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Effective lung nodule detection 
using deep CNN with dual 
attention mechanisms
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Novel methods are required to enhance lung cancer detection, which has overtaken other 
cancer-related causes of death as the major cause of cancer-related mortality. Radiologists have 
long-standing methods for locating lung nodules in patients with lung cancer, such as computed 
tomography (CT) scans. Radiologists must manually review a significant amount of CT scan pictures, 
which makes the process time-consuming and prone to human error. Computer-aided diagnosis 
(CAD) systems have been created to help radiologists with their evaluations in order to overcome 
these difficulties. These systems make use of cutting-edge deep learning architectures. These CAD 
systems are designed to improve lung nodule diagnosis efficiency and accuracy. In this study, a 
bespoke convolutional neural network (CNN) with a dual attention mechanism was created, which 
was especially crafted to concentrate on the most important elements in images of lung nodules. The 
CNN model extracts informative features from the images, while the attention module incorporates 
both channel attention and spatial attention mechanisms to selectively highlight significant features. 
After the attention module, global average pooling is applied to summarize the spatial information. 
To evaluate the performance of the proposed model, extensive experiments were conducted 
using benchmark dataset of lung nodules. The results of these experiments demonstrated that our 
model surpasses recent models and achieves state-of-the-art accuracy in lung nodule detection and 
classification tasks.

Lung cancer is the main reason for cancer-related deaths, according to the American Cancer Society. Following to 
the statistics for cancer in 2022, there were almost 1.9 million reported cases and a total of 609,360 deaths. Nearly 
350 of these deaths each day were caused by lung  cancer1. Despite medical improvements, cancer continues to 
be a serious health concern, and it is still very difficult to successfully treat and prevent its many forms. Cancer 
therapy is complicated and difficult due to its many kinds. Furthermore, certain tumors can be fatal, emphasizing 
the importance of early  detection2. Screening is critical for detecting cancer in its early stages since it looks for 
cancer cells in patients who are asymptomatic. This stage is critical in the battle against cancer because it allows 
for prompt detection, which is required for effective treatment. Medical imaging systems provide important 
information about the kind and stage of cancer that may be used to build a suitable treatment  strategy3,4. As a 
result, it is critical to offer clinical follow-up for patients and to undertake cancer tests in order to detect cancer 
early. This method facilitates in treatment planning and, as a result, improves patient  outcomes5.

The quality of the data collected utilizing scanning technologies has a considerable impact on the accuracy 
of sickness diagnosis and treatment findings. Precise analysis based on reliable screening processes and treat-
ment regimens can improve patients’ overall quality of life and length of life. The use of modern cancer imaging 
technology is required to reveal the incredibly effective treatment regimens. Patients who undergo the neces-
sary imaging tests and inspection have a significant advantage over other patients during the arduous treatment 
process. A comprehensive analysis of imaging data is incredibly important in order to obtain the finest treatment 
plans and, ultimately, improve patient outcomes.
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The expenses of screening procedures for lung nodules are considerable, and it can be difficult to recognize 
abnormalities since nodules come in a diversity of sizes and forms. In order to tackle this challenging endeavor, 
computer-aided diagnostic (CAD) systems have emerged as crucial tools for physicians. Positive results from 
recent research on machine learning-based digital pathology picture categorization point to the possibility of 
a rise in the use of these systems in pathology clinics. The use of AI and machine learning-based solutions is 
expected to significantly increase in the future, particularly within the discipline of pathology.

The most lethal type of cancer is lung cancer, however early identification can significantly improve the 
prognosis for patients. Low-dose computed tomography has become the gold standard for identifying which 
lung nodules need a biopsy to evaluate if they are malignant or benign. In clinical settings, this approach has a 
comparatively high risk of false positives. It frequently requires the identification of a sizable number of possibly 
cancerous nodules for biopsy, resulting in a great deal of unneeded biopsies being carried out on people who 
aren’t genuinely suffering from cancer.

1. We developed a custom CNN architecture with integrated channel and spatial attention mechanisms 
enhances feature extraction by selectively focusing on relevant features, improving accuracy in image clas-
sification.

2. The inclusion of attention mechanisms addresses limitations of traditional CNNs, allowing the model to 
emphasize important patterns and suppress noise, resulting in improved discriminative power.

3. The improved accuracy and efficiency of our model has implications for various domains such as medical 
imaging, object recognition, and natural language processing, enabling more accurate and reliable classifica-
tion in these applications.

4. The extensive experience is performed on challenging dataset and reveals that the proposed model achieved 
state-of-the-art performance when compared to existing techniques.

The rest of this manuscript is structured as follows: “Related work” section provides a concise summary of 
the existing techniques for lung nodule categorization reported in the literature. “Proposed model” section gives 
a detailed discussion of the materials and procedures used to treat pulmonary nodules. “Experimental results” 
section discusses the execution of the suggested model, as well as experimental data and the evaluation of the 
proposed model. Finally, in “Conclusion and future direction” section, we end the present work.

Related work
Several investigations have employed deep learning methodologies to address classification  issues6–8. The objec-
tive of this study is closely aligned with the existing computer-aided diagnosis (CAD) applications for the clas-
sification of lung nodules. Consequently, we conducted a thorough examination of the cutting-edge techniques 
for classifying lung nodules that have been recently developed.

Researchers have employed a two-dimensional convolutional neural network (CNN) to detect lung nodules 
in CT scans. This CNN focuses on extracting and learning important features from the two-dimensional images. 
For instance, in Ref.9, the authors developed a transfer learning technique using MultiResolution CNN to classify 
candidates in lung nodule recognition. They applied CNN-based image-wise calculations with different depth 
layers, resulting in improved accuracy of lung nodule detection. They achieved 0.9733 precision on the Luna 16 
Data Set. In Ref.10, a CAD approach for pulmonary nodules was proposed, utilizing multi-view convolutional 
networks to reduce false positives. Another deep learning model, MultiView-KBC11, was proposed for lung 
nodule recognition. It employed KBC based deep learning technique to classify benign-malignant lung nodules 
on chest images. In Ref.12, a deep residual learning approach using CT scans was presented for cancer detection. 
ResNet and UNet  models13 were employed for feature extraction, and machine learning algorithms (MLA) such 
as XGBoost and Random Forest were employed for classification, achieving 84% accuracy. They conducted a 
research study that used machine learning and ensemble learning methods to predict lung cancer based on early 
symptoms. They utilized various MLAs, including multilayer perceptron (MLP)14, Naïve Bayes, support vector 
machine (SVM)15, and neural networks for lung cancer classification. The dataset for this study was obtained 
from the UCI repository. The ensemble learning approach in this study achieved a 90% accuracy.

The 3D CNN, similar to its 2D counterpart, incorporates three dimensions in feature learning. It considers 
pairs of dimensions simultaneously, such as x and y, y and z, and z and x. To address false-positive reduction in 
lung nodule detection using chest radiographs,  researchers16 developed an ensemble of CNNs. Another  study17 
introduced Multilevel contextual Encoding for false-positive reduction in chest radiographs, employing a fivefold 
cross-validation approach to detect nodule sizes and shapes. Their architecture achieved 87% sensitivity with 
an average of four false positives per scan. For detecting Small Cell Lung Cancer, a novel approach utilizing the 
entropy degradation method (EDM) was proposed. Researchers developed their own neural network (EDM) 
due to limitations in the dataset, using six healthy and six cancerous samples, achieving a detection accuracy of 
77.8%. In another  work18, machine learning techniques with image processing were employed for lung cancer 
detection. The data underwent various image processing techniques to enable the machine learning algorithm, 
and classification was done using a Support Vector Machine. In a different  study19, Convolutional Neural Net-
works (CNN) combined with multiple pre-processing methods were explored. Deep learning played a significant 
role, demonstrating high accuracy and a low false-positive rate in automated labeling of scans.

The studies mentioned earlier do not employ an attention-based CNN deep learning model to identify lung 
nodules. Our objective is to utilize CNNs and customize their architecture to create a robust and effective tool 
for clinicians and researchers, enabling improved detection and classification of lung nodules. This, in turn, will 
contribute to better patient outcomes and enhanced healthcare. Previous research encountered challenges such 
as insufficient or small datasets for detection, resulting in limited subjects. These findings underscore the limited 
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accuracy achieved with a higher number of machine learning or deep learning algorithms. Our proposed study 
intends to overcome these limitations and bridge the gaps in current research.

Proposed model
The proposed CNN-based attention model addresses two challenges in deep learning-based identification of 
malignant lung nodules: limited labeled samples and interference from complex background tissues. It lever-
ages unlabeled CT scans to extract valuable image representations and learns fine-grained nodule features while 
defending against redundant information. The model comprises four components: data collection and preproc-
essing, data conversion and augmentation, deep feature extraction model, and a Dual Attention Module. The 
Dual Attention Module selectively focuses on relevant regions and features in the CT scans. The overall model 
structure is shown in Fig. 1, aiming to improve the accuracy of malignant lung nodule identification tasks by 
overcoming data limitations and background interference.

Data collection and preprocessing
The process of data gathering is crucial in research as it directly influences the quality of the results. First, the 
leading attention is on combining a widespread dataset containing CT Scan images. This dataset is acquired from 
the LUNA 16 Data Set, which extensively aids in the successful achievement of research. Ensuring the collection 
of high-quality data is necessary to enable effortless interpretation by machines. All CT Scan images within the 
dataset are of uniform quality, facilitating clear presentation to medical professionals. The images in the LUNA 
Data Set are formatted as (.mhd) and (.raw) files, with the former containing header data and the latter contain-
ing multidimensional image data. To handle these images and initiate the preprocessing phase, the SimpleITK 
python library is utilized, allowing for the efficient reading of all .mhd files. The subsequent step in the proposed 
solution involves data preprocessing, which plays a critical role in transforming the data into a more compre-
hensible format for machines, enabling easier understanding and processing. This step is of utmost importance 
to ensure that the data is appropriately prepared to enhance machine comprehension. Within the LUNA 16 
Data Set, the CT scans consist of n 512 × 512 axial scans, with each scan containing 200 images. Among these 
images, only 1351 are positive nodules, while the remainder are negative cases. Given the class imbalance, data 
augmentation techniques are employed to address this issue. Instead of training the CNN model on all original 
pixels, which would increase computational load and training time, a decision is made to crop the images based 
on the provided coordinates in the annotations. Figure 5 visually demonstrates an example of a cropped CT 
scan image from the dataset.

Additionally, it is noteworthy that all annotations within the LUNA 16 Data Set are initially represented 
in Cartesian coordinates and subsequently converted to voxel coordinates. Furthermore, the image intensity 
within the dataset is defined in the Hounsfield scale, requiring appropriate adjustment and rescaling for effec-
tive image processing. The images in the dataset are classified into two distinct categories: positive and negative. 
Nodule candidates marked as 1 are classified as positive, while those marked as 0 are classified as negative. Image 
labels are assigned accordingly to denote positive and negative instances. These labeled data are then utilized 
for training and testing purposes. Typically, the data is provided in the format of DICOM images or MHD/Raw 
files. Prior to feeding the data into any machine learning or deep learning model, it is crucial to convert the data 
into the required format, ensuring machines can effectively utilize and learn from it. Figure 5 provides a visual 
representation of the proposed system, further illustrating its components and functionalities.

Data conversion and augmentation
The subsequent stage involves converting all the pre-processed data into the JPEG format to ensure computer 
comprehensibility. JPEG format is easily readable by both humans and computers, allowing for visual verifica-
tion of the desired format. This format enables convenient viewing and assessment of the images. Additionally, 
the data is transformed into smaller 50 × 50 images to reduce data size and minimize computational power 
requirements. Larger data sizes tend to consume substantial computing resources, and downsizing the images 
to 50 × 50 dimensions helps address this issue. In cases where there is an imbalance in the data, it is crucial to 

Figure 1.  The overall flow of the proposed model for lunge nodule classification.
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augment the dataset. Since the data was not balanced, manual data augmentation techniques are employed. 
Data  augmentation20 plays a significant role in addressing the class imbalance by rotating the images in various 
directions and creating additional copies from different angles. This approach generates more diverse instances 
of the same data, effectively mitigating the data imbalance problem. To facilitate image pre-processing and data 
augmentation, the Keras Image Data Generator is utilized. Keras Image Augmentation techniques encompass 
zooming in and out, exploring different image data shear ranges, and flipping the images. These essential steps 
ensure that the data is processed in multiple ways, allowing the machines to learn and interpret the data from 
various perspectives.

Proposed network architecture
In our study, we have developed a custom CNN architecture that incorporates channel and spatial attention 
mechanisms, setting it apart from other CNN models. The sequential structure of our model consists of multiple 
convolutional layers, which effectively extract informative features from the input images through the application 
of filters. Furthermore, the inclusion of max pooling layers helps in reducing the spatial dimensions of the feature 
maps, while batch normalization layers ensure improved stability and efficiency of the model as shown in Fig. 1.

Deep features extraction model
CNNs have demonstrated exceptional capabilities in extracting valuable features as of raw images, making them 
highly appropriate for a wide range of computer vision  applications21. However, selecting the most appropriate 
CNN architecture for a specific domain can be a complex endeavor. In order to ensure accurate forecasts in 
real-world circumstances, a balance must be struck between computing complexity and assurance. There has 
been a lot of study done in the field of vision-based medical picture analysis. Researchers frequently use pre-
trained paradigms as the basis for feature extraction and then fine-tune them on object datasets to obtain accu-
rate localisation and categorization. By using the learned weights and parameters from pre-trained paradigms, 
fine-tuning allows the system to acquire spatial data efficiently. Because pre-trained networks offer a robust 
and diverse feature extraction pipeline, they are highly advantageous for initializing networks in vision-based 
recognition tasks. We have created a modified CNN architecture specifically made for lung nodule classification 
tasks, even in extremely difficult settings. This architecture was inspired by the feeling of current feature extrac-
tion algorithms in many computer vision domains. Our architecture comprises specific layers and modules that 
improve its capacity to precisely categorize these nodules while taking into account the particular characteristics 
of lung nodules. To analyze lung nodule images efficiently, a comprehensive set of layers is incorporated into 
the proposed architecture. A matching input tensor is initialized, and the input layer is configured with a shape 
of (64, 64, 1). The architecture features numerous convolutional blocks, every single compiled of Conv2D lay-
ers with variable filter sizes, kernel sizes, ReLU activations, and uniform padding. MaxPooling2D layers with 
suitable pooling sizes are utilized for down-sampling, followed by BatchNormalization layers for regularization. 
The network combines a Bottleneck Attention Module (BAM) to selectively emphasize fundamental features, 
improving the model’s discriminative capabilities as demonstrated in Fig. 2. Afterwards, global average pooling 
is operated to summarize spatial information. The fully connected layers comprise a Dense layer with 512 units 
and ReLU activation, resulted by a Dropout layer with a dropout rate of 0.5 to avoid overfitting. The output 
layer contains of a Dense layer with 2 units for binary classification using softmax activation. We have improved 
the effectiveness and dependability of lung nodule categorization systems, which will lead to more accurate 
diagnosis and treatment of lung-related illnesses. To accurately extract features from lung nodule pictures, our 
customized CNN architecture employs cutting-edge techniques including convolutional layers, pooling layers, 
and fully linked layers. We also use cutting-edge approaches such as transfer learning and attention processes to 
improve the network’s capacity to discriminate between different types of nodules. The attention mechanisms 
assist the network in recognizing subtle patterns and features required for effective classification by focusing on 
the most important portions of the pictures. Furthermore, our architecture considers the difficulties presented by 
exceedingly complicated scenarios. Variations in nodule size, shape, and appearance are among these situations, 
as are low-resolution pictures and noisy data. To overcome these issues, we employ multi-scale processing, data 
augmentation, and robust regularization algorithms to increase the network’s generalization and resilience. We 
proved the efficiency of our customized CNN architecture in reliably identifying lung nodules after thorough 
testing and analysis on different datasets. Our design beats previous methodologies, indicating that it has the 
potential to dramatically enhance research into lung nodule analysis and diagnosis. We aim to provide research-
ers and clinicians with a dependable and efficient tool for improving the identification and classification of lung 

Figure 2.  The structure of proposed modified CNN model.
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nodules by utilizing CNNs and customizing the architecture to the particular task at hand. This will ultimately 
improve patient outcomes and healthcare.

Dual attention module
Several domains of application have explored the combination of convolutional neural network (CNN) archi-
tectures and attention  processes22–25. These architectures have proved significant promise when processing video 
data, where the similarity between the frames in a series is repeatedly relatively strong. However, due to the 
variety of the data and the employ of distinct channel attention (CA) or spatial attention (SA) components, 
attention-based techniques have participated in hurdles when dealing with image data. For image-based detec-
tion, earlier works have tried to build simply a CA module into CNN  architectures26. Whereas the usage of a 
CA component with backbone-model features has been functioning for recognizing uncomplicated objects 
in simpler circumstances, such as those, its performance is motionless constrained when dealing with more 
complex conditions, particularly in fields like medical imaging. In this study, we design a brand-new model 
that joins both the CA and SA modules. We call this model a “lung nodule attention portion”. Employing both 
of these attention methods, our model is able to focus on the areas that are most important for precise nodule 
classification. Through its dual attention strategy, the dual attention module we introduced successfully crops 
crucial lung nodule regions and achieves accurate localization. Our model can effectively capture meaningful 
channel-wise correlations in the image information by integrating the CA module. As a result, it can recognize 
important patterns and characteristics that help classify lung nodules. Furthermore, the SA module increases 
the model’s capability to pay consideration to spatial features, enabling it to identify specific sites of interest 
within the lung nodules. Our proposed technique provides a detailed method of lung nodule classification by 
containing the uses of both attention mechanisms as illustrated in Fig. 3. It leverages the power of channel-wise 
correlations and spatial information to ensure accurate localization and valuable feature extraction. We anticipate 
that this dual attention scheme will significantly enhance the performance of our model in complex scenarios, 
particularly in the field of medical imaging where precise identification and classification of lung nodules are 
critical for early detection and diagnosis.

(1) Channel attention mechanism The human visual attention system, which simulates how humans focus on 
various objects, serves as an inspiration for the attention mechanism in this situation. The CA component 
aims to identify the most significant “what” in an input image. When it comes to information aggregation, 
actual data from CBAM shows that integrating both average- and max-pooled features strengthens the 
network’s representation capacity substantially more than performing each process separately. The process 
begins by aggregating global information from a feature map through average pooling and max-pooling 
operations. This generates two distinct descriptors: χC

AUG and χC
Max . These descriptors then pass through a 

scale network, which produces a channel attention map (MLP) denoted as MC ∈ RC/2G×1×1 . The chan-
nel attention map is used to adjust the shape of χ , enabling subsequent element-wise summation with 
the sub-feature. Next, average pooling and max-pooling operations are applied to both branches of each 
sub-feature χK . The output feature vectors are then merged using element-wise summation, resulting in 
χC ∈ RC/2G×1×1 . This computation can be represented as the following equation:

(2) In addition to the channel attention mechanism, a compact feature is constructed to facilitate accurate 
and adaptable selection assistance. This is accomplished through a simple gating mechanism with sigmoid 
activation. The final output of the channel attention is obtained as follows:

(3) Spatial attention mechanism Spatial attention and channel attention serve different purposes in feature 
maps. While channel attention focuses on determining the importance of “what” features within the feature 
map, spatial attention is concerned with identifying “where” the key feature information is located. We 
employ Group Normalization (GN) over the χK1 and χK2 branches in order to calculate spatial attention. 

(1)MC(χ) = MLP(AVG(χ))+MLP(MAXPool(χ)),

(2)χ = MLP(χK1 + χK2))+MAXPool(χK1 + χK2)+MC(χ).

(3)χC = δ(FC(χ)) · χK1 = δ(WCb + bc) · χK1.

Figure 3.  The structure of proposed dual attention mechanism.
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This makes it easier on the computer while guaranteeing that spatial information about the item is used 
properly, giving the feature extraction network more precise data. The computation of spatial attention is 
represented as follows:

  Here, WS and bs are parameters with a shape of RC/2 G×1×1 . The two branches, χK1 and χK2 , are then 
merged together to match the number of channels to the number of inputs. This integration facilitates the 
utilization of spatial attention to enhance the feature map representation.

Our work significantly contributes to the field of image classification by introducing a custom CNN archi-
tecture with integrated channel and spatial attention mechanisms. Attention mechanisms that selectively focus 
on pertinent characteristics while ignoring noise and unimportant information are introduced to improve the 
feature extraction process. This improves the image categorization accuracy significantly. By simplifying the 
learning of attention weights for each channel, the channel attention technique allows the model to prioritize 
informative channels while suppressing less important ones. It consequently detects important patterns and 
distinctive features in the data. The spatial connections and dependencies between the features are also captured 
by the spatial attention mechanism. By concentrating on pertinent geographical regions, the model is able to 
identify and extract meaningful spatial patterns that enhance classification performance. Compared to con-
ventional CNN architectures, our model’s incorporation of these attention mechanisms enhances accuracy and 
discriminative power by enabling us to identify and emphasize the most important characteristics. Our work 
provides a substantial improvement in image classification by exploiting attention mechanisms and resolving the 
drawbacks of conventional CNNs. This research will be beneficial to many domains, such as medical imaging, 
object recognition, and natural language processing, since it creates new avenues for the construction of more 
precise and effective classification models. In medical image analysis, attention processes are particularly impor-
tant for lung nodule detection. These processes, which comprise CA and SA, play a major role in enhancing the 
accuracy of precisely localizing abnormalities and recognizing subtle patterns in medical imaging. Conventional 
convolutional neural networks face difficulties in recognizing lung nodules due to the intricate details included 
in medical imaging. Models can focus on the most salient features (“what”) in the image because CA is based on 
the human visual attention system. This is crucial in order to distinguish relevant nodule features from the rest 
of the picture data. But because SA focuses on “where” important feature information is situated, it is extremely 
useful for pinpointing specific regions of interest within the lung nodules. For precise and accurate localiza-
tion, especially when it comes to lung nodule classification, this spatial awareness is crucial. The authors’ model 
successfully captures the essential channel-wise correlations and spatial details needed for precise lung nodule 
detection by combining CA and SA in their “lung nodule attention module.” The model performs much better 
thanks to this dual attention approach, particularly in the difficult and important field of medical imaging, where 
accurate lung nodule identification is essential for early diagnosis and detection.

Experimental results
Model implementation
The proposed model was assessed using the publicly available LUNA 16 dataset, which was split into a train-
ing set and a testing set, each containing 80% of the data. To prepare the CT scans for input into the network, 
they were split into three multi-scale patches of different sizes: 64 × 64 × 64, 32 × 32 × 32, and 16 × 16 × 16. These 
patches were fed into the network, enabling the model to collect data at various sizes. During training, several 
hyperparameters were determined. The learning rate was first set at 0.01 and the utmost number of epochs was 
controlled to 150. A weight decay of 1 ×  10−4 was employed to avoid overfitting. As the training proceeded, specific 
checkpoints changed the learning rate. After 50% of the epochs, it decreased to 0.001, then 0.001 after 75% of 
the epochs, and finally 0.0001 after 90% of the epochs. These adjustments enhanced the training procedure. A 
stochastic gradient descent optimizer with a momentum of 0.9 was utilized to improve the performance of the 
model. During the model’s training process, the binary cross-entropy loss function was utilized, which was vital. 
This specific loss function is appropriate for binary classification tasks, where pixels are categorized as either 
belonging to a target region or not, such as the segmentation of medical pictures. Binary cross entropy penalizes 
pixel-by-pixel departures from the ground truth, assisting the model in spotting intricate patterns in the data. 
In the end, this produces segmentation results that are more accurate. The adaptive adjustments in learning 
rate during training further refined the model’s performance, resulting in improved generalization and effective 
convergence throughout the dataset. In order to minimize the difference between the real ground truth data and 
the model outputs, this optimizer was crucial. Through iterative adjustments to the model’s parameters based on 
the computed gradients, the optimizer facilitated the model’s convergence towards a more precise representation 
of the underlying patterns in the data.

Model evaluation metrics
This study employed a number of widely accepted criteria to assess how well the proposed approach performed 
in classifying  nodules15,27. These metrics assess the model’s ability to differentiate between benign and malignant 
lung nodules. The following are the evaluation metrics for the proposed model.

Sensitivity or recall is defined as the ratio of correctly diagnosed malignant nodules to the total number of 
malignant nodules. This figure sheds light on the model’s ability to consistently identify malignant cases, which is 
essential for accurate sickness detection. The overall correct classification rate is represented by accuracy, which 
is a crucial metric. It provides a general idea of the model’s ability to identify benign and malignant nodules. 
The percentage of malignant nodules that are correctly identified among all nodules that are predicted to be 

(4)χS = δ(WS · (GN(χK2)+ GN(χK1))+ bs) · χK2.
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malignant is known as precision. This figure illustrates how well the model can detect malignant conditions while 
reducing false positives. Specificity is the percentage of benign nodules that are accurately identified. This metric 
highlights how successfully the model classified cases as benign, which adds to a comprehensive assessment of its 
effectiveness. AUC is a widely used metric in the assessment of binary classification techniques. Area Under the 
Receiver Operating Characteristic Curve is abbreviated as AUC. It assesses how well the model can differentiate 
between benign and malignant nodules while accounting for differences in the dataset. The F1-score offers a fair 
evaluation of the model’s capacity to distinguish between benign and malignant nodules. It is computed as the 
harmonic average of precision and recall. It offers a thorough perspective that balances accuracy and sensitivity. 
These measures, taken together, contribute to a detailed investigation of the proposed model’s performance in 
lung nodule categorization. The following evaluation metrics can be computed:

The terms T+ , T− , F− , and F+ are used in the following equations. True positives are nodules that have been 
appropriately recognized as benign and cancerous. T− stands for true negativity and counts the number of 
correctly identified benign nodules. False negative, or F− , denotes the number of cancerous nodules that were 
wrongly identified as benign. False positive, or F+ , refers to the number of benign nodules that were mistakenly 
labeled as cancer.

Discussion
In Table 1, an in-depth analysis is presented, evaluating various lung nodule detection systems that underwent 
validation using the LUNA16 public dataset. This comparison allows for a comprehensive understanding of the 

(5)Accuracy = T+
+

T−

T+
+ F+ + T−

+ F−,

(6)Sensitivity = T+/T+
+ F−,

(7)Specificity = T−/T−
+ F+,

(8)Precision = T+/T+
+ F+,

(9)F1− score = 2× T+/
(

2× T+
+ F+ + F−

)

.

Table 1.  Performance comparison of the proposed model with state-of-the-arts.

Methods 2D/3D Sensitivity Precision Accuracy AUC Specificity F1-score

ST28

2D

89.73 – – 95.05 86.36 –

TSDID29 84.19 – 89.53 96.65 92.02 –

Multi-taskCNN30 87.74 – – 95.59 88.87 –

TL-basedCNN31 85.38 73.48 88.41 93.19 – 78.83

KBC11 86.52 87.75 91.60 95.70 94.00 87.13

Multi  EnsemModel39 60.26 – 86.79 – 95.42 –

DC-GAN32 89.35 – 92.07 92.08 94.8 –

DLG9 88.66 87.38 88.46 95.62 – –

MTL40

3D
–

– – 91.26 – – –

BTNet41 – – 88.31 93.15 – –

Deep3DDPN42 – – 90.44 – – –

SS-OLHF-33 82.60 – 88.66 93.03 91.95 –

Multi-cropCNN34 77 – 87.14 93 93 –

MMEL-3DCNN35 83.7 – 90.6 93.9 93.9 –

PFSC36 84.45 92.07 84.26 91.6 83.84 88.01

SSTL-DA37 90.93 91.18 91.07 95.84 91.22 91.00

SE-ResNeXt43 – – 91.67 95.63 – –

SEN-MSAN44 91.3 – 91.9 – – 91

STLF-VA 91.62 92.99 92.36 97.17 93.08 92.25

MVCN10 – – 94 – –

EnsemCNN16 – – 87 – –

NBA12 – – 84 – –

EMLC45 – – 90 – –

Ensem2DCNN38 – – 95 – –

Proposed model 2D_attention 94.69 95.80 95.40 98.00 93.17 95.24
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proposed method’s performance. The majority of the methods examined in Table 1 employed deep learning 
techniques, which leverage automated feature extraction to achieve accurate lung nodule detection. These deep 
learning-based approaches showcased higher detection sensitivities and demonstrated superior network gener-
alization in comparison to machine learning approaches. Among the methods analyzed,  ST28,  TSDID29, Multi-
taskCNN30, TL-basedCNN31, and  KBC11 utilized 2D patches as input for their networks. However, this approach 
overlooked the spatial contextual features inherent in the three-dimensional (3D) nature of CT images. Conse-
quently, the reliance on 2D-based architectures resulted in relatively lower detection sensitivities when compared 
to their 3D-based counterparts. On the other hand, the 3D-based models discussed in Table 1 effectively extracted 
spatial features that were conducive to accurate nodule candidate detection. However, it is important to note 
that these 3D models typically involved a higher number of parameters, leading to increased memory storage 
requirements. When applying such models in real-world circumstances, this factor must be taken into account. 
When choosing a good detection system, it is essential to balance the need for accuracy with available processing 
power. In addition to the analysis in Table 1, the preceding figures provide further insights. The confusion matrix 
delves into the suggested model’s true positive, true negative, false positive, and false negative predictions. This 
matrix makes it easier to evaluate the model’s performance and identify potential flaws. The trade-off between the 
true positive rate and the false positive rate at various categorization levels is seen in Fig. 6’s receiver operating 
characteristic (ROC) curve. A thorough analysis of the model’s effectiveness over numerous choice boundaries 

Figure 4.  The confusion matrix of the proposed model using Luna16 dataset.

Figure 5.  Visual analysis of the proposed model using LUNA 16 dataset.
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is given by this visual depiction. Moreover, the suggested model’s real output is glimpsed through graphic rep-
resentations like Figs. 4 and 6. The confusion matrix of the proposed model is shown in Fig. 4, visual analysis 
of the proposed model is presented in Fig. 5, and the ROC curve of the proposed model is shown in Fig. 6. We 
design a 2D attention mechanism that performs better in terms of F1-score (95.24%), AUC (98.00%), specificity 
(93.17%), accuracy (94.40%), precision (95.80%), and sensitivity (94.69%). These metrics demonstrate the model’s 
ability to discriminate between favorable and unfavorable scenarios, retain high accuracy, consistently identify 
favorable cases, and strike a balance between sensitivity and precision. Finally, our 2D attention-based model 
performs better than other assessment measures, suggesting that it might be used as a lung nodule classification 
method. By using attention processes, it strikes a balance between processing economy and accuracy, which is 
essential for real-world applications in the field of medical imaging. Using deep learning techniques to produce 
high detection sensitivities and superior network generalization while effectively capturing 3D spatial data in 
CT images is one of our approach’s strengths. In addition, the integration of visual representations provides 
useful insights into the model’s decision-making process. On the contrary, 3D-based models, including ours, 
have a greater number of parameters, which increases memory storage requirements and may be a constraint 
in resource-constrained contexts. Furthermore, the computational demands of 3D models necessitate a balance 
between accuracy and available computing capacity. Finally, in real implementations, the trade-offs in decision 
thresholds, as represented by the ROC curve, must be carefully evaluated.

Comparison with state-of the art
The proposed model, which is a 2D attention-based model, achieves superior performance compared to state-
of-the-art methods in various evaluation metrics, as shown in Table 1. In terms of sensitivity, the proposed 
model achieves a sensitivity of 94.69%, indicating its ability to accurately detect positive cases. This outperforms 
methods such as  ST28,  TSDID29, Multi-taskCNN30, Multi-taskCNN30,  KBC11, DC-GAN32,  DLG9, SS-OLHF-33, 
Multi-cropCNN34, MMEL-3DCNN35,  PFSC36, and SSTL-DA37. For precision, the proposed model reaches an 
accuracy of 95.80%, revealing a high level of accuracy in correctly identifying positive cases. It outperforms 
most methods except for  DLG9,  KBC11,  PFSC36, SSTL-DA37, and  Ensem2DCNN38. In terms of accuracy, the 
proposed model achieves an accuracy of 94.40%, surpassing methods like  ST28,  TSDID29, Multi-taskCNN30, TL-
basedCNN31, SS-OLHF-33, Multi-cropCNN34, and MMEL-3DCNN35. The proposed approach also outperforms 
in terms of AUC, with an AUC score of 98.00%. This demonstrates its capacity to correctly discern between posi-
tive and negative situations, exceeding all other strategies in the table. When specificity is taken into account, 
the suggested model achieves a specificity of 93.17%, proving its ability to reliably detect negative situations. 
It outperforms techniques such as  ST28,  TSDID29, Multi-taskCNN30, and TL-basedCNN31. Finally, in terms of 
F1-score, the proposed model obtains a score of 95.24%, showing a fair compromise between accuracy and 
sensitivity. It outperforms most techniques except for  DLG9,  KBC11,  PFSC36, and SSTL-DA37. The proposed 2D 
attention-based model performs better overall on a wide range of assessment measures, which indicates that it 
is a viable method for the particular classification problem.

Detailed ablation study
In the section that follows, the efficacy of several solo baseline-CNNs and CNNs boosted with attention mecha-
nisms was carefully examined using the Luna 16 dataset. The primary objective of the evaluation was to deter-
mine their capacity to identify complex patterns in medical photographs, particularly those pertaining to lung 
nodules. The results for each approach are shown in Table 2, both with and without the attention mechanisms 
included. Strong evidence of the recommended model’s superiority in both testing scenarios was found by 
our research. When attention mechanisms were not included in the first analysis, the models produced poor 
performance, highlighting the importance of attention mechanisms in improving model performance. In con-
trast, our proposed model constantly outperformed its competitors, revealing its essential ability to recognize 
difficult patterns without the use of attention mechanisms. In the subsequent test, attention mechanisms were 
integrated into each model to evaluate their impact on overall performance. Notably, the results indicated a 

Figure 6.  The RoC of the proposed model using LUNA16 dataset.
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general enhancement in the performance of all models, highlighting the efficacy of attention mechanisms in 
refining the models’ ability to discern relevant features. However, what stands out is the consistent dominance 
of the proposed model, which not only exhibited improvement but surpassed existing methods by a substantial 
margin. This not only validates the effectiveness of attention mechanisms but also underscores the robustness 
and adaptability of our proposed model to leverage these mechanisms for increased performance. Thus, in both 
tests, our proposed model excelled over other established approaches, as evidenced in Table 2. This underscores 
its efficacy in detecting complex lung nodule abnormalities, especially in low-resolution images, making it well-
suited for real-time medical image analysis.

Conclusion and future direction
Cancer remains a significant public health issue with a high mortality rate, and despite the billions of dollars 
invested in research, the disease still poses unanswered questions. Cancer research is a continuous process that 
requires ongoing efforts since no definitive solutions have been developed to date. There is currently no univer-
sally accepted standard for cancer detection and prediction, making cancer research an ongoing open question 
that deserves more attention. Recent research studies on cancer using current datasets provide valuable insights 
and statistics on the progress made thus far in detecting and predicting cancer. Such research may shed light on 
the latest causes and warning signs of cancer, providing a foundation for further research and innovation in the 
field. Our study introduces a novel convolutional neural network (CNN) architecture tailored for the accurate 
analysis of lung nodule images. Through the incorporation of a dual attention mechanism, our custom CNN 
effectively identifies and emphasizes the most informative features within the images. The attention module 
combines both channel attention and spatial attention mechanisms to selectively highlight the crucial features, 
enhancing the model’s performance. Additionally, global average pooling is utilized to summarize spatial infor-
mation. The performance of the model was evaluated by extensive trials on the lung nodule benchmark dataset. 
The study’s findings demonstrate the enhanced efficacy of our suggested model, outperforming other models in 
terms of accuracy and setting a new benchmark for lung nodule detection and classification tasks. The results of 
our study have important ramifications. We support current efforts to enhance early detection and diagnosis of 
lung cancer by developing a more precise and effective model for lung nodule analysis. This might enable prompt 
intervention and treatment, perhaps saving lives. Our dual attention method further highlights the significance 
of using sophisticated attention mechanisms in medical picture processing, which can have wider applications 
in many healthcare domains. Overall, our study lays the groundwork for future advances in cancer detection and 
medical image processing, opening the path for novel solutions to this important global health issue.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Table 2.  The detailed ablation studies of various backbone CNN models with attention and without attention 
mechanism.

Dataset Model Attention mechanism Sensitivity Precision Accuracy Specificity F1-score

Luna 16

EfficientNetB0
✓ 93.50 95.60 95.30 93.00 95.00

 × 92.40 95.50 95.20 93.10 94.90

EfficientNetB1
✓ 94.40 95.70 95.20 93.10 94.90

 × 94.30 95.60 95.10 93.20 94.80

EfficientNetB2
✓ 94.60 95.50 95.40 93.20 95.10

 × 94.70 95.40 95.50 93.30 94.80

EfficientNetB3
✓ 94.60 95.30 95.40 93.40 94.70

 × 94.55 95.65 95.35 93.05 94.95

EfficientNetV2B0
✓ 94.45 95.55 95.25 93.15 94.85

 × 94.45 95.75 95.25 93.15 94.85

EfficientNetV2B1
✓ 94.35 95.65 95.15 93.25 94.75

 × 94.65 95.55 95.45 93.25 95.05

EfficientNetV2B2
✓ 94.55 95.45 95.35 93.35 94.95

 × 94.75 95.35 95.55 93.35 94.75

NASNetMobile
✓ 86.65 88.25 87.45 86.45 87.65

 × 86.69 88.80 87.40 86.17 86.24

DenseNet121
✓ 89.10 86.80 88.50 90.20 87.50

 × 89.20 86.90 88.60 90.30 87.60

MobileNetV2
✓ 88.80 87.30 89.00 88.10 87.90

 × 88.90 87.20 89.10 88.20 87.80

MobileNet
✓ 88.50 87.90 88.80 88.40 87.40

 × 88.60 87.80 88.90 88.50 87.30
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