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Superconducting 
and charge‑ordered states 
in the anisotropic t–J–U model
Yifan Feng , Jie Lou  & Yan Chen *

Motivated by the effect of symmetry breaking in cuprates superconductors YBa
2
Cu

3
O
7−δ , we 

employ the renormalized mean‑field theory to study the presence of uniform superconducting and 
charge‑ordered states in two anisotropic t–J–U models, either with hopping strength anisotropy or 
antiferromagnetic interaction anisotropy. In the case of uniform superconducting state, compared 
with the isotropic t–J–U model with only d

x
2
−y

2‑wave superconducting state, there is an additional 
s‑wave superconducting state in the model with hopping strength anisotropy. Meanwhile, the hopping 
anisotropy may enhance the critical Coulomb interaction Uc at the Mott insulator to the Gossamer 
superconductor transition point, and strong hopping anisotropy may weaken the superconducting 
state. In the case of a charge‑ordered state, hopping anisotropy may suppress the amplitude of the 
charge density waves and pair density waves, which originate from local Coulomb interactions. These 
results indicate that the effects of hopping anisotropy and local Coulomb interactions are competitive. 
Moreover, the antiferromagnetic interaction anisotropy only weakly suppresses the superconducting 
gap and density wave amplitude. Our results show that the t–J–U model with hopping anisotropy is 
qualitatively consistent with experimental superconducting pair symmetry and charge density waves 
in the YBa

2
Cu

3
O
7−δ system.

Due to the strong correlations between charge and spin degrees of freedom, high-temperature cuprate supercon-
ductors exhibit exotic physical  properties1,2. The electronic and magnetic properties of these materials have been 
studied extensively, with the primary role played by the common CuO2 plane. Among these cuprate superconduc-
tors, YBa2Cu3O7−δ(YBCO) material has a one-dimensional CuO chain to the prevalent two-dimensional CuO2 
plane. Meanwhile, many experiments revealed the physical properties with anisotropy of YBCO via  Nernst3,4, 
 transport5 and inelastic-neutron-scattering  measurements6. Therefore, its pairing symmetry and charge order dif-
fer from materials without a CuO chain. Angle-resolved photoelectron  spectroscopy7,8, inelastic light  scattering9 
and phase-sensitive  measurement10,11 show that the superconducting energy gap will vary in different directions 
due to lattice anisotropy, giving (dx2−y2 + s)-wave superconducting pairing. Another class of states of inter-
est in the underdoped to the optimal doping region is called charge order states. X-ray  scattering12–14, X-ray 
 diffraction15–17, and sound velocity  measurements18 experiments support the presence of an incommensurate 
charge density wave (CDW) state with a wave vector around 0.31 in YBCO, which is different from the com-
mensurate charge density wave with a wave vector of 0.25 in lanthanum-based “214”-type  cuprates19–23.

The CuO2 plane plays an essential role in the formation of superconductivity in cuprates, and its fundamental 
features can be described by the t–J  model24,25. The projection operator in the t–J model excludes double occu-
pancy at one site, reflecting a strong correlation effect. In particular, Gutzwiller approximation in renormalized 
mean-field theory (RMFT)26 uses statistical weight factors to handle the projection operator, and dx2−y2-wave 
superconducting state and some charge-ordered states have been  found27–31. As an effective model in the strong 
U limit of the Hubbard model, the t–J model serves as a minimal model to describe the high-temperature super-
conductivity. However, in cuprates, the ratio of Coulomb interaction to bandwidth deviates from the strong 
correlation limit, and the possibility of double occupancy cannot be excluded entirely. Therefore, it is necessary 
to consider the t–J–U  model32,33, which contains both the kinetic energy term, superexchange term, and the on-
site Coulomb repulsion term. It can describe a weak and intermediate interacting strength system. When U = 0 , 
it corresponds to noninteracting tight-binding model, and in the limit U → ∞ , it is reduced to the t–J model. 
Several methods are used to solve this model, such as variational Monte  Carlo34,  RMFT34–36, density matrix 
renormalization  group32,37 and diagrammatic expansion Gutzwiller wave-function  method38,39. Compared with 
the experimental data, the t–J–U model is more suitable than the t–J model to describe  cuprates38.
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Several models have been proposed to describe the electronic states in YBCO materials, such as the multi-
band model containing CuO2 planes with CuO  chains40–44. Considering the orbital hybridization between the 
plane and the chain, the multiband model can be reduced to an anisotropic t–J model in the CuO2  plane45–50. 
To describe the anisotropy in YBCO materials more precisely, we consider two anisotropic t–J–U models in this 
paper and use the RMFT method to study the superconducting pair symmetry and charge-ordered states. We 
find (dx2−y2 + s)-wave superconducting state consistent with the experiment and two CDW states accompanied 
by pair density wave (PDW). One is the antiphase charge density wave (AP-CDW) state with alternating positive 
and negative pair field distribution. Moreover, the other is the nodal pair density wave (nPDW) state with a non-
zero net pairing field. Both density wave states are suppressed with the enhancement of the hopping anisotropy. 
We also calculate the local density of states (LDOS) in the nPDW states, obtain the strength of superconducting 
coherence D, and find that it oscillates synchronously with the hole density in real space.

Results
Hopping anisotropy
Phase diagram of superconducting state
As mentioned above, we use anisotropic t–J–U models to study superconducting and charge-ordered states 
in YBCO materials. RMFT has been applied to analyze strongly correlated electrons. We introduce four vari-
ational order parameters, electron density ni , doublon density di , pairing field �ν

ijσ , and bond field χν
ijσ . Details 

are discussed in “Methods” section. First, we focus on the uniform state in the anisotropic hopping model at 
the half-filled case. Figure 1 shows the phase diagram in the parameter space U and ty/tx . The horizontal axis 
is Coulomb repulsion, reflecting the strength of the correlation, and the vertical axis is the ratio of the hopping 
in the y direction to the hopping in the x direction, reflecting the hopping anisotropy. When ty/tx = 1 , it is an 
isotropic t–J–U model, and d-wave pair state appears at U < 10.23 . In real space, the superconducting gap in 
the x and y directions are equal in size and opposite in sign.

When the anisotropy of the hopping strength is small, and the Coulomb repulsion weakens, an admixed dx2−y2

+s pair state will appear in the system. This is because the anisotropy hopping makes the superconducting gap 
unequal in the x and y direction, which is consistent with the existence of ( dx2−y2+s)-wave superconductivity in 
anisotropy YBa2Cu3O7−δ . Gradually increasing the anisotropy of the hopping strength, the superconducting state 
is suppressed. Still, there is a finite effective carrier density d, and finally, a second-order phase transition occurs 
and transforms into a metallic state. When the hopping anisotropy is small and the Coulomb repulsion gradually 
increases, the first-order phase transition between the superconductor and insulator occurs, and the system enters 
the strong correlation region from the weak correlation region. It is noted that anisotropy will delay the system 
from the superconducting phase to the insulating phase, that is, the increase of Uc . To a certain extent, there 
is a competitive effect between the influence of hopping anisotropy and Coulomb repulsion on uniform state.

In Fig. 2, we show the doublon density for different hopping strength anisotropy as a function of Coulomb 
repulsion at half-filling. When ty/tx = 1 , the doublon density decreases continuously with the increase of the 
Coulomb repulsion until Uc = 10.23 and tends to a finite value dc = 0.02 . Then the doublon density jumps to 
zero, and the model is equivalent to the t–J model, indicating a first-order Mott transition at this time. When 
the Coulomb repulsion weakens, the variation trends of doublon density with Coulomb repulsion are the same 
under different anisotropy. When the Coulomb repulsion reaches the vicinity of Uc , as the hopping strength 
anisotropy increases, Uc also increases, and the existing area of the Gossamer superconducting state become 
wider. Meanwhile, the doublon density discontinuity becomes smaller and tends to change continuously to zero, 
weakening the first-order phase transition characteristics. It is noted that when ty/tx = 1.27 , there is a phase 
transition from metallic phase to superconducting phase and finally to Mott insulating phase in the system with 
the increase of U. When the phase transition from metallic state to superconducting state occurs, the variation 
trend of doublon density does not change, which is a second-order phase transition.

Figure 1.  Phase diagram at half-filling.
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In Fig. 3a, we show dx2−y2-wave superconducting gap �d and s-wave superconducting gap �s as a function of 
anisotropy parameter ty/tx for U = 9 . With the increase of ty/tx , �d decreases, but �s gradually increases from 
zero to a maximum value and then decreases again. �s reaches its maximum at ty/tx = 1.17 and �s/�d = 0.09 . 
The ratio of s-wave to dx2−y2-wave gap is consistent with the phase-sensitive experimental  results10. When 
ty/tx > 1.8 , �d and �s decrease smoothly to zero. However, the superconducting gap in the x and y directions 
always decreases with increasing hopping anisotropy. Excessive hopping anisotropy may lead to the gap closing 
prematurely in one direction. Figure 3b shows �d and �s as a function of Coulomb repulsion U for ty/tx = 1.17 . 
As U increases, �s and �d reach a maximum value at U = 9.4 and �s/�d = 0.09 discontinuously decrease to 
zero at Uc = 10.52 , with the same trend as the order parameter in the isotropic t–J–U model. There is a first-order 
phase transition from the Gossamer superconductor to the Mott insulator at Uc . It can be seen that the anisotropy 
hopping t–J–U model can well describe superconducting pairing symmetry and gap size of YBCO materials.

Charge‑ordered state
Next, we focus on the charge-ordered state. In the t–J–U model, charge-ordered states appear at U > 9 , com-
mensurate and incommensurate charge-ordered states originating from local Coulomb interactions are strongly 
suppressed at the region where anisotropy appears. Unlike the ( dx2−y2+s)-wave pair in the uniform state in the 
hopping anisotropy t–J–U model, there is only the d-wave gap with spatial modulation, and the s-wave gap is 
almost zero.

When ty/tx anisotropy is considered, in the strongly correlated region U > 9 , there are also the AP-CDW 
state and nPDW state similar to that in the isotropic t–J–U model. There are two effective carrier doublon di and 
hole hi in the model, and the relationship with the doping density δi is hi = 1− ni + di = δi + di . In the strong 
correlation region U = 15 , we first present the AP-CDW state results at doping density δ = 0.12 in Fig. 4.The 
modulations are unidirectional stripe pattern which is along y direction. Figure 4d shows a schematic illustration 
of modulations for AP-CDW. Figure 4a shows the variation of doublon density di at lattice sites i = 1 to i = 17 , 
and Fig. 4b shows the variation of hole density hi at the same sites. The modulation of di and hi have the same 
period of 4, and they change synchronously. Figure 4c shows the variation of gap order parameter �i at the same 

Figure 2.  The doublon density d as a function of U at half-filling.

Figure 3.  Superconducting order parameter (a) superconducting order parameter with dx2−y2-wave �d and 
s-wave �s as a function of anisotropy ty/tx for U = 9 . (b) superconducting order parameter with dx2−y2-wave �d 
and s-wave �s as a function of Coulomb repulsion U for ty/tx = 1.17.
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sites, and it has a period of 8 twice that of di and hi . The gap order parameter changes sign once every half period. 
Moreover, the system has domain walls where the gap order parameter vanishes, and doublon and hole reach 
a maximum. In this case, the net pairing is 0. The very similar behavior of di and hi originates from the strong 
correlation effect in the system, indicating the duality of doublon and hole. With the enhancement of hopping 
anisotropy, the oscillations of both charge and pair density wave states are significantly suppressed, and the sup-
pression of hole and doublon fluctuations is more substantial. Still, the modulation period is not changed, and 
eventually, the system enters a uniform state. Density wave states originate from stronger Coulomb interactions, 
while hopping anisotropy can destroy density wave states, indicating that the effects of hopping anisotropy and 
correlation compete with each other.

When the hopping strength anisotropy is introduced, the nPDW state also exists in the system, as shown in 
Fig. 5. In this case, the spatial modulation of the charge density wave and the pair density wave is incommensu-
rate. Figure 5d shows a schematic illustration of modulations for nPDW. Figure 5a,b show the local density δi , 
�i , di and hi at lattice sites i = 1 to i = 21 . The system has a more complex density wave modulation. δi , di and hi 
are modulated synchronously. They reach the maximum and minimum values at the same time. And �i drops 
near zero where δi , di and hi reach the maximum. δ(q) and �(q) in Fig. 5c are the Fourier transform of δ and � . 
Furthermore, the spatial average value of the superconducting order parameter is not zero, that is, �(q = 0) �= 0 
after Fourier transform. The superconducting order parameter �(q) peaks at q = 0.15 , and the doping density 
δ(q) peaks at q = 0.3 , which is close to the experimentally observed YBCO charge density wave vector of 0.3115. 
Similarly, when the hopping anisotropy is too strong, the nPDW state is destroyed, and the system returns to 
the uniform state. With the increase of anisotropy ty/tx , the pairing field in the y direction decreases, leading to 
a transition from density wave state in the x direction to the uniform state.

We also give the local density of states ρ(E) and superconducting coherence strength D(E) of nPDW states 
at lattice sites i = 14 to i = 16 after introducing hopping strength anisotropy, as shown in Fig. 6. At site i = 14 , 
δi , di and hi reach the minimum, and the amplitude of �i reach the maximum. At site i = 16 , δi , di and hi reach 
the maximum, and the amplitude of �i is close to zero. Due to the dx2−y2-wave pairing symmetry and the 
existence of the non-zero component of the superconducting order parameter at q = 0 , the LDOS exhibits a 
V-type structure near the Fermi energy and remains non-zero at E = 0 . It first decreases, then increases, and 
then decreases with the change of the lattice position, which has the same modulation as the hole density. The 
strength of superconducting coherence can be characterized by the negative of the second derivative of the LDOS 

Figure 4.  Features of the AP-CDW state at U = 15 and δ = 0.12 . The spatial variations of (a) doublon density, 
(b) hole density, and (c) superconducting order parameter in the system with lattice sites 1–17 in x direction. 
(d) Schematic illustration of modulations for the AP-CDW state. The diameter of the orange circles indicates 
the local hole density. The width of a bond around each site indicates the local pairing field and sign is positive 
(negative) for red (blue).
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D(E) = −ρ′′(E)36. The height of the peak reflects the sharpness of the superconducting coherence peak, and it 
has the same modulation with δi , di , and hi . From sites 14 to 16, the peak height and δi increase simultaneously.

Antiferromagnetic interaction anisotropy
In addition to the novel physics due to the hopping anisotropy in real space, we further consider intrinsic anisot-
ropy in spin space as a theoretical conceptual extension of the t–J–U model, which breaks SU(2) symmetry. In 
this section, we consider the anisotropic antiferromagnetic interaction model. Now we study the uniform states in 
the t–J–U model with antiferromagnetic interaction anisotropy. Compared with the results of the isotropic t–J–U 

Figure 5.  Features of the nPDW state at ty/tx = 1.08 , U = 15 and δ = 0.094 . The spatial variations of (a) a 
variation of doping density ( δ , left axis) and superconducting order parameter ( � , right axis) with lattice sites 
1–21 in x direction. (b) A variation of doublon density (d, left axis) and hole density (h, right axis) with lattice 
sites 1–21 in x direction. (c) Fourier transform of hole density and superconducting order parameter. (d) 
Schematic illustration of modulations for the nPDW state. The diameter of the orange circles indicates the local 
hole density. The width of a bond around each site indicates the local pairing field and sign is positive (negative) 
for red (blue).

Figure 6.  Features of the nPDW state at ty/tx = 1.08 , U = 15 and δ = 0.094 . (a) Local density of states ρ(E) 
as a function of E at sites 14–16. (b) The strength of superconducting coherence D(E) as a function of E at sites 
14–16 in the system.The amplitude of �i reaches maximum at site 14 and close to zero at site 16.
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model, the pairing symmetry and critical correlation strength Uc of the superconducting phase are virtually not 
changed. There is still a pure dx2−y2-wave gap in the system, and the magnitude of antiferromagnetic interaction 
anisotropy only changes the gap size. The variation of dx2−y2-wave superconducting gap with the anisotropy of 
the antiferromagnetic interaction is shown in Fig. 7. The width of the superconducting gap varies with Jz/Jx in 
a small range, and superconducting gap reaches its maximum as the anisotropy disappears. In the t–J–U model, 
the influence of antiferromagnetic interaction anisotropy on the superconducting state is far less than that of 
hopping anisotropy and Coulomb repulsion strength. So the antiferromagnetic interaction anisotropy does not 
play a dominant role in uniform states. For the superconducting state in YBCO materials, the t–J–U model with 
antiferromagnetic interaction anisotropy does not represent the basic features.

Next, we consider the effect of antiferromagnetic interaction anisotropy on charge-ordered states. The param-
eters of the pair density wave and the charge density wave states are shown in Fig. 8. Figure 8a shows the variation 
of doublon density di , Fig. 8b shows the variation of hole density hi , and Fig. 8c shows the variation of gap order 
parameter �i . There are charge-ordered states similar to the t–J–U model with hopping anisotropy, pair density 
wave state with a period of 8 and charge density wave state with a period of 4, and pairing symmetry is dx2−y2

-wave. Schematic illustration of modulation is similar to Fig. 4d. Hole and doublon are also modulated synchro-
nously, and the density wave state is suppressed when antiferromagnetic interaction anisotropy is introduced. 
Due to symmetry, there is a similar modulation amplitude for pair density waves state when Jz/Jx = Jx/Jz = 0.85 , 
while charge density waves state are symmetric concerning Jz/Jx = 1 . In the limit case Jz/Jx = 0 , density wave 
states are significantly suppressed, and only the uniform state exists. The amplitude of density wave states changes 
slowly with Jz/Jx , and the influence of antiferromagnetic interaction anisotropy on density wave states is weaker 
than that of hopping anisotropy. Moreover, the influence of antiferromagnetic interaction anisotropy on density 
wave states is weaker than that of hopping anisotropy. There is no density wave state with wave vector q = 0.3.

Conclusion
To describe the lattice anisotropy induced by CuO chains in YBCO materials and magnetic anisotropy, we study 
the t–J–U model with hopping strength anisotropy and antiferromagnetic interaction anisotropy in the frame-
work of the renormalized mean-field theory. For the hopping strength anisotropy model, the superconducting 
pairing symmetry is still dominated by the dx2−y2-wave, but with the deviation of the isotropic t–J–U model, 
the system will gradually have the pairing symmetry of the s-wave, and the ratio of s-wave to dx2−y2-wave gap 
is �s/�d = 0.09 . The t–J–U model with hopping strength anisotropy can explain the pairing symmetry of the 
YBCO materials, compared with the experimental  results10. Although (dx2−y2 + s)-wave superconducting state 
is induced by the presence of anisotropic hopping, the superconducting gap decreases with the increase of 
hopping anisotropy. The study of the three-band model through the diagrammatic expansion of the Gutzwiller 
wave function method also confirmed that there is a mixed d- and s-wave pairing when the four-fold rotational 
symmetry is  broken51. In the case of large U, there are charge-ordered states in the t–J–U model with hopping 
anisotropy, which are AP-CDW and nPDW states. The nPDW state wave vector is in good agreement with the 
 experiment15. Moreover, the hopping anisotropy significantly inhibits the amplitude of charge-ordered states. 
In this case, the suppression mechanism of hopping anisotropy on the charge-ordered states is similar to that of 
the superconducting state, which inhibits the amplitude of the density waves by weakening the pairing field in 
y direction. Recent experiments have found that applying uniaxial stress to cuprates distorts the structure and 
reduces CDW  order52,53, similar to our calculations. This shows that uniaxial stress can also tune the hopping 
anisotropy ty/tx.

Further taking the intrinsic magnetic anisotropy into account, the t–J–U model with antiferromagnetic 
interaction anisotropy shows no new results. The effect of antiferromagnetic interaction anisotropy on the super-
conducting state is not very strong in the case of small U but makes the superconducting gap fluctuate in a small 

Figure 7.  d-wave order parameter �d at half-filling for several values of U.
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range. In the two anisotropic models, it is similar that the anisotropy will limit the size of the pairing field, and 
then affect the formation of the gap. In the large U area, antiferromagnetic interaction anisotropy has little effect 
on the amplitude of charge-ordered states. All charge-ordered states are suppressed in the limit case, leaving 
only uniform states. Both types of anisotropy will suppress the charge fluctuations. Therefore, the t–J–U model 
with hopping anisotropy can represent the essential physics of YBCO materials.

Methods
We study two anisotropic t–J–U models, hopping anisotropy and antiferromagnetic interaction anisotropy. The 
t–J–U model with hopping anisotropy on a square lattice is given by

where tx and ty are the hopping matrix element between the nearest neighbor in the x and y direction. The aver-
age of nearest-neighbor hopping (tx + ty)/2 , as our energy unit, is set to 1. J term is the Heisenberg interaction 
between the nearest neighbor and is set to J = 1/3 . ciσ is electron annihilation operator with spin σ = ± at site 
i and Si is the spin-1/2 operator. U > 0 is on-site Coulomb repulsion.

The t–J–U model with antiferromagnetic interaction anisotropy on a square lattice is given by

(1)H = −
∑

iσ

(

txc
†
i+xσ ciσ + tyc

†
i+yσ ciσ + H.c.

)

+ J
∑

�ij�
Si · Sj + U

∑

i

ni↑ni↓.

(2)H = −
∑

�ij�,σ
t
(

c†iσ cjσ + H.c.

)

+
∑

�ij�

(

Jx

2
S+i S

−
j + Jx

2
S−i S

+
j + JzS

z
i S

z
j

)

+ U
∑

i

ni↑ni↓.

Figure 8.  Features of the AP-CDW state at U = 15 and δ = 0.12 with lattice sites 1–17 in x direction. (a) 
Variation of doublon density in the system. (b) Variation of hole density in the system. (c) Variation of the 
superconducting order parameter in the system.
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where t term denotes the nearest-neighbor hopping matrix element, and it is set to be the energy unit. The 
nearest-neighbor antiferromagnetic Heisenberg interaction Jx(Jz) satisfy J2x + J2z = (1/3)2.

We take a partially projected variational trial wave function proposed by  Laughlin54

where |�0� is BCS superconducting state, and 
∏

α is the projection operator, which partially projects out double 
occupancy on each site. |�GS� smoothly connects the BCS state with the RVB state. α = 0 represents the BCS 
state and α = 1 corresponds to the RVB state.

The projection operator incorporates strong electron correlations, which can be handled by the Gutzwiller 
approximation method, which considers the effect of projection through a set of statistical weight factors. Then 
the hopping term and the Heisenberg interaction in the partially projected state and unprojected BCS state are 
related by Gutzwiller renormalization factors

The Gutzwiller renormalization factors on each site are given as

In terms of these renormalization factors, the renormalized Hamiltonian can be obtained as

Thus the ground-state energy in the state |�GS� can be evaluated by the expectation of H ′ in the BCS state |�0�

Local electron density and local pairing field, and local bond field are defined as

The d-wave and s-wave superconducting gap can be given by the pairing fields and renormalization factors as

The ground-state energy can be expressed by the parameters as

And a mean-field Hamiltonian can be expressed as
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v
i,i−ŷ,σ
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The coefficients are given as

A Bogoliubov–de Gennes (BdG) equation can solve the above Hamiltonian. Local doublon density is deter-
mined by the minimization of the ground-state energy

The LDOS can be computed by the eigenvalues En and eigenvectors (uni , v
n
i ) of the BdG equation

All the local order parameters are solved self-consistently. The system size we take is 64× 64 . First, we input 
initial values to the electron density and doublon density on each site, bond field, and pairing field on each 
nearest-neighbor bond. Then we solve the BdG equations and calculate all the order parameters. Iterate the above 
process until the relative changes between the last two order parameters is less than 10−4.

Data availability
The data used to support the findings of this study are included in the article.
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