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Research on dense object 
detection methods in congested 
environments of urban streets 
and roads based on DCYOLO
Shuhai Jiang 1,2*, Bowen Luo 1,2, Haoyue Jiang 3, Zhongkai Zhou 1,2 & Shangjie Sun 1,2

The urban street is a congested environment that contains a large number of occluded and size-
differentiated objects. Aiming at the problems of the loss of the target to be detected and low 
detection accuracy resulting from this situation, a newly improved algorithm, based on YOLOv4, 
DCYOLO is proposed. Firstly, a Difference sensitive network (DSN) is introduced to extract the edge 
features of objects from the original image. Then, assign the edge features back to increase the edge 
intensity of the object in the original image and ultimately improve the detection performance. 
Secondly, the feature fusion module (CFFB) based on context information is introduced to realize the 
cross-scale fusion of shallow fine-grained features and deep-level features, to strengthen the cross-
scale semantic information fusion of feature maps and eventually improve the performance of object 
detection. At last, in the network prediction part, the SIOU loss function replaces the original CIOU 
loss function to improve the convergence speed and accuracy of object detection. The experiments 
based on MS COCO 2017 and self-made datasets show that, compared with the YOLOv4, the detection 
accuracy of DCYOLO models is greatly improved with an increase of 9.1 percentage points in AP and 
10.4 percentage points in APs. Compared with YOLOv5x and Faster R-CNN, DCYOLO shows higher 
accuracy and better detection performance. The experiment result proves that the DCYOLO algorithm 
can adapt to the dense object detection requirements in the congested environment of urban streets.

Accompanied by the rapid development of artificial intelligence, intelligent transportation technology has 
received focused attention from a wide range of researchers. Therefore, as an important part of intelligent trans-
portation, road object detection has become a key issue in current research. The main task of road target detection 
is to provide necessary information for intelligent transportation systems by identifying and locating various 
traffic signs, pedestrians, vehicles, and other obstacles in the captured images. Therefore, accurate detection of 
these targets is crucial to ensure the safe passage of vehicles and pedestrians.

Traditional feature classifiers such as Haar1, HOG2, and SIFT3 require manual feature selection and much 
debugging, making them low in accuracy and robustness and unable to adapt to complex road environments. 
Therefore, deep learning-based road object detectors that can learn features automatically are emerging and 
perform well. Object detector is usually categorized into two kinds, i.e., one-stage object detector and two-stage 
object detector. The two-stage object detector, such as R-CNN4, fast R-CNN5 and faster R-CNN6 are region-based. 
Due to the existence of the region proposal, a two-stage object detector performs well in detection accuracy but 
has a low detection speed. This is very unsuitable for complex and changing traffic scenarios However, a one-
stage object detector skips the stage of region proposal and accomplishes classification and localization of the 
object directly in the image. Therefore, compared to a two-stage object detector, a one-stage model has a faster 
speed but lower detection accuracy. The most representative one-stage models are YOLO, SSD, and RetinaNet.

Although, after several generations of improvements, the one-stage model has an accuracy that matches or 
even exceeds that of the two-stage model but does not perform well in an urban street environment with dense 
objects. Urban street is an environment with a numerous but relatively fixed variety of objects that contains many 
occluded as well as size-differentiated targets. This situation exposes two shortcomings of deep learning-based 
target detection. One is that, in the feature extraction stage, the details of shallow features will be lost as the 
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abstraction of the extracted features increases. This happens especially with high sampling multiple. The inevi-
table loss of information, in most situations, has little effect on the detection of conspicuous targets. However, 
it is very likely to decrease the detection accuracy of small-sized and occluded objects. The other problem is 
the always limited receptive field. A larger receptive field means less effective feature extraction for small-sized 
targets. Conversely, a smaller receptive field means that larger targets cannot be observed completely. This 
contradiction leads to poor detection performance on targets with large size differences. To deal with the above 
two problems, a new object detection algorithm DCYLOLO (Difference Sensitive and Context-based YOLO) is 
proposed based on the YOLOv47 algorithm, which is innovative in the following three aspects.

(1)	 Introduction of Difference Sensitive Network (DSN) DSN is introduced to extract edge feature information 
from the original image and fuse the information back with the original image to enhance the boundary 
features of the original image, hence improving detection accuracy in a congested environment with dense 
targets overlap.

(2)	 Introduction of Context-based Feature Fusion Module (CFFB) CFFB is introduced to realize the fusion of 
cross-scale feature information, enhance the expression ability of deep networks with high receptive fields, 
and eventually improve the detection performance on small objects.

(3)	 SIOU loss function With the loss function instead of the original loss function, The loss function calcula-
tion method is optimized by replacing CIOU with SIOU. In SIOU, the angle deviation factor between the 
real box and the prediction box is comprehensively considered to improve the prediction confidence and 
model robustness.

Experimental results show that the DCYOLO algorithm proposed in this paper can effectively improve the 
accuracy of object detection.

Related work
Deep learning object detection algorithm 
Since the introduction of deep learning-based target detection algorithms, many excellent detection algorithms, 
including the RCNN series and YOLO series, have been produced and continuously improved by scholars all 
over the world. They have also been used to detect in various scenarios, including the environment with dense 
objects and urban street object detection.

To better realize the detection of small target objects, YOLOv4 introduced a Path Aggregation Network8 
(PAN) to further improve the amount of output information, eventually improving the detection performance 
on small objects, but not the occluded objects. Tan et al.9 proposed a BiFPN feature fusion network, which com-
bined the top-down and bottom-up feature extraction processes. BiFPN changed the proportion of each layer’s 
features by configuring the weights of each layer during the fusion process and extracting sufficient input features 
through multiple layers. BiFPN improved the detection performance on small objects, but not occluded objects. 
The EFPN proposed by Deng et al.10, that is, the extended feature pyramid network with an additional feature 
texture migration module, which can extract more small target detail features, thereby improving detection on 
small targets. But there was no enhancement of the features of the occluded object. Yang et al.11 proposed City-
YOLO to solve the low accuracy problem of detecting small and dense objects in urban street scenes. City-YOLO 
was based on YOLOv5 and had an additional detection feature layer with an attention mechanism. Compared 
with YOLOv5, mAP50 and mAP50:95 of the City-YOLO model were improved by 5.8 and 4.0 percentage points 
respectively. However, the City-YOLO was less robust because the performance was highly affected by weather.

For better detection performance on dense and occluded targets, Xu Chengji et al.12 introduced the attention 
mechanism based on YOLOV3 and proposed the Attention-YOLO algorithm that improved detection accuracy 
but lacked accuracy of detection of small targets. Based on YOLOV4, Zhu et al.13 replaced the original continuous 
convolution with the residual connection to generate feature maps of different scales, so the model can obtain a 
good detection effect in densely distributed environments. However, there was still poor detection performance 
on small targets. Using RetinaNet as the basic framework, Zhou Dake et al.14 proposed a dense human detection 
algorithm with a dual attention mechanism, which introduced a spatial attention mechanism in the regression 
process and added a channel attention subnetwork to the classification branch, that effectively improved the 
detection performance of pedestrians in heavily occluded scenes but with a relatively low detection frame rate of 
only 11.8 fps. Yang et al.15 improved with an additional small target detection branch that had a smaller detection 
scale. The improved YOLOv5s had a 2.5 percentage points increase in mAP50 and 3.8 in mAP50:95. However, its 
dataset is a highway dataset with few target types, and if applied to urban streets, the accuracy will be reduced.

A variety of improved object detection algorithms based on YOLO are mostly transmitting more shallow 
feature information to the deep layer, providing more abundant feature information to the detection head to 
improve the accuracy of object detection. However, the feature fusion method mentioned above is only a simple 
splicing of shallow and deep features without considering the fusion of cross-channel features. Those features 
between each channel are isolated from each other, so there is no way to effectively extract intergroup informa-
tion from multiple inputs, hence the detection effect of occluded targets and small targets is still not good. Some 
other studies have introduced the attention mechanism, which is ineffective in improving the detection of small 
and occluded targets at the same time.

The complexity of such environments makes the classical and currently available detection model unable 
to meet the requirements, making it necessary to carry out effective object detection research for objects in 
congested environments.
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Methods
We propose a new improved model called DCYOLO (Difference Sensitive and Context-based YOLO), which 
introduces the Difference Sensitive Network (DSN) and the Context-based feature fusion module CFFB based 
on the YOLOv4 object detection algorithm. Its structure is shown in Fig. 1. The following is a more detailed 
description of the DSN and CFFB in YOLOv4, DCYOLO, and the loss function.

YOLOv4
YOLOv4 uses CSPDarknet53 as the backbone network, and its structure is shown in Fig. 2, obtained after intro-
ducing the CSPDensenet module based on Darknet53, which improves the feature fusion capability of shallow 
and deep networks.

The CSPDarknet consists of six downsampling modules with similar structures described above, and the big-
gest difference in the structure of each downsampling module is the number of residual blocks. As the network 
depth increases, the size of the feature map output by each downsampling module gradually decreases, and the 
semantic level gradually increases. The input with a original size of 416 × 416 × 3 is the output layer with sizes of 
208 × 208 × 64, 104 × 104 × 128, 52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1024.

The feature map outputted by YOLOv4’s backbone network passes through the SPP layer shown in Fig. 3 to 
obtain a new output feature map with dimensions of 13 × 13 × 2048. The pooling layer of YOLOv4 introduces the 
original input feature map, which retains a certain amount of original information that is conducive to improv-
ing the detection accuracy.

…
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Figure 1.   DCYOLO structure.
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Figure 2.   CSPDarknet downsampling.
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The PAN used by YOLOv4’s neck network is based on the FPN network. At first, PAN performs a top–down 
upsample, then a bottom–up downsample, and then stitches the feature maps of the same size during the two 
sampling processes. Unlike the original PAN, YOLOv4 uses channel-oriented stitching instead of the original 
direct summation, reducing the loss of raw information in shallow networks.

DCYOLO
DCYOLO consists of four parts, (1) Preprocess: Difference Sensitive Network (DSN); (2) Backbone:CSPDarknet53; 
(3) Neck: SPP, Context-based Feature Fusion Block (CFFB), PAN; (4) Head:YOLOv4。

In many practical scenarios as shown in Fig. 4, there are multiple targets to be detected, with different target 
scales and overlap. Given this problem, this paper proposes that DSN is used to enhance the image features 
input into the backbone network and improve both the feature extraction effect and the accuracy of overlapping 
object detection. Moreover, CFFB is introduced into the PAN structure, and the detailed features extracted from 
the shallow network are enhanced by the optimized SE16 module. Those enhanced features are then fused with 
the deep features to enhance the fusion of shallow and deep feature information, to improve the detection of 
occluded and small-sized targets.

Difference sensitive network 
In the image, there will be a noticeable difference between the foreground and the background, which can be 
described to some extent by the intensity of the edges, that is, the gradient. In this process, we consider gradients 
in both directions at the same time and introduce their corresponding neighborhood information to investigate 
the changing trend. Those gradients obtained by the fusion can be further summarized and abstracted by the 
above characteristics, while cross-channel fusion is performed by using the convolution operation with size 1 
to enhance the semantic information.

Figure 3.   SPP layer for YOLOv4.

Figure 4.   Actual scene diagram.
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YOLO series detection algorithm directly inputs the original size picture into the backbone network for fea-
ture extraction, so that when there are noise, blur, or other influencing factors in the original picture, the desired 
features will be masked, leading to an unsatisfied object detection effect.

To deal with the above problems, we add DSN in the YOLOv4 network, the structure of which is shown in 
Fig. 5. DSN extracts the edge features in the original image in advance, then fuses them with the original image, 
and then inputs the fusion results into the backbone network. DSN uses the Sobel X and Sobel Y operators to 
extract the horizontal and vertical gradient features of the original image respectively, realizes cross-channel 
fusion through convolution kernels, and outputs horizontal gradient feature maps and vertical gradient feature 
maps respectively with dimensions of 416 × 416 × 1. According to the gradient intensity formula:

The gradient value GS on each pixel is computed to obtain the gradient intensity characteristic map, where dx 
and dy represent the gradient values in the horizontal and vertical directions. The difference-sensitive network 
completes the separate extraction and synthesis of the gradients in the two directions in the image and describes 
the feature information of the image by the 416 × 416 × 3 gradient synthesis feature map obtained by GS, dx, and 
dy stitching, which both retains the original horizontal and vertical feature information and avoids the problem 
of losing feature information due to the separate description of every single channel. The original image was 
stitched and convolved with 416 × 416 × C2 channel fusion feature map and gradient comprehensive feature map 
obtained by 1 × 1 convolution to obtain a global feature map of 416 × 416 × 3. This global feature map obtained 
through the difference-sensitive network is more sensitive to the target edge information, though it will cause the 
loss of the original map detail information. To reduce this loss, the original map information will also be directly 
introduced into the global feature map at the same time to obtain a final output feature map.

Difference-sensitive network makes the model more sensitive to target edge information at the cost of losing 
a very small amount of detailed information, thereby significantly improving the detection rate of targets with 
more serious occlusion.

Context‑based feature fusion block 
The native YOLOv4 detection algorithm extracts the features of the target through the CSPDarknet-53 network, 
and after the deep convolutional network, the network receptive field is greatly improved, but at the cost of los-
ing certain information, especially of those shallow fine-grained features that play a great role in detecting small 
targets. The PAN structure extracts the shallow fine-grained features and splices them into deeper networks, to 
improve the ability of the model to identify targets. Although YOLOv4 introduces the PAN structure, it only 
superimposes the shallow features directly into the deep feature layer of the same scale without considering the 
fusion of cross-scale features.

Given this shortcoming, we propose a feature fusion module (CFFB) based on context information, the 
specific structure of which is shown in Fig. 6:

CFFB integrates the optimized SE (Squeeze and Excitation) mechanism, which is essentially a model for 
classifying the characteristics of each channel, and its structure is shown in Fig. 7. The more abstract the features 
and the higher the semantic level, the more obvious the SE mechanism can make the global features. The pool-
ing layer of the original SE structure adopts global mean pooling, which only uses the average value to describe 
the characteristics of the entire channel, so more local information is lost during the process. The optimized SE 
structure uses three non-local statistics, which are the global maximum, global minimum, and global average, 
to obtain three corresponding feature maps of 1 × 1 × C for the features with input sizes w × h × c. The three maps 
are then spliced together to obtain a new feature map with a scale of 1 × 1 and a channel number of 3C. Three 
different pooling layers allow more original context information to be preserved. Subsequent 1 × 1 convolution 
was performed for cross-channel feature fusion, and the correlation and inhibition between different channels 
were considered using softmax classification. The cross-scale fusion network first deconvolves the shallow features 

(1)GS =

√

(dx)2 + (dy)2

Figure 5.   DSN structure.
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in the backbone network, and the obtained features are spliced with the feature layer of the same scale in PAN 
after optimization. The final output features are hence obtained as input for subsequent structures, realizing 
cross-scale feature fusion.

CFFB can better select features and integrate information of different scales with the help of SE’s attention 
mechanism, so that the features between each channel are no longer isolated. The deep network can then extract 
effective between-group information from multiple inputs of different scales, thereby improving the detection 
performance of small targets.

SIoU loss function
In the original YOLOv4 algorithm, the regression loss of the predicted bounding box is calculated using the 
CIOU loss function which only considers the loss at the scale level, meaning it does not consider the loss of the 
prediction box and the real box at the angle. This mismatch of angles can lead to low efficiency and unstable 
convergence processes, ultimately resulting in poor model accuracy. In this paper, the SCYLLA-IoU (SIoU)17 
loss function is used instead of the CIoU loss function, which contains four factors: angle, distance, shape, and 
overlapping area. This is different from the CIoU function, which includes center point distance and aspect ratio 
instead of overlapping area. A schematic representation of the SIoU loss function is shown in Fig. 8.

In the figure, the Cw and Ch are the lateral distance and height difference of the center points of the prediction 
box BP and the real box BGT , respectively. σ is the actual distance of the center point between the two boxes. The 
angle loss calculation formula is then as follows:

Figure 6.   CFFB structure.

Figure 7.   SE mechanism structure.

Figure 8.   SIoU schematic.
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Based on the angular loss, recalculate the distance loss:

When the declination angle α is close to 0, Ch tends to 0. In such a case, its contribution to the distance loss 
will be greatly reduced. When α is close to 45°, the contribution of the distance loss is increasing.

Shape loss is defined as follows:

Hence, we have

The equations (w, h) and (wgt , hgt) are the width and height of the predicted and real boxes. The shape loss 
can be controlled by adjusting the parameter θ of which the parameter range is defined in2,6.

IoU loss is defined as:

According to the above definition of the four loss quantities, the SIoU loss function is defined as follows:

By replacing the CIoU loss function with the SIoU loss function in the original YOLO, the convergence 
efficiency and the detection accuracy of the model can be improved.

Informed consent
In addition to the MS COCO dataset, the manuscript includes information/images of participants. We com-
municated with each participant before capturing their information or images, explained the purpose of photo-
graphing, and obtained their consent before including the photos in the manuscript.

For the reasons mentioned above, we can confirm that all participants and/or their legal guardians provided 
informed consent for the publication of their identifying information/images in open-access online publications.

Experiments
Datasets
In this paper, MS COCO 2017 dataset and self-made dataset are used for model training and evaluation. MS 
COCO stands for Microsoft Common Objects in Context, which is mainly used to solve three types of problems: 
object detection, semantic segmentation, and title generation. The COCO dataset contains 2.2 million labeled 
images, some of which are shown in Fig. 9. The object detection dataset contains 80 categories, including many 
small targets, which are suitable for the application scenarios mentioned in this article.

The self-made dataset includes 2000 labeled images, some of which are shown in Fig. 10, in which the target 
types are humans, cats, dogs, cars, bicycles, motorcycles, etc. The ratio of the training set to the test set is 7:3. In 
this scenario, the occlusion condition is more serious and has a larger size difference among targets, making it 
easy for some targets to be missed.

Training settings
Hardware configuration
The model used in this article is based on the Torch framework, implemented using the Python programming 
language. The system version is Ubuntu 22.04.1. The graphics card is NVIDIA 3070Ti 8G. The CPU model is 
Intel Core i7-12700H.

Training strategies
In this paper, the experiment is first trained on COCO and its own data training set. The model is then evalu-
ated on the test set. In the training stage, the weights obtained from the pre-training of the ImageNet dataset are 
first used to initialize the CSPDarkNet53 backbone network. The experimental environment is set according to 
the native YOLOv4 network, and the weight update method is selected by stochastic gradient descent (SGD). 
The initial learning rate is set to 0.01, and the total number of iterations is 90 k. According to the increase in the 
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number of iterations, the learning rate is reduced to one-tenth at 50 k and 80 k, respectively. The final learning 
rate reaches 0.001.

Data enhancement
Before training, the Mosaic data enhancement method is used to flip, zoom, color gamut change and other 
operations on four pictures each time. They are then combined into one picture to enrich the background of the 
detected object. The processing effect is shown in Fig. 11.

Evaluation indicators
In the process of object detection, IoU is often used to measure the degree of coincidence between the predic-
tion box and the real box, to determine the positive and negative samples. Its calculation formula is as follows:

Figure 9.   COCO datasets.

Figure 10.   Homemade datasets.
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When the IoU value of the prediction box and the real box is greater than the set threshold, the prediction is 
judged to be positive and negative. In order to verify the effect of the model, the following evaluation indexes are 
used: average accuracy ( AP ) when the IoU threshold is 0.5:0.05:0.95, detection accuracy ( APs ) of small targets 
( area < 322 ), detection accuracy of medium target ( 322 < area < 962 ), detection accuracy ( APm ) of large targets 
( area > 962 ), and detection accuracy ( APl).

Experimental results
Experiment and analysis of DSN 
The difference-sensitive network first considers the gradients dx and dy in the two directions in the image, and 
then calculates and evaluates the influence of the introduction of the comprehensive intensity GS and the 1 × 1 
convolution kernel on the model. Therefore, this experiment is performed by introducing different submodules.

As shown in Table 1, each submodule is introduced in the experiment, and the enhancement effect of the 
difference-sensitive network is verified according to the experimental results obtained in sequence. The experi-
mental results show that when the 1× 1 convolution kernel was introduced separately, the model verification 
accuracy was almost unchanged. When the directional gradient dx and dy were introduced separately, the AP 
value increased by 0.3 and 0.2 percentage points, the APs increased by 1.6 and 1.4 percentage points, and the APm 
increased by 0.9 and 1 percentage point, respectively. After the introduction of GS , AP increased by 0.4 percentage 
points, and APs , APm , and APl increased by 1.1, 0.6, and 0.2 percentage points, respectively. When dx,dy , and 
GS were comprehensively introduced, AP increased significantly by 1.8 percentage points, APs , APm , and APl 
increased by 3.5, 1.9, and 1.0 percentage points respectively. After introducing the 1 × 1 convolution kernel, the AP 
value of the model reached the optimal 44.1%. Therefore, for the object detection model, the difference-sensitive 
network introduced in this paper can significantly improve the detection accuracy of the object detection model.

As shown in Fig. 12, in the actual detection process, the network improves the detection accuracy of the 
original YOLOV4 and greatly improves the detection effect of the occluded objects.

Experiment and analysis of CFFB
The feature fusion network needs to use two feature maps of different dimensions as input at the same time. The 
native YOLOv4 model has three-dimensional feature maps, which are 13× 13, 26× 26, and52× 52 . That means 
there are three cross-scale feature combinations. Therefore, the three-dimensional feature map fusion methods 
are compared and experimented with, and the results are shown in Table 2.

According to the results of the table experiment, when the cross-scale feature fusion module was used to 
fuse 13× 13 and 26× 26 or 52× 52 and 26× 26 separately, AP increased by 0.7 and 0.9 percentage points, 
respectively. When the two cross-scale fusion modules were introduced at the same time, the model accuracy 

(9)IOU =
A ∩ B

A ∪ B

Figure 11.   Mosaic processing effect.

Table 1.   Comparison of the effects of DSN submodules. Significant values are in bold.

dx dy GS Conv 1xl AP APs APm APl

42.1 21.5 44.8 57.1

✓ 42.4 23.1 45.7 57.4

✓ 42.3 22.9 45.8 57.5

✓ 42.5 22.6 45.4 57.3

✓ 42.1 21.6 44.8 57.1

✓ ✓ 43.1 24.5 45.9 57.7

✓ ✓ ✓ 43.9 25.0 46.7 58.1

✓ ✓ ✓ ✓ 44.1 25.3 46.9 58.2
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reached the best, and the AP value increased by 1.4 percentage points. Therefore, the context-based cross-scale 
feature fusion network proposed in this paper can significantly improve the detection accuracy of the object 
detection model.

As shown in Fig. 13, in the actual detection process, the network not only improves the detection accuracy 
of the original YOLOV4, but also greatly improves the detection effect of small-sized targets.

Experiment and analysis of loss function
To better verify the improvement effect, this section compares the SIoU loss function with both the CIoU loss 
function and the commonly used GioU and DioU loss functions in the original YOLOv4 model. The experi-
mental results are shown in Table 3.

The experimental results show that the accuracy of the model trained using the SIoU loss function is the 
highest, and the AP value of the obtained model is 2.4, 1.8, and 1.4 percentage points higher than that of GIoU18, 
DIoU, and CIoU19, respectively. Therefore, the accuracy of the detection model trained using the SIoU loss 

Figure 12.   Rendering of DSN’s improvement on occluded object detection.

Table 2.   Comparison of the effects of three CFFB fusion methods. Significant values are in bold.

13&26 26&52 AP APs APm APl

42.1 21.5 44.8 57.1

✓ 46.8 25.6 46.1 57.5

✓ 46.3 24.9 45.4 57.3

✓ ✓ 48.5 28.7 46.6 57.6

Figure 13.   Rendering of CFFB’s improvement in small-size object detection.

Table 3.   Comparison of the effects of different loss function algorithms. Significant values are in bold.

Model Loss AP APS APm APl

DCYOLO SIoU 51.2 31.9 49.0 59.3

DCYOLO CIoU 49.8 30.1 48.3 58.8

DCYOLO DIoU 49.4 29.2 47.9 58.6

DCYOLO GIoU 48.8 28.4 47.2 58.4
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function is better than those of other loss functions, which is more suitable for the DCYOLO model proposed 
in this paper.

Comparison of model detection effects
To verify the performance of detection, DCYOLO was compared with the more advanced object detection 
algorithms in this paper on the test dataset and the result is shown in Table 4.

The experimental results showed that the DCYOLO achieved the highest detection accuracy after integrat-
ing DSN and CFFB. Compared with YOLOv4, the AP of DCYOLO increased by 9.1 percentage points, which is 
already higher than those of other detection algorithms. APs , APm , and APl of DCYOLO increased by 10.4, 4.2, 
and 2.2 percentage points, respectively. The result showed that the detection accuracy of DCYOLO on various 
types of objects, especially small and medium-sized targets, was significantly improved.

Compared with the Faster RCNN-related object detection algorithms, DCYOLO’s AP value was higher. 
Therefore, compared with other algorithms, DCYOLO has a prospective advantage.

Figures 14 and 15 show the comparison between the DCYOLO algorithm and the current advanced YOLOv5x 
algorithm detection effect, respectively, and it can be seen that the DCYOLO algorithm can better detect overlap-
ping targets and small size targets that are heavily occluded, and have better detection effects.

Conclusion
To improve the performance of object detection in the congested environment of urban streets, this paper pro-
poses a new improved object detection algorithm of DCYOLO. DCYOLO introduces the difference-sensitive 
network (DSN) and the cross-scale feature fusion module (CFFB) based on context information. The loss func-
tion is also improved, leading to a higher accuracy of the algorithm. The experimental results show and prove 
that: DCYOLO performs better in dense object environments than other current object detection algorithms. 
From the experimental results, we observe and conclude the following points:

•	 With the addition of DSN, AP and APs of the original model respectively gained an increase of 2 and 3.8 per-
centage points. We conclude that DSN can extract more contour information from the object in the images, 
thereby improving the detection performance in dense environments with size-differentiated and occluded 
objects.

•	 With the addition of CFFB, AP and APs of the original model respectively gained an increase of 6.4 and 7.2 
percentage points. We conclude that CFFB introduces fine-grained features of shallow networks into deep 
networks, thereby improving the detection performance, especially for small targets.

•	 The SIoU loss function takes the angular deviation factor between the real box and the predicted box into 
account, thereby improving the accuracy of the model.

•	 The complete DCYOLO brought significant overall improvement in detection performance for the original 
model, with an increase of 9.1, 10.4, 4.2, and 2.2 percentage points for AP, APs, APm, and APl, respectively.

Compared with the original YOLOv4, YOLOv5x, and Faster R-CNN models, DCYOLO has better detection 
performance with higher detection accuracy. Nevertheless, in the experiments, there are still some small-sized 
and occluded objects that cannot be detected accurately. The continuous optimization of DCYOLO will be one of 
the main tasks in our future research. In addition, we realize that although DCYOLO is derived from YOLOv4, 
it will not be limited to YOLOv4. DCYOLO provides a new idea for the optimization of the object detection 
model. We believe that the idea proposed in this paper will be used in newer and more advanced models in the 
future to adapt to more complex environments, which is another major task in future studies.

Table 4.   Comparison of the effects of different detection algorithms. Significant values are in bold.

Model DSN CFFB AP APS APm APl

Faster-R-CNN  ×   ×  35.0 16.2 39.2 50.8

Faster R-CNN w FPN  ×   ×  36.5 18.9 38.3 47.9

YOLOv3  ×   ×  33.5 19.1 35.8 41.9

YOLOv4  ×   ×  42.1 21.5 44.8 57.1

YOLOV5x  ×   ×  47.6 29.1 45.8 58.4

YOLOv4 √  ×  44.1 25.3 46.9 58.2

YOLOv4  ×  √ 48.5 28.7 46.6 57.6

DCYOLO √ √ 51.2 31.9 49.0 59.3



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1127  | https://doi.org/10.1038/s41598-024-51868-0

www.nature.com/scientificreports/

Figure 14.   YOLOV5x test results.
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Data availability
The datasets generated and/or analyzed during the current study are available in the MS COCO dataset which 
is a public dataset that is available from a given URL for everyone according to their needs (https://​cocod​ataset.​
org/#​home).

Received: 29 October 2023; Accepted: 10 January 2024

Figure 15.   DCYOLO test results.
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