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GrowthPredict: A toolbox 
and tutorial‑based primer for fitting 
and forecasting growth trajectories 
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models
Gerardo Chowell 1*, Amanda Bleichrodt 1, Sushma Dahal 1, Amna Tariq 2, Kimberlyn Roosa 3, 
James M. Hyman 4 & Ruiyan Luo 1

Simple dynamic modeling tools can help generate real-time short-term forecasts with quantified 
uncertainty of the trajectory of diverse growth processes unfolding in nature and society, including 
disease outbreaks. An easy-to-use and flexible toolbox for this purpose is lacking. This tutorial-based 
primer introduces and illustrates GrowthPredict, a user-friendly MATLAB toolbox for fitting and 
forecasting time-series trajectories using phenomenological dynamic growth models based on ordinary 
differential equations. This toolbox is accessible to a broad audience, including students training in 
mathematical biology, applied statistics, and infectious disease modeling, as well as researchers 
and policymakers who need to conduct short-term forecasts in real-time. The models included in the 
toolbox capture exponential and sub-exponential growth patterns that typically follow a rising pattern 
followed by a decline phase, a common feature of contagion processes. Models include the 1-parameter 
exponential growth model and the 2-parameter generalized-growth model, which have proven 
useful in characterizing and forecasting the ascending phase of epidemic outbreaks. It also includes 
the 2-parameter Gompertz model, the 3-parameter generalized logistic-growth model, and the 
3-parameter Richards model, which have demonstrated competitive performance in forecasting single 
peak outbreaks. We provide detailed guidance on forecasting time-series trajectories and available 
software (https://​github.​com/​gchow​ell/​forec​asting_​growt​hmode​ls), including the full uncertainty 
distribution derived through parametric bootstrapping, which is needed to construct prediction 
intervals and evaluate their accuracy. Functions are available to assess forecasting performance across 
different models, estimation methods, error structures in the data, and forecasting horizons. The 
toolbox also includes functions to quantify forecasting performance using metrics that evaluate point 
and distributional forecasts, including the weighted interval score. This tutorial and toolbox can be 
broadly applied to characterizing and forecasting time-series data using simple phenomenological 
growth models. As a contagion process takes off, the tools presented in this tutorial can help create 
forecasts to guide policy regarding implementing control strategies and assess the impact of 
interventions. The toolbox functionality is demonstrated through various examples, including a tutorial 
video, and the examples use publicly available data on the monkeypox (mpox) epidemic in the USA.
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GLM	� Generalized logistic growth model
IS	� Interval score
MAE	� Mean absolute error
MLE	� Maximum likelihood
MSE	� Mean squared error
ODE	� Ordinary differential equations
PI	� Prediction interval
RIC	� Richards model
GOM	� Gompertz model
SARS	� Severe acute respiratory syndrome
USA	� United States of America
WIS	� Weighted interval score

Reliable short-term forecasts of time series describing an evolving transmission or growth process are essential for 
decision-making in all aspects of life, including predicting the weather, commercial product demand, the number 
of cases of an emerging infectious disease, and the growth or decline of the economy. Simple statistical models such 
as autoregressive integrated moving average (ARIMA) models have been popular for forecasting time series1–5. 
In contrast, dynamical models based on rates of change equations (i.e., differential equations) are less frequently 
applied by non-specialists in specific scientific fields. However, forecasts based on dynamic models can provide 
more information about the process of interest by characterizing specific mechanisms and parameters involved in 
their dynamics6–9. For instance, the simple phenomenological growth models discussed in this tutorial can help 
characterize growth rates, scaling of growth, doubling times, reproduction numbers, and turning points, as well as 
predicting the size of a growing population (i.e., carrying capacity) or an epidemic outbreak (i.e., epidemic size) at 
different time horizons with quantified uncertainty10–17. Hence, there is a need for an easy-to-use and flexible tool-
box to generate short-term forecasts from simple phenomenological growth models with quantified uncertainty 
of the trajectory of diverse growth processes observed in nature and society, such as infectious disease outbreaks6.

This tutorial paper introduces a user-friendly MATLAB toolbox to fit and forecast time-series trajectories of 
infectious diseases using phenomenological dynamic growth models based on ordinary differential equations 
(ODEs) that will find broad applications in the natural and social sciences. This toolbox is written for various 
audiences, including students training in time-series forecasting, dynamic growth modeling, parameter estima-
tion, parameter uncertainty and identifiability, model comparison, performance metrics, and forecast evaluation. 
The toolbox is also helpful for researchers and policymakers who need to conduct short-term forecasts by relying 
on historical and real-time trajectory data of the process of interest, such as an unfolding epidemic.

This forecasting toolbox utilizes a variety of phenomenological growth models based on ordinary differential 
equations (ODEs), such as the generalized-logistic growth model (GLM) and the Richards model, which have 
shown competitive performance in modeling epidemic outbreaks in prior studies10,18,19. These models capture 
exponential and sub-exponential growth patterns that typically follow a rising pattern followed by a decline 
phase, a common feature of contagion processes10,14,15,20.

Specifically, models in the toolbox include the 2-parameter generalized-growth model (GGM)21,22, which has 
proved useful in characterizing and forecasting the ascending phase of epidemic outbreaks18, the 2-parameter 
Gompertz model, the 3-parameter GLM, and the Richards model, which have each demonstrated competitive 
performance in forecasting single peak epidemics10,18,19. The toolbox includes nonlinear least squares estimation 
(LSQ) and maximum likelihood estimation (MLE) methods with different assumptions about the error structure 
of the observed data, including normal, Poisson, and negative binomial distributions, as well as uncertainty 
quantification based on a parametric bootstrapping approach6,19. The toolbox also includes functions to quantify 
forecasting performance using metrics that evaluate point and distributional forecasts, including the weighted 
interval score (WIS). The toolbox’s functions are illustrated using weekly publicly available case data from the 
monkeypox (mpox) epidemic in the USA.

This tutorial-based primer is organized as follows. After providing an overview of the toolbox functions for 
users, we introduce the parameter estimation methods included in the toolbox and then describe the underlying 
methodology and user parameters and functions to calibrate, evaluate, and display model fits to data. Finally, we 
use specific examples in the context of the monkeypox epidemic in the USA to demonstrate the functions that 
generate, display, and quantify the performance of model-based forecasts, as well as estimate doubling times and 
the effective reproduction number. A tutorial video that demonstrates the toolbox functionality is available at: 
https://​www.​youtu​be.​com/​chann​el/​UC6Iz​Iu-​pPcML​lLYAh​o43loQ.

Implementation
Installing the toolbox

•	 Download the MATLAB code located in folder ‘forecasting_growthmodels code’ from the GitHub reposi-
tory: https://​github.​com/​gchow​ell/​forec​asting_​growt​hmode​ls

•	 Create ‘input’ folder in your working directory where your input data will be stored.
•	 Create ‘output’ folder in your working directory where the output files will be stored.
•	 Open a MATLAB session.

Overview of the toolbox functions
Table 1 lists the names of user functions associated with the toolbox, along with a brief description of their role. 
The internal functions associated with the toolbox are given in supplementary file 1 (Table 1S). The user needs 

https://www.youtube.com/channel/UC6IzIu-pPcMLlLYAho43loQ
https://github.com/gchowell/forecasting_growthmodels
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to specify the parameters related to model fitting and forecasting in the options_fit.m and options_
forecast.m files.

Overview of the tutorial
The workflow described in this tutorial, summarized in Fig. 1, is composed of 6 main sections: (1) plotting pre-
liminary model simulations, (2) fitting the models to data through statistical inference, (3) plotting the resulting 
model fits, (4) generating short-term forecasts with quantified uncertainty, (5) plotting the resulting short-term 
forecasts and the associated performance metrics, and (6) calculating the effective reproduction number in the 
context of epidemic time series.

Parameter estimation method
Let  yt1,yt2 , . . . , ytnd denote the time series of the epidemic trajectory used in calibrating the model. Here, tj , 
j = 1, 2, . . . , nd , are the time points for the time series data, and nd is the number of observations. Let f (t,�) 
denote the expected curve of the epidemic trajectory. We can estimate the set of model parameters, denoted by 
� , by fitting the model solution to the observed data via nonlinear least squares (LSQ)23; within the MATLAB 
toolbox, this is realized by setting the parameter <method1> to 0 in the options_fit.m  or options_
forecast.m files. Least squares estimation is achieved by searching for the set of parameters, � , that minimizes 
the sum of squared differences between the observed data yt1,yt2 . . . ..ytnd and the best fit of the model (model 

mean) which corresponds to f (t,�) . That is, � is estimated by �̂ = argmin
∑nd

j=1 (f
(
tj ,�

)
− ytj )

2 . In the fol-
lowing section, we describe different phenomenological growth models included in this toolbox for the expected 
epidemic trajectory curve f (t,�).

This parameter estimation method (LSQ) weights each data point equally and does not require a specific 
distributional assumption for yt , except for the first moment E[yt ] = f (t;�) . That is, the mean of the observed 
data at time t equals the expected count denoted by f (t,�) at time t24. Under mild regularity conditions, this 
method yields asymptotically unbiased point estimates regardless of any misspecification of the variance–covari-
ance error structure. Hence, the estimated model f (t, �̂) best fits the mean of the observed data in terms of the L2 
norm. We can use the fmincon function in MATLAB to set the optimization problem. Finally, we also employ 
MATLAB’s MultiStart feature to specify the number of random initial guesses of the model parameters using the 
parameter <numstartpoints> in the options_fit.m or options_forecast.m files to thoroughly 
search for the best-fit parameter estimates.

In addition to nonlinear least squares fitting, we can also estimate model parameters via maximum likeli-
hood estimation (MLE)25 with specific assumptions about the error structure in the data (e.g., Poisson, Negative 
binomial) via parameter <method1> . The log-likelihood expressions derived for Poisson and negative binomial 
error structures are given below.

(a)	 Poisson

For a Poisson error structure, the full log-likelihood of Poisson (<method1>=1) is given by:

Table 1.   Description of the user functions associated with the toolbox.

Function Role

options_fit.m
Specifies the parameters related to model fitting, including the characteristics of the time series data, the 
model, the parameter estimation method, the error structure, and the calibration period. The structure of the 
options_fit.m file is described in Text 1S (supplementary file 1)

options_forecast.m
Specifies the parameters related to model forecasting, including the characteristics of the time series data, the 
model, the parameter estimation method, the error structure, the calibration period, and forecasting period. 
The structure of the options_forecast.m file is described in Text 2S (supplementary file 1)

options_Rt.m
Specifies the parameters related to the estimation of the effective reproduction number, namely the type 
of generation interval distribution and the mean and variance of the generation interval for the infectious 
disease of interest

plotGrowthModel.m Plots model solutions where the user provides the type of growth model, parameter values, and the initial 
condition

Run_Fit_GrowthModels.m Fits a model to data with quantified uncertainty

Run_Forecasting_GrowthModels.m Fits a model to data with quantified uncertainty and generates a model-based forecast with quantified uncer-
tainty

plotFit_GrowthModels
Displays the model fit and the empirical distribution of the estimated parameters. It also saves output .csv 
files in the output folder with the model fit, the parameter estimates with 95% confidence intervals (CIs), the 
calibration performance metrics, and the doubling times estimated from the incidence trajectory

plotForecast_GrowthModels
Displays the model-based forecast and the associated performance metrics. Moreover, the data associated 
with the forecasts, the parameter estimates, the doubling times estimated from the incidence trajectory, and 
the calibration and forecasting performance metrics, are saved as .csv files in the output folder

plotFit_ReproductionNumber
Displays the model fit and the effective reproduction number. It also saves .csv files in the output folder with 
the model fit, the parameter estimates with 95% CIs, the calibration performance metrics, and the doubling 
times estimated from the incidence trajectory

plotForecast_ReproductionNumber
Displays the model-based forecast and the corresponding effective reproduction number. Moreover, the data 
associated with the forecasts, the parameter estimates, the doubling times estimated from the incidence trajec-
tory, and the calibration and forecasting performance metrics, are saved as .csv files in the output folder
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where µi = f (ti ,�) denotes the mean of yi at time ti and f (ti ,�) is the mean curve to be estimated from the 
differential equation.

(b)	 Negative binomial

Let r > 0 denote the number of failures until the experiment is stopped and p ∈ [0, 1] denote the success 
probability in each experiment. Then the number of successes, y, before the r-th failure occurs has a negative 
binomial distribution:

with mean = µ =
rp

(1−p)  and variance=σ 2 =
rp

(1−p)
2 > µ. For n observations y1 , …,yn , the full log-likelihood is

n∑

i=1

{
yiln(µi)− ln(yi!)− µi

}

f
(
y|r, p

)
=

(
r + y − 1

y

)
py(1− p)r =

1

y!

y−1∏

j=0

(
j + r

)
.py(1− p)r

(1.1)l
�
r, p

�
=

n�

i=1









yi−1�

j=0

ln(j + r)



+ yiln(p)+ rln(1− p)− ln(yi!)



.

Figure 1.   Overview of the workflow for fitting and forecasting time series trajectories described in this tutorial.
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We can express the likelihood with µ and σ2 by substituting p = 1− µ

σ2
 and r = µ2

σ 2−µ
 , where µ = f (t,�) is 

the mean curve to be estimated from the differential equation.
There are different types of variances commonly used in a negative binomial distribution. If the variance 

scales linearly with the mean, then σ 2 = µ+ αµ,(i.e., <method1>=3 in options_fit.m or options_
forecast.m), p = α

1+α
 and r = µ/α . The full log-likelihood (1.1) can be expressed as follows:

If the variance scales quadratically with the mean, then σ 2 = µ+ αµ2 (ie., <method1>=4 in options_
fit.m or options_forecast.m), p =

αµ
1+αµ

 and r = 1/α. The full log-likelihood (1.1) can be expressed as 
follows:

The more general form of variance is σ 2 = µ+ αµd (i.e., <method1>=5 in options_fit.m or 
options_forecast.m) with any −∞ < d < ∞ . Then the full log-likelihood (1.1) can be expressed as 
follows:

where µi = f (ti ,�).
Finally, it is worth noting that the above full log-likelihood expressions allow the selection or comparison 

of models based on different error structures via their AICc (corrected Akaike Information Criterion) values. 
However, if the goal is to focus on different models with the same type of error structure (e.g., normal), we could 
use simplified likelihood expressions by removing the constants to speed up running time.

Parametric bootstrapping
To quantify parameter uncertainty, we follow a parametric bootstrapping approach, which allows the computa-
tion of standard errors and related statistics without closed-form formulas26. We generate B bootstrap samples 
from the best-fit model f (t, �̂) , with an assumed error structure specified using parameter <dist1> in the 
options_fit.m or options_forecast.m files, to quantify the uncertainty of the parameter estimates and 
construct confidence intervals. The bootstrapping algorithm is given in ref6. Typically, the error structure in the 
data is modeled using a probability model such as the normal, Poisson or negative binomial distribution. Using 
nonlinear least squares (<method1>=0), in addition to a normally distributed error structure (<dist1>=0), 
we can also assume a Poisson (<dist1>=1) or a negative binomial distribution (<dist1>=2), whereby the 
variance-to-mean ratio is empirically estimated from the time series. To estimate this constant ratio, we group 
a fixed number of observations (e.g., 7 observations for daily data into a bin across time), calculate the mean 
and variance for each bin, and then estimate a constant variance-to-mean ratio by calculating the average of the 
variance-to-mean ratios over these bins. For non-normal error structure, we estimate parameters using maximum 
likelihood estimation (MLE) assuming Poisson or negative binomial error structures in the data (<method1>=1 
& <dist1>=1 for Poisson and  <method1>=3,  <method1>=4 & <dist1>=4, and <method1>=5 
& <dist1>=5 for the different negative binomial error structures described above).

Specifically, using the best-fit model f (t, �̂) , we generate B-times replicated simulated datasets of size nd , 
where the observation at time tj is sampled from the corresponding distribution specified by <dist1>. Next, 
we refit the model to each of the B simulated bootstrap datasets and re-estimate the parameters using the same 
estimation method as for the original data. The new parameter estimates for each realization are denoted by �̂b, 
where b = 1, 2, . . . ,B. Using the B sets of re-estimated parameters 

(
�̂b

)
, we can characterize the empirical dis-

tribution of each parameter estimate, calculate the variance, and construct confidence intervals for each param-
eter. The resulting uncertainty around the model fit can similarly be obtained from  f

(
t, �̂1

)
, 

f
(
t, �̂2

)
, . . . , f (t, �̂B) . For the purposes of this tutorial, we characterize the uncertainty using 300 bootstrap 

realizations (i.e., parameter < B >  = 300 in the  options_fit.m or options_forecast.m files).

Model‑based forecasts with quantified uncertainty
Based on the best-fit model f

(
t, �̂

)
, we can forecast h days ahead based on the estimate f (t + h, �̂) . The uncer-

tainty of the forecasted value can be obtained using the previously described parametric bootstrap method. Let

(1.2)l(�,α) =

n�

i=1









yi−1�

j=0

ln(j + α−1f (ti ,�))



+ yiln(α)− (yi + α−1f (ti ,�))ln(1+ α)− ln(yi!)



.

(1.3)l(�,α) =

n�

i=1









yi−1�

j=0

ln(j + α−1)



+ yiln(αf (ti ,�))− (yi + α−1)ln(1+ αf (ti ,�))− ln(yi!)



.

(1.4)

l(�,α) =

n�

i=1








yi−1�

j=0

ln(j + α−1µi
2−d)



+ yiln(αµi

d−1)− (yi + α−1µi
2−d)ln(1+ αµi

d−1)− ln(yi!)




f
(
t + h, �̂1

)
, f
(
t + h, �̂2

)
, . . . , f (t + h, �̂B)
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denote the forecasted value of the current state of the system propagated by a horizon of h time units, where 
�̂b denotes the estimation of parameter set � from the bth bootstrap sample. We can use these values to calcu-
late the bootstrap variance to measure the uncertainty of the forecasts and use the 2.5% and 97.5% percentiles 
to construct the 95% prediction intervals (95% PI). We can set the forecasting horizon (h) using the param-
eter  <forecastingperiod1> in the options_forecast.m file.

For illustration, we fit the models through LSQ with a normal error structure (i.e., <method1>=0 
and  <dist1>=0) for the monkeypox data. In the options_fit.m or options_forecast.m files, the 
values of the parameters related to the parameter estimation method and parametric bootstrapping follow:

14

% <=========================================================>
% <========== Parameter estimation and bootstrapping =======>
% <=========================================================>

method1=0; % Type of estimation method. See below:

% Nonlinear least squares (LSQ)=0,
% MLE Poisson=1,
% MLE (Neg Binomial)=3, with VAR=mean+alpha*mean;
% MLE (Neg Binomial)=4, with VAR=mean+alpha*mean^2;
% MLE (Neg Binomial)=5, with VAR=mean+alpha*mean^d;

dist1=0; % Define dist1 which is the type of error structure. 
See below:

%dist1=0; % Normal distribution to model error structure 
(method1=0)
%dist1=1; % Poisson error structure (method1=0 OR method1=1)
%dist1=2; % Neg. binomial error structure where var = 
factor1*mean where

% factor1 is empirically estimated from the 
time series

% data (method1=0)
%dist1=3; % MLE (Neg Binomial) with VAR=mean+alpha*mean  
(method1=3)
%dist1=4; % MLE (Neg Binomial) with VAR=mean+alpha*mean^2 
(method1=4)
%dist1=5; % MLE (Neg Binomial)with VAR=mean+alpha*mean^d 
(method1=5)

switch method1
case 1

dist1=1;
case 3

dist1=3;
case 4

dist1=4;
case 5

dist1=5;
end

numstartpoints=10; % Number of initial guesses for parameter 
estimation procedure using MultiStart

B=300; % number of bootstrap realizations to characterize 
parameter uncertainty
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Phenomenological growth models
Below we describe the growth models included in the toolbox. We use C(t) to denote the cumulative case count 
at time t  and C′(t) denotes the expected epidemic trajectory curve f (t,�).

(a)	 Generalized-growth model (GGM)

Models commonly used to study the growth pattern of infectious disease outbreaks often assume exponential 
growth in the absence of control interventions (e.g., compartmental models); however, growth patterns are likely 
slower than exponential for some diseases, depending on the transmission mode and population structure. For 
example, Ebola spreads via close contact, therefore, sub-exponential growth patterns would be expected in a 
constrained population contact structure27. The generalized growth model (GGM)21 includes a “deceleration of 
growth” parameter, p (range: [0, 1]), that relaxes the assumption of exponential growth. A value of p = 0 rep-
resents constant (linear) growth, while a value of p = 1 indicates exponential growth. If 0 < p < 1 , the growth 
pattern is characterized as sub-exponential or polynomial.

The GGM is as follows:

where the derivative C′(t) describes the incidence curve over time t. The positive parameter r  is the growth rate 
parameter ( r > 0 ), and p is the scaling of growth parameter21. For this model, we estimate  � =

(
r, p

)
. This 

model can be selected by setting <flag1>=0 in the options_fit.m and options_forecast.m files.

(b)	 Generalized logistic growth model (GLM)

The generalized logistic growth model (GLM) has three parameters and is given by:

The growth scaling parameter, p , is also used in the GLM to model a range of early epidemic growth profiles 
ranging from constant incidence 

(
p = 0

)
, polynomial 0 < p < 1, and exponential growth dynamics (p = 1) . 

When p = 1 , this model reduces to the logistic growth model (< flag1 >  = 3). The remaining model parameters 
are as follows: r is the growth rate, and K0 is the final cumulative epidemic size. For this model, � = (r, p,K0) . 
The GLM has been employed to generate short-term forecasts of Zika, Ebola, and COVID-19 epidemics10,14,15,28. 
This model can be selected by setting <flag1>=1 in the options_fit.m and options_forecast.m files.

(c)	 Richards model (RIC)

The well-known Richards model extends the simple logistic growth model and relies on three parameters. It 
extends the simple logistic growth model by incorporating a scaling parameter, a, that measures the deviation 
from the symmetric simple logistic growth curve6,29,30. The Richards model is given by the differential equation:

where  r is the growth rate, a is a scaling parameter and K0 is the final epidemic size. The Richards model has been 
employed to generate short-term forecasts of SARS, Zika, Ebola, and COVID-19 epidemics10,11,14,15,28. For this 
model, we estimate  � = (r, a,K0) . This model can be selected by setting <flag1>=4 in the options_fit.m 
and options_forecast.m files. A 4-parameter extension of the Richards model is the generalized Richards 
model (<flag1>=2), which incorporates the growth scaling parameter  p used in the GGM and GLM.

(d)	 Gompertz model (GOM)

The 2-parameter Gompertz model is given by:

where r is the growth rate and b > 0  describes the exponential decline of the growth rate. For this model, 
we estimate  � = (r, b). The GOM model has been employed to generate short-term forecasts of Zika and 
COVID-19 epidemics17,31,32. This model can be selected by setting <flag1>=5 in the options_fit.m and 
options_forecast.m files.

Initial condition
Besides the parameters of the dynamic growth models, it is also possible to estimate the initial number of cases 
in the time series, rather than fixing C(0) according to the first data point in the time series by specifying the 
Boolean variable <fxI0> in the options_fit.m and options_forecast.m files. Specifically, <fixI0>=1 

dC(t)

dt
= C′(t) = rC(t)p,

dC(t)

dt
= C′(t) = rCp(t)

(
1−

C(t)

K0

)

dC(t)

dt
= rC(t)

[
1−

(
C(t)

K0

)a]

dC(t)

dt
= C′(t) = rC(t)e−bt
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fixes the initial condition according to the first data point in the time series, whereas <fixI0>=0 estimates the 
initial condition along the other model parameters.

Quality of model fit
To assess the quality of model fit, we can compare the AICc (corrected Akaike Information Criterion) values of 
the best-fit models. The AICc is given by33,34:

where m is the number of model parameters and nd is the number of data points. Specifically for normal distri-
bution, the AICc is

where SSE =
∑nd

j=1 (f
(
tj , �̂

)
− ytj )

2
 . Thus, this metric accounts for model complexity regarding the number of 

model parameters and is used for model selection. In the options_fit.m and options_forecast.m 
files, the values of the parameters related to the selection of the growth model follow:

% <==================================================================>
% <============================== Growth model ======================>
% <==================================================================>

EXP=-1;  % -1 = EXP
GGM=0;  % 0 = GGM
GLM=1;  % 1 = GLM
GRM=2;  % 2 = GRM
LM=3;   % 3 = LM
RICH=4; % 4 = Richards
GOM=5; % 5 = Gompertz

flag1=GLM; % Growth model considered in the epidemic trajectory

model_name1='GLM';  % A string provided by the user for the name of the 
model

fixI0=1; % 0=Estimate the initial number of cases; 1 = Fix the initial 
number of cases according to the first data point in the time series

Plotting simulations of the growth model
Before fitting the growth model to the data, it is helpful to check that the selected model yields simulations 
broadly consistent with the range of the time series data by generating model simulations with different parameter 
values. For example, if data show systematic differences that contrast with the model solutions (e.g., multiple 
peaks or plateaus), it may suggest that the model is not the best choice for the data at hand.

The function plotGrowthModel.m can be used to plot model solutions where the user provides the 
type of growth model, parameter values, and initial condition as passing input parameters to the function in the 
following order: <flag1>,  r , p , a,K ,C(0), and finally the duration of the simulation (i.e., the time span over 
which the model is numerically solved). For example, the following call plots a simulation of the GLM model 
(<flag1>=1) with the following parameter values: r = 0.18, p = 0.9, and K = 1000. The initial condition is 
indicated by C(0) = 1 , and the total duration of the simulation is set at 200.

 > > plotGrowthModel(1,0.18,0.9,[],10000,1,200)
Of note, in the above call, the value of parameter a is passed empty ([]) since the GLM model does not use this 

parameter. This function will generate a figure (Fig. 2A) that shows the corresponding model solution, dC(t)/dt . 
Additional representative simulations from other growth models supported in the toolbox are shown in Fig. 2

Model and code testing
Before fitting the model to the data, it is helpful to check that the code works properly with simulated data before 
applying the toolbox to actual data. If we can estimate the true parameter values used to generate simulated 
data from the model, we can confidently move forward that the code is working appropriately with simulated 
data. For this purpose, we used the following selected values r = 0.16, p = 0.94 and K = 10000, to generate 

AICc = −2log(likelihood)+ 2m+
2m(m+ 1)

nd −m− 1

AICc = ndlog(SSE)+ 2m+
2m(m+ 1)

nd −m− 1
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a dataset from the GLM with Poisson error structure, initial condition C(0) = 1 , and duration of 120 days. 
We then proceeded to estimate the three model parameters for the simulated data using maximum likelihood 
(i.e., <method1>=1, <dist1>=1). The corresponding options_fit.m file is given in supplementary file 
1 (Code File 1S). Figure 3 shows the GLM fit and the empirical distribution of the estimated parameters for 
the simulated data. These findings indicate that the parameter estimates align with the “true” parameter values 
used to simulate the data. Moreover, the model is well calibrated to the data with the 95% prediction interval 
coverage falling at 95%.

Performance metrics
To assess calibration and forecasting performance, we used four performance metrics: the mean absolute error 
(MAE), the mean squared error (MSE), the coverage of the 95% prediction intervals (95% PI), and the weighted 
interval score (WIS)35. While it is possible to generate h-time units ahead forecasts of an evolving process, those 
forecasts looking into the future can only be evaluated when sufficient data for the h-time units ahead has been 
collected. In the options_forecast.m file, the parameter <getperformance> is a Boolean variable 
(0/1) to indicate whether the user wishes to compute the performance metrics of the forecasts when sufficient 
data is available.

The mean absolute error (MAE) is given by:

where th are the time points of the time series data36, and N is the calibration or forecasting period length. Simi-
larly, the mean squared error (MSE) is given by:

MAE=
1

N

N∑

h=1

∣∣∣f
(
th, �̂

)
− yth

∣∣∣,

MSE =
1

N

N∑

h=1

(f (th, �̂)− yth)
2
.

Figure 2.   Representative simulations from various growth models, namely (A) <flag1>=1, (B) 
<flag1>=2, (C)  <flag1>=3, and (D)  <flag1>=4, supported in the toolbox using parameter values: 
r = 0.18, p = 0.9, a = 0.6,K = 10000. Here, r refers to the growth parameter, p is a growth scaling parameter 
(GLM and GGM models), and a is a scaling parameter employed with the Richards model. K refers to the size of 
the epidemic. The initial condition is C(0) = 1 , and the total duration of the simulation is set at 200.
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The coverage of the 95% prediction interval (95% PI) corresponds to the fraction of data points that fall within 
the 95% PI, and is calculated as

where Lt and Ut are the lower and upper bounds of the 95% PIs, respectively, Yt are the data and 1 is an indicator 
variable that equals 1 if Yt is in the specified interval and 0 otherwise.

The weighted interval score (WIS)35,37, which is a proper score recently embraced for quantifying model fore-
casting performance in epidemic forecasting studies38–42, provides quantiles of predictive forecast distribution 
by combining a set of Interval Score (IS) for probabilistic forecasts. An IS is a simple proper score that requires 
only a central (1− α) ∗ 100% PI35 and is described as

In this Eq. 1 refers to the indicator function, meaning that 1
(
y < l

)
= 1 if y < l and 0 otherwise. The terms l  

and u represent the α2 and 1− α
2 quantiles of the forecast F. The IS consists of three distinct quantities:

1.	 The sharpness of F, given by the width u− l of the central (1− α)× 100% PI.
2.	 A penalty term 2

α
×

(
l − y

)
× 1

(
y < l

)
 for the observations that fall below the lower end point l  of the 

(1− α)× 100% PI. This penalty term is directly proportional to the distance between y and the lower end 
l  of the PI. The strength of the penalty depends on the level α.

3.	 An analogous penalty term  2
α
×

(
y − u

)
× 1

(
y > u

)
 for the observations falling above the upper limit u of 

the PI.

95%PI coverage =
1

N

N∑

t=1

1{Yt > Lt ∩ Yt < Ut},

ISα
(
F, y

)
= (u− l)+

2

α
×

(
l − y

)
× 1

(
y < l

)
+

2

α
×

(
y − u

)
× 1

(
y > u

)
.

Figure 3.   The generalized logistic-growth model (GLM) fit, and the empirical distribution of the estimated 
parameters for the simulated data. These findings indicate that the parameter estimates of r (growth rate), p 
(growth scaler) and K (epidemic size) are in line with the “true” parameter values used to simulate the data. 
The scaling parameter, a , is not estimated when employing the GLM. In the bottom panel, the solid red line is 
the median model fit and the dashed lines correspond to the 95% prediction intervals. The blue dots indicate 
the observed data points. The gray lines correspond to the mean of the model fits obtained from the parametric 
bootstrapping with 300 bootstrap realizations, and the cyan lines indicate the predictive uncertainty around the 
model fit.
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To provide more detailed and accurate information on the entire predictive distribution, we report several 
central PIs at different levels (1− α1) < (1− α2) < · · · < (1− αK ) along with the predictive median, ỹ  , which 
can be seen as a central prediction interval at level 1− α0 → 0 . This is referred to as the WIS, and it can be 
evaluated as follows:

where, wk =
αk
2  for k = 1, 2, . . . .K  and w0 =

1
2 . Hence, WIS can be interpreted as a measure of how close the 

entire distribution is to the observation in units on the scale of the observed data39,43.
In the options_forecast.m file, we can specify the parameters related to the epidemic forecasts, includ-

ing the forecasting horizon and an indicator variable to specify whether the forecasting performance metrics 
should be computed:

% <===================================================================>
% <====================== Forecasting parameters =====================>
% <===================================================================>

getperformance=1; % flag or indicator variable (1/0) to calculate 
forecasting performance or not

forecastingperiod=4; % forecast horizon (number of time units ahead)

Doubling times
Doubling times characterize the sequence of times at which the cumulative incidence doubles. Denote the 
times at which cumulative incidence doubles by tdj , such that 2C(tdj ) = C(tdj+1

) where td0 = 0,C
(
td0

)
= C0 , 

j = 1, 2, 3, . . . , ng and ng is the total number of times cumulative incidence doubles44,45. The actual sequence of 
“doubling times” is defined as follows:

For exponential growth, doubling times remain invariant and are given by (ln2)/r , whereas the doubling 
times increase when the growth pattern follows sub-exponential growth44. We can characterize the doubling 
times and their uncertainty from the best-fit model f

(
t, �̂

)
46. We can evaluate the uncertainty of the sequence 

of doubling times and the overall doubling time using the model parameter estimates derived from bootstrapping (
�̂b

)
, where b = 1, 2, 3, . . . ,B . That is, dj(�̂b) provides a sequence of doubling times for a set of bootstrap 

parameter estimates, �̂b , where b = 1, 2, 3, . . . ,B . We can use these curves to derive 95% CIs for the sequence of 
doubling times and quantify the probability of observing a given number of doublings.

The effective reproduction number, R
t

While the basic reproduction number, commonly denoted by R0 , gauges the transmission potential at the onset 
of an epidemic47, the effective reproduction number, Rt , captures changes in transmission potential throughout 
the epidemic48,49. We can characterize the effective reproduction number and its uncertainty from the best-fit 
model f

(
t, �̂

)
46. We can derive the 95% CI of Rt from the uncertainty associated with the parameter estimates 

derived from bootstrapping (�̂b) where b = 1, 2, 3, . . . ,B . That is, Rt(�̂b) provides a curve of the effective repro-
duction number for a set of parameter values �̂b where b = 1, 2, 3, . . . ,B . Denote the incidence at calendar time 
tj by I(tj , �̂b) , and the discretized probability distribution of the generation interval by ρtj . The effective reproduc-
tion number Rt(�̂b) can be estimated using the renewal equation48,49:

where the denominator represents the total number of cases that contribute (as primary cases) to generate the 
number of new cases Itj (as secondary cases) at calendar time tj49.

In the options_Rt.m file, we can specify the parameters related to the estimation of the effective repro-
duction number, namely the type of generation interval distribution (type_GId1), the mean of the generation 
interval (mean_GI1) and the variance of the generation interval (var_GI1) of the infectious disease of interest. 
For monkeypox, we employ a gamma distributed generation interval with a mean of 1.78 weeks and variance 
of 0.65 weeks250 as shown below:

WISα0:K
(
F, y

)
=

1

K + 1
2

.(w0.
∣∣y − ỹ

∣∣+
∑K

k=1
wk .ISαk

(
F, y

)
)

dj = �tdj = tdj − tdj−1wherej = 1, 2, 3, . . . , ng .

Rtj

(
�̂b

)
=

I
(
tj,�̂b

)

∑j
k=0 I

(
tj−k,�̂b

)
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function [type_GId1,mean_GI1,var_GI1]=options_Rt

%<=====================================================================>
% <============= Reproduction number number parameters =================>
% <=====================================================================>

type_GId1=1; % type of Generation interval distribution (1=Gamma, 
2=Exponential, 3=Delta)

mean_GI1=1.78;  % mean of the generation interval distribution

var_GI1=0.65; % variance of the generation interval distribution

Rolling window analysis
A rolling window analysis can be useful to assess the stability of the model parameters and forecasts over time 
and requires the specification of three parameters in the options_fit.m or options_forecast.m files: 
the start time (<tstart1>) of the first rolling window, the window size (<windowsize1>), and the end 
time (<tend1>) which corresponds to the start time of the last rolling window. Hence, the first rolling win-
dow contains observations for period <tstart1> to <tstart1> +  <windowsize1>− 1 , the second 
rolling window contains observations for period <tstart1>  + 1  through <windowsize1>, and so on. There-
fore, <windowsize1> corresponds to the length of the calibration period for each model fit. The outputs 
obtained from the rolling window analysis correspond to the parameter estimates and their uncertainty for 
each rolling window subsample. A plot of the parameter estimates over the rolling windows can help examine 
how the estimates change with time. The parameters can be specified in the options_fit.m and options_
forecast.m files as shown below:

% <===============================================================>
% <============ Parameters of the rolling window analysis ========>
% <===============================================================>

windowsize1=32;  % moving window size

tstart1=1; % time point for the start of rolling window analysis

tend1=1;  %time point for the end of the rolling window analysis

However, they can also be passed as input parameters to the fitting and forecasting functions described in 
the following section.

Results and discussion
The input dataset
For this toolbox, the time series data will be stored in the ‘input’ folder and needs to be a text file with the 
extension *.txt. The first column should correspond to the time index: 0,1,2,3, …, and the second column 
corresponds to the temporal incidence data. If the time series file contains cumulative incidence count data, the 
name of the time series data file must start with “cumulative”.

To illustrate the methodology presented in this tutorial paper, we employ the weekly incidence curve of mon-
keypox cases reported in the USA from the publicly available data published by the Centers for Disease Control 
and Prevention (CDC) from the week of 12 May 2022 through the week of 15 December 202251. The data file 
is pre-loaded in the input folder within the toolbox’s working directory (data file path: ./input/ Most_
Recent_Timeseries_US-CDC.txt). A snapshot in Excel of the contents of the file is shown in Fig. 4.

In the options_fit.m and options_forecast.m files, the user specifies the parameters related to 
model fitting and forecasting, respectively, as shown below. For instance, the parameter < cadfilename1> is a 
string used to indicate the name of the data file, parameter <caddisease> is a string used to indicate the name 
of the disease related to the time series data, and  < datatype> is  a string parameter indicating the nature of 
the data (e.g., cases, deaths, hospitalizations).
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% <===============================================================>
% <======================= Datasets properties ===================>
% <===============================================================>
% Located in the input folder, the time series data file is a text file 
with extension *.txt. 
% The time series data file contains the incidence curve of the epidemic 
of interest. 
% The first column corresponds to time index: 0,1,2, ... and the second
% column corresponds to the temporal incidence data. If the time series 
file contains cumulative incidence count data, 
% the name of the time series data file must start with "cumulative".

cadfilename1='Most_Recent_Timeseries_US-CDC'; % Name of the data file 
containing the incidence curve

caddisease='monkeypox'; % string indicating the name of the disease 
related to the time series data

datatype='cases'; % string indicating the nature of the data (cases, 
deaths, hospitalizations, etc)

Fitting the models to data with quantified uncertainty
The function Run_Fit_GrowthModels.m can be used to fit one of the phenomenological growth mod-
els to data with quantified uncertainty. The function uses the input parameters specified by the user in the 

Figure 4.   A screenshot of the weekly incidence curve of monkeypox (mpox) cases reported in the USA 
published by the Centers for Disease Control and Prevention (CDC) for the week of 12 May 2022 through the 
week of 15 December 202251. The file is in the input folder within the working directory (data file path:./input/ 
Most_Recent_Timeseries_US-CDC.txt). The first column of the file corresponds to the time index, and the 
second column corresponds to the weekly incidence curve of monkeypox cases.
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options_fit.m file. However, the function may receive the parameters related to the rolling window analysis 
(<tstart1>, <tend1>,  and  <windowsize1>)  as passing input parameters with the remaining inputs 
accessed from the options_fit.m file.

For example, we can fit the generalized logistic growth model (<flag1>=1 in  options_fit.m file) to the 
weekly incidence curve of monkeypox in the USA pre-loaded in the input folder (data file path: ./input/ 
Most_Recent_Timeseries_US-CDC.txt). We assume a normal error structure (i.e., <dist1>=0 in 
the options_fit.m file) and examine the fit of the model to the data. Since the monkeypox epidemic curve 
comprises 32 weeks of data, we can pass the rolling window parameters to the function call in MATLAB as 
follows:

 >> Run_Fit_GrowthModels(1,1,32).
In the above call to the function, <tstart1>=1,  <tend1>=1 , and <windowsize>=32. Hence, this func-

tion will generate a single model fit and store several output MATLAB files related to the model fit, parameter 
estimates, and the quality of model fit in the output folder. For each model fit, it will also generate a figure with 
the model fit and the corresponding empirical distributions of the estimated parameters (Fig. 5).

Plot the mean model fits and compute calibration performance metrics
Once the Run_Fit_GrowthModels.m has been executed, the user can run the function plotFit_
GrowthModels.m to display the model fit and the empirical distribution of the parameters. It also saves .csv 
files in the output folder with the model fit, the parameter estimates with 95% CIs, the Monte Carlo standard 
errors (MCSE) of the parameter estimates, the AICc values, the calibration performance metrics, and the esti-
mated doubling times of the incidence trajectory. The call to the function from MATLAB’s command line follows:

 >>plotFit_GrowthModels(1,1,32)
The function uses the same rolling window parameters employed in the Run_Fit_GrowthModels.m 

function call. This function will store the following .csv files in the output folder:

(1)	 The model fit to the data:
Fit-flag1-1-i-1-fixI0-1-method-0-dist-0-calibrationperiod-32-horizon-0-mon-

keypox-cases.csv
(2)	 Model parameter estimates:
parameters-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-

1-calibrationperiod-32-horizon-0-monkeypox-cases.csv
(3)	 Monte Carlo standard errors:

Figure 5.   Fitting the generalized logistic-growth model (GLM) to the entire incidence curve of the monkeypox 
epidemic in the USA for the week of 12 May 2022 through the week of 15 December 2022. The model 
provides a good fit to the entire incidence curve. The model supports sub-exponential growth dynamics (i.e., 
p ~ 0.8–0.9), and has a growth rate ( r) estimated between 1.6 and 2.3. The epidemic size parameter, K, was 
estimated at ~ 28,000–30,000 cases, and the scaling parameter, a , is not estimated when employing the GLM. 
The horizontal dashed lines in the top panels show the range of the 95% CIs of the parameter estimates. In the 
bottom panel, the solid red line is the median model fit, and the dashed lines correspond to the 95% PIs. The 
blue dots indicate the observed data points. The gray lines correspond to the mean of the model fits obtained 
from the parametric bootstrapping with 300 bootstrap realizations, and the cyan lines indicate the predictive 
uncertainty around the model fit.
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MCSES-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-1-calibra-
tionperiod-32-horizon-0-monkeypox-cases.csv

(4)	 AICc values:
AICcs-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-1-calibra-

tionperiod-32-horizon-0-monkeypox-cases.csv
(5)	 Calibration performance metrics:
parameters-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-

1-calibrationperiod-32-horizon-0-monkeypox-cases.csv
(6)	 Doubling times:
doublingtimes-flag1-1-tstart-1-fixI0-1-method-0-dist-0-calibrationperiod-

32-horizon-0-monkeypox-cases.csv

For this example, the resulting calibration performance metrics indicate that the 95% prediction intervals 
include all the data points comprising the epidemic curve of monkeypox (mpox) in the USA (i.e., coverage of 
the 95% PI is 100%) (Table 2). Moreover, the sequence of doubling times increased from 1.04 (95% CI: 0.94, 
1.16) for the 1st doubling, 1.12 (95% CI: 1.05, 1.26) for the 2nd doubling to 3.68 (95% CI: 2.59, 7.12) for the 8th 
doubling time. The output also shows the probability of observing the ith doubling time, which decreases from 
about 1.0 during the first eight doublings to 0.023 for the 9th doubling. Hence, it is improbable to observe more 
than 8 doublings.

This function also plots the temporal sequence of parameter estimates and their uncertainty obtained from the 
rolling-window analysis whenever the value of the parameter <tend1> is  greater than parameter  <tstart1>. 
For instance, after running the function Run_Fit_GrowthModels(1,3,30) to generate a rolling window 
analysis of model fits to capture the outbreak’s trajectory, we employed a window size of 30 with start times at 
1 (end time: 30), 2 (end time: 31), and 3 (end time: 32), we can run the function plotFit_GrowthMod-
els(1,3,30) from MATLAB’s command line to generate the rolling window analysis plot (Fig. 6).

We can also assess the fit of the Richards model to the monkeypox incidence curve (<flag1>=4 in 
options_fit.m file) and compare the quality of the model fit to that obtained using the generalized logistic 
growth model using the performance metrics. Figure 7 shows the fit of the Richards model to the epidemic curve 
and the empirical distribution of the parameters.

The calibration performance metrics of the generalized logistic growth model and the Richards model 
(Table 2) indicate that the Richards model yields a better fit to the data in terms of the MAE, MSE, and WIS 
while both models achieved a 100% coverage of the 95% PI.

Plotting and assessing model‑based forecasts
To generate a forecast, we can use the function Run_Forecasting_GrowthModels.m. This function uses 
the input parameters provided by the user in the options_forecast.m file. However, the function can 
also receive  <tstart1>, <tend1>, <windowsize1>,  and  <forecastingperiod>  as passing input 
parameters with the remaining input parameters accessed from the options_forecast.m file.

For example, we can fit the generalized logistic growth model (<flag1> =1 in options_forecast.m file) 
to the first 10 weeks of the monkeypox epidemic in the USA assuming a normal error structure (i.e., <dist1>  = 0 
in options_forecast.m file) and generate a 4-week ahead prediction by running the function from MAT-
LAB’s command line as follows:

 >> Run_Forecasting_GrowthModels(1,1,10,4)
This function will generate a single model fit and store several output MATLAB files related to the model fit 

and forecast, parameter estimates, and the calibration and forecasting performance metrics. It will also gener-
ate a figure with the model fit and 4-week ahead forecast and the corresponding empirical distributions of the 
parameters (Fig. 8). Overall, the 4-week ahead forecast shown in Fig. 8 underpredicted the trajectory of the 
epidemic. Figure 1S (supplementary file 1) illustrates the results of a timing study related to the employed mod-
eling methodology utilized in Fig. 8. For comparison, Fig. 9 also shows the model fit and 4-week ahead forecast 
when the model is calibrated using the first 12 weeks of the epidemic curve instead of the first 10 weeks. The 
4-week ahead forecast calibrated on the first 12 weeks of data forecasted better the epidemic curve than the one 
calibrated on the first 10 weeks of data.

Once the user has executed the function Run_Forecasting_GrowthModels, the function plot-
Forecast_GrowthModels can be used to plot the model-based forecast and the performance metrics of the 
forecast (MSE, MAE, 95% PI, WIS) based on the inputs indicated in the options_forecast.m file. However, 
this function can also receive  <tstart1>, <tend1>, < windowsize1>,  and <forecastingperiod> 

Table 2.   Calibration performance metrics for a 32-week calibration period quantifying how well the fits of the 
generalized logistic growth model and the Richards model captured the epidemic curve of monkeypox in the 
USA. The metrics indicate that the Richards model yields a better fit to the data in terms of the MAE, MSE, 
and WIS while both models achieved a 100% coverage of the 95% prediction interval.

Model MAE MSE Coverage 95% PI WIS

Generalized logistic growth model 110.34 17,277.54 100.00 63.39

Richards model 69.59 7595.55 100.00 43.17
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Figure 6.   Results of the rolling window analysis after running the function plotFit_
GrowthModels(1,3,30). The top panel shows the monkeypox epidemic curve in the USA for reference. 
The bottom panels show the temporal sequence of parameter estimates (-o-, red line), and their 95% CIs (blue 
dashed lines) for three different moving time windows (1–30, 2–31, and 3–32).

Figure 7.   The fit of the Richards model to the entire incidence curve of the monkeypox epidemic in the USA 
for the week of 12 May 2022 through the week of 15 December 2022. The model provides a good fit to the 
entire incidence curve. The epidemic size parameter, K, was estimated at ~ 28,000–30,000 cases, similar to that 
estimated using the generalized logistic-growth model. The growth rate, r , was estimated to be between 0.88 
and 0.98, and the scaling parameter, a , between 0.32 and 0.4. The growth scaling parameter, p , is not estimated 
for the Richards model. The horizontal dashed lines in the top panels show the range of the 95% CIs of the 
parameter estimates. In the bottom panel, the solid red line is the median model fit, and the dashed lines 
correspond to the 95% PIs. The blue dots indicate the observed data points. The gray lines correspond to the 
mean of the model fits obtained from the parametric bootstrapping with 300 bootstrap realizations, and the 
cyan lines indicate the predictive uncertainty around the model fit.
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as passing input parameters while the remaining inputs are retrieved from the options_forecast.m file. 
Moreover, the data associated with the forecasts, the parameter estimates, the Monte Carlo standard errors 
(MCSE) of the parameter estimates, the AICc values, the calibration and forecasting performance metrics, and 
the doubling times of the entire trajectory, including the forecasting period, are saved as .csv files in the out-
put folder. For example, the following line illustrates the execution of the function from MATLAB’s command 
window:

 >> plotForecast_GrowthModels(1,1,10,4)
This function plots the model fit based on the first 10-weeks of data as the calibration period and produces 

a 4-week ahead forecast and the empirical distribution of the estimated parameters (Fig. 8). It also displays the 
associated forecasting performance metrics (Fig. 10).

Similarly, we can generate the forecast using the Richards model by specifying  <flag1>=4 in the options_
forecast.m file and compare the forecasting performance of this model with that obtained employing the 
generalized logistic growth model using the performance metrics. Figure 11 shows the corresponding forecast 
of the Richards model based on the first 10 weeks of the epidemic curve and the resulting empirical distribution 
of the parameters.

The forecasting performance metrics of the generalized logistic growth model and the Richards model based 
on the first 10 weeks of the epidemic curve (Table 3) indicate that the generalized logistic growth model outper-
formed the Richards model in terms of forecasting performance.

Plotting the effective reproduction number, R
t

Once the Run_Fit_GrowthModels.m has been executed, the user can also run the function plotFit_
ReproductionNumber.m to display the effective reproduction number, Rt based on the inputs indicated 
in the options_fit.m and options_Rt.m files (Fig. 12). It also saves .csv files in the output folder with 
the effective reproduction number, the model fit, the parameter estimates, including 95% CIs, the Monte Carlo 
standard errors (MCSE) of the parameter estimates, the AICc values, the calibration performance metrics, and 
the estimated doubling times of the incidence trajectory. The call to the function from MATLAB’s command 
line follows:

 >> plotFit_ReproductionNumber(1,1,32)
The function uses the same rolling window parameters employed in the Run_Fit_GrowthModels.m function 

call. This function will store the following .csv files in the output folder:

Figure 8.   The generalized logistic-growth model (GLM) fit, and 4-week ahead forecast based on the first 
10 weeks of the monkeypox epidemic in the USA for the week of 12 May 2022 through the week of 14 July 2022. 
The model fit is consistent with early exponential growth dynamics (i.e., p ~ 1), and has an estimated growth rate 
( r) between 0.73 and 0.94. The epidemic size parameter, K, was estimated to be between 120,000 and 170,000 
cases, and the scaling parameter, a , is not estimated when employing a GLM. The horizontal dashed lines in the 
top panels show the range of the 95% CIs of the parameter estimates. In the bottom panel, the solid red line is 
the median model fit, and the dashed lines correspond to the 95% PIs. The blue dots indicate the observed data 
points. The gray lines correspond to the mean of the model fits obtained from the parametric bootstrapping 
with 300 bootstrap realizations, and the cyan lines indicate the predictive uncertainty around the model fit. The 
vertical dashed line separates the 10-week calibration (left) and the 4-week ahead forecasting period (right). 
Overall, the 4-week ahead forecast underpredicted the trajectory of the epidemic.
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(1)	 The model fit to the data:
Fit-flag1-1-i-1-fixI0-1-method-0-dist-0-calibrationperiod-32-horizon-0-mon-

keypox-cases.csv
(2)	 Model parameter estimates:
parameters-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-

1-calibrationperiod-32-horizon-0-monkeypox-cases.csv
(3)	 Monte Carlo standard errors:
MCSES-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-1-calibra-

tionperiod-32-horizon-0-monkeypox-cases.csv
(4)	 AICc values:
AICcs-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-1-calibra-

tionperiod-32-horizon-0-monkeypox-cases.csv
(5)	 Calibration performance metrics:
parameters-rollingwindow-flag1-1-fixI0-1-method-0-dist-0-tstart-1-tend-

1-calibrationperiod-32-horizon-0-monkeypox-cases.csv
(6)	 Doubling times:
doublingtimes-flag1-1-tstart-1-fixI0-1-method-0-dist-0-calibrationperiod-

32-horizon-0-monkeypox-cases.csv
(7)	 Effective reproduction number:
Rt-flag1-1-tstart-1-fixI0-1-method-0-dist-0-calibrationperiod-32-horizon-

0-monkeypox-cases.csv

Once the user has executed the function Run_Forecasting_GrowthModels, the function plot-
Forecast_ReproductionNumber can be used to plot the effective reproduction number associated with 
the entire trajectory including the forecast based on the inputs indicated in the options_forecast.m and 
options_Rt.m files. Moreover, the data associated with the forecasts, the parameter estimates, the doubling 

Figure 9.   The generalized logistic-growth model (GLM) fit, and 4-week ahead forecast based on the first 
12 weeks of the monkeypox epidemic in the USA for the week of 12 May 2022 through the week of 28 July 2022. 
The model fit is consistent with early sub-exponential growth dynamics (i.e., p ~ 0.92), with a growth rate ( r) 
estimated between 0.89 and 1.4. The epidemic size parameter, K, was estimated to be between 20,000 and 29,000 
cases, and the scaling parameter, a , is not estimated when employing a GLM. The horizontal dashed lines in the 
top panels show the range of the 95% Cis of the parameter estimates. In the bottom panel, the solid red line is 
the median model fit, and the dashed lines correspond to the 95% prediction intervals. The blue dots indicate 
the observed data points. The gray lines correspond to the mean of the model fits obtained from the parametric 
bootstrapping with 300 bootstrap realizations, and the cyan lines indicate the predictive uncertainty around 
the model fit. The vertical dashed line separates the 12-week calibration (left) and the 4-week ahead forecasting 
period (right). Overall, the 4-week ahead forecast using the GLM with a 12-week calibration period tracked the 
trajectory of the epidemic well.
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Figure 10.   Forecasting performance metrics (MAE, MSE, 95% PI coverage, WIS) associated with the 
4-week ahead forecasts obtained from fitting the generalized logistic growth model to the first 10 weeks of the 
monkeypox epidemic in the USA.

Figure 11.   The Richards model fit, and 4-week ahead forecast based on the first 10 weeks of the monkeypox 
epidemic in the USA for the week of 12 May 2022 through the week of 14 July 2022. The model fit estimates 
the epidemic size at K ~ 8300–11,000 cases, and the growth rate, r , was estimated to be between 0.71 and 0.73. 
The scaling parameter, a , fell between 1.2 and 2.1. The growth scaling parameter, p , is not estimated for the 
Richards model. The horizontal dashed lines in the top panels show the range of the 95% CIs of the parameter 
estimates. In the bottom panel, the solid red line is the median model fit, and the dashed lines correspond to the 
95% PIs. The blue dots indicate the observed data points. The gray lines (closely aligned with the median model 
fit) correspond to the mean of the model fits obtained from the parametric bootstrapping with 300 bootstrap 
realizations, and the cyan lines indicate the predictive uncertainty around the model fit. The vertical dashed line 
separates the 10-week calibration period (left) and the 4-week ahead forecast period (right). Overall, the 4-week 
ahead forecast underpredicted the trajectory of the epidemic.
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times, and the effective reproduction number are saved as .csv files in the output folder. For example, the fol-
lowing line illustrates the execution of the function from MATLAB’s command window:

 >> plotForecast_ReproductionNumber(1,1,10,4)
This function plots the model fit based on a 10-week calibration period, a 4-week ahead forecast, and the 

corresponding effective reproduction number (Fig. 13).

Conclusion
In this tutorial-based primer, we have introduced the first toolbox, which will be broadly applicable to fit and 
forecast time-series trajectories using phenomenological dynamic growth models. In particular, the models 
included in the toolbox have been frequently applied to characterize and forecast epidemic trajectories in near 
real-time10,11,14,15,18,21,28. The toolbox can be used as part of the curriculum of student training in mathemati-
cal biology, applied statistics, infectious disease modeling, and specialty courses in epidemic modeling and 

Table 3.   Calibration and forecasting performance metrics obtained from the fits of the generalized logistic 
growth model and the Richards model based on the first 10 weeks of the monkeypox epidemic in the USA 
forecasting out 4-weeks. The metrics indicate that the Richards model yields a better fit to the data (better 
calibration performance) than the generalized logistic growth model in terms of the MAE, MSE, and WIS. 
However, the generalized logistic growth model outperformed the Richards model in terms of forecasting 
performance.

Model MAE MSE Coverage 95% PI WIS

Calibration performance

Generalized logistic growth 18.53 813.60 90.00 13.30

Richards 11.97 300.82 100.00 8.65

Forecast performance

 Generalized logistic growth 1240.20 1,925,007.00 25.00 976.22

 Richards 1960.40 4,381,564.00 0.00 1812.55

Figure 12.   The top panel displays the fit of the generalized logistic-growth model to the entire incidence curve 
of the monkeypox epidemic in the USA for the week of 12 May 2022 through the week of 15 December 2022. 
In the top panel, the solid red line is the median model fit, and the dashed lines correspond to the 95% PIs. The 
blue dots indicate the observed data points. The gray lines correspond to the mean of the model fits obtained 
from the parametric bootstrapping with 300 bootstrap realizations, and the cyan lines indicate the predictive 
uncertainty around the model fit. The bottom panel shows the corresponding effective reproduction number, 
Rt, assuming a gamma distribution for the generation interval with a gamma distributed generation interval 
with a mean of 1.78 weeks and variance of 0.65 weeks250. The solid red line corresponds to the mean effective 
reproduction number, while the dashed lines correspond to the 95% confidence bounds around the mean.
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time-series forecasting. It is also a helpful resource for researchers and policymakers who need to conduct short-
term forecasts by relying on historical and real-time trajectory data of a process of interest.

We note some limitations and areas for future work. First, the toolbox is currently intended for users with 
minimal programming skills. We plan to develop a web interface with intuitive navigation to enhance the tool-
box’s usability and accessibility, making it more widely accessible to users with varying technical expertise. Simi-
larly, we plan to exploit parallel computing techniques in future software versions to speed up the running time.

Data availability
Project name: Forecasting time series with phenomenological growth models. Project home page: https://​github.​
com/​gchow​ell/​forec​asting_​growt​hmode​ls. Operating system(s): Platform independent. Programming language: 
MATLAB. Other requirements: NA. License: This program is free software: it can be redistributed or modified 
under the GNU Public License as published by the Free Software Foundation, version 3 of the License. Any 
restrictions to use by non-academics: None.
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