better estimation than the DNN with 
2 hidden layers and the classical method. Additionally, the DNN performance becomes similar to the PINN 

Figure 13.   Error comparison of StackDNN and StackPINN models trained using 8235 samples and 50 epochs 
for multiple noise variations in LEMUR satellites inelastic collision data.
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when the number of hidden layers increases and when Stacked neural network architecture is used. However, 
this increase in the model complexity does not improve the estimation performance compared to the PINN with 
2 hidden layers. It is also observed that the XGBoost models provide better estimation performance than the 
neural network-based counterparts. It is noteworthy to mention that the XGBoost model is a black-box model, 
and as a consequence, the output of the model is not explainable. On the other hand, the PINN, being trained 
using a loss function derived from the laws of physics, provides explainability of the outputs. In addition, the 
XGBoost model requires significantly higher memory than the proposed PINN. However, it is anticipated that 
model-agnostic explanation techniques, for example, SHapley Additive exPlanations (SHAP)28 can be utilised 
to explain the XGBoost model in this context and can be deployed on the ground or onboard spacecraft leverag-
ing the state-of-the-art embedded systems. A physics-informed approach for the explainability of the gradient 
boosting technique29 can also be explored for tracking space debris by observing a collision.

Figure 14.   Error comparison of Lagrange method and XGBoost models trained using 8235 samples for 
multiple noise variations in LEMUR Satellites inelastic collision data.
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The problem presented in the article can be further extended to the estimation of space debris position, veloc-
ity, mass, and coefficient of restitution using a sequence of tracking data of the active satellite. The Recurrent 
Neural Network (RNN) or transformer may be suitable for this case. However, it will require the generation of 
a large number of sequences of tracking data for each collision to train such models. RNNs, Transformers, and 
other such models tend to have significantly more inference times, model sizes, and complexity. Further research 
is necessary to study the performance of these models in the problem under consideration. It is anticipated that 
the application of the PINN can be further extended to trajectory extraction of the debris after a break-up event. 
In addition, the velocity sampling formulation can be used to derive a velocity probability density function for a 

Table 1.   RMSE tabular summary for 5-fold cross validation of training the models with different number of 
samples.

Number of train samples Model �r (km) �v (km/s) �m (kg) �ǫ

4000

DNN 5.2704 ± 7.0132 6.821 ± 6.0505 1.544 ± 1.8549 2.1735 ± 1.9109

PINN 9.2218 ± 11.667 19.410 ± 21.356 3.8594 ± 4.8815 3.7805 ± 2.0651

StackDNN 5.2704 ± 7.0132 6.821 ± 6.0505 1.5440 ± 1.8549 2.1735 ± 1.9109

StackPINN 0.3264 ± 0.3149 3.0294 ± 0.1066 0.0909 ± 0.1328 0.1467 ± 0.0386

XGBoost 0.1832 ± 0.0020 1.0837 ± 0.0325 0.001 ± 9.47e-06 0.0917±0.0013

8235

DNN 1.2813 ± 1.2237 3.3195 ± 0.6529 0.421 ± 0.4746 0.8052 ± 0.6608

PINN 0.9443 ± 0.7666 3.0712 ± 0.2684 0.3405 ± 0.2371 0.4976 ± 0.4599

StackDNN 1.2813 ± 1.2237 3.3195 ± 0.6529 0.421 ± 0.4746 0.8052 ± 0.6608

StackPINN 0.1752 ± 0.0098 4.3062 ± 1.8048 0.0252 ± 0.0538 0.1177 ± 0.0062

XGBoost 0.1771 ± 0.0010 0.9979 ± 0.0187 0.001 ± 1.863e-05 0.0854 ± 0.0010

Table 2.   Tabular results of models consisting of time taken for training during 5-Fold cross validation, 
inference time for predicting and evaluating the LEMUR collision data (Nominal Noise) and their respective 
stored memory for reusability.

Number of samples Model

Time required (s) for training the models

Inference time (s) Memory required1stFold 2ndFold 3rdFold 4thFold 5thFold

4000

DNN 11.215 10.994 13.418 21.693 12.223 0.26417 40 KB

PINN 12.970 22.370 17.891 18.063 16.883 0.33131 40 KB

StackDNN 118.229 97.498 98.634 101.169 100.175 0.26417 360 KB

StackPINN 100.464 100.062 101.656 101.386 102.123 0.33131 360 KB

XGBoost 11.250 11.791 41.222 31.340 61.009 0.27845 3900 KB

8235

DNN 22.230 21.886 22.479 22.337 21.955 0.26594 40 KB

PINN 25.407 25.273 25.082 25.214 25.093 0.32936 40 KB

StackDNN 200.484 200.760 201.941 201.911 200.889 0.26594 360 KB

StackPINN 204.296 203.725 203.401 204.594 205.888 0.32936 360 KB

XGBoost 7.963 8.183 8.119 8.323 8.295 0.28983 4232 KB

Table 3.   Median error for the test dataset.

Model �r (km) �v (km/s) �m (kg) �ǫ

4000

DNN 0.674506 2.027031 0.394279 1.076511

PINN 0.473144 2.010821 0.178281 0.767108

StackDNN 0.152939 1.764392 -0.017718 0.034151

StackPINN 0.158544 2.013816 0.002398 0.030450

XGBoost 0.189282 0.617731 0.000088 -0.035985

8235

DNN 0.344972 1.873850 0.272428 0.059095

PINN 0.165065 1.816507 0.019991 0.036363

StackDNN 0.154050 2.475177 -0.000288 0.033286

StackPINN 0.156674 3.232480 -0.000230 0.045742

XGBoost 0.185646 0.825226 0.000249 -0.040400

Lagrange 0.155496 1.558974 0.490096 0.290463
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given position in space, which can be used to design new filters for selecting candidate space debris for collision 
assessment as well as enhancing the collision probability computation.

Data availability
The datasets generated and analysed during the current study are available in the collisionAI repository, https://
github.com/HarshaSSL/collisionAI.
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