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Dataset meta‑level and statistical 
features affect machine learning 
performance
Shahadat Uddin * & Haohui Lu 

What dataset features affect machine learning (ML) performance has primarily been unknown in 
the current literature. This study examines the impact of tabular datasets’ different meta‑level and 
statistical features on the performance of various ML algorithms. The three meta‑level features 
this study considered are the dataset size, the number of attributes and the ratio between the 
positive (class 1) and negative (class 0) class instances. It considered four statistical features for 
each dataset: mean, standard deviation, skewness and kurtosis. After applying the required scaling, 
this study averaged (uniform and weighted) each dataset’s different attributes to quantify its four 
statistical features. We analysed 200 open‑access tabular datasets from the Kaggle (147) and UCI 
Machine Learning Repository (53) and developed ML classification models (through classification 
implementation and hyperparameter tuning) for each dataset. Then, this study developed multiple 
regression models to explore the impact of dataset features on ML performance. We found that 
kurtosis has a statistically significant negative effect on the accuracy of the three non‑tree‑based ML 
algorithms of the Support vector machine (SVM), Logistic regression (LR) and K‑nearest neighbour 
(KNN) for their classical implementation with both uniform and weighted aggregations. This study 
observed similar findings in most cases for ML implementations through hyperparameter tuning, 
except for SVM with weighted aggregation. Meta‑level and statistical features barely show any 
statistically significant impact on the accuracy of the two tree‑based ML algorithms (Decision tree 
and Random forest), except for implementation through hyperparameter tuning for the weighted 
aggregation. When we excluded some datasets based on the imbalanced statistics and a significantly 
higher contribution of one attribute compared to others to the classification performance, we found 
a significant effect of the meta‑level ratio feature and statistical mean and standard deviation 
features on SVM, LR and KNN accuracy in many cases. Our findings open a new research direction in 
understanding how dataset characteristics affect ML performance and will help researchers select 
appropriate ML algorithms for a possible optimal accuracy outcome.

Machine learning (ML) models have found applications across diverse fields, from healthcare and biomedical to 
finance and e-commerce1. Despite their widespread usage, the performance of ML models can vary based on the 
datasets to which they are applied. A crucial aspect of improving the performance metrics lies in understanding 
the intrinsic characteristics of datasets and how they interact with various methods. For instance, certain dataset 
features might bolster the accuracy of a specific technique, while other features could hinder the performance 
of others. Therefore, understanding these nuances can significantly enhance the predictability and reliability of 
ML models.

In this study, we delve into the relationship between specific dataset attributes, such as kurtosis, meta-level 
size, and ratio features, and the performance of ML models. Our primary aim is to uncover patterns that can 
guide researchers in selecting algorithms that align with the characteristics of their datasets. To achieve this, 
we conducted extensive experiments using five classification models: Support Vector  Machine2, Decision  Tree3, 
Random  Forest3, Logistic  Regression4 and K-Nearest  Neighbour5. In ML literature, algorithms are often deline-
ated into two primary categories: tree-based and non-tree-based. Tree-based algorithms, including Decision 
Trees and Random Forest, construct decision boundaries through hierarchical tree structures. Non-tree-based 
algorithms, such as Support Vector Machines and Logistic Regression, are underpinned by distinct foundational 
methodologies. Our research utilised 200 diverse UCI Machine Learning Repository and Kaggle tabular data-
sets. We analysed the variations in model performance concerning different meta-level and statistical features, 
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focusing primarily on the accuracy performance metric. To ensure the robustness of our findings, we applied 
statistical tests to validate the observed performance differences across various scenarios.

The organisation of this manuscript is as follows: Section "Related works" summarises related work, and Sec-
tion "Materials and methods" details our methodology, emphasising the datasets, dataset features, and machine 
learning models. Section "Results" presents the results, while Section "Discussion" comprehensively discusses our 
findings. Section "Conclusion" concludes the paper, synthesising our research’s central insights and implications.

Related works
ML methods have become popular and have been used extensively for addressing complex problems in different 
fields, such as  healthcare6,  commerce7, computer  vision8 and natural language  processing9. As ML applications 
have increased, there has also been a growing curiosity in contrasting their efficacy. This is reflected in the 
expanding body of research delving into the accuracy and effectiveness of various ML models in diverse scenarios.

The size of the dataset is a fundamental aspect that influences the performance of ML  models10. Typically, 
a dataset with a larger sample size provides richer information, enabling the underlying ML model to capture 
detailed patterns, thereby enhancing its generalisation  capabilities11. Usually, larger datasets improve classifica-
tion outcomes, while smaller datasets often result in over-fitting12,13. In addition to the data size, Choi and  Lee14 
found that the subjectivity of the data affected ML performance for sentiment classification. They assigned a 
higher subjectivity score to data containing words such as ’best’ or ’extremely’ to express personal opinion and 
factual information.

On the other hand, the relationship between dataset size and ML performance is not always direct. Sun et al.15 
observed that increasing the size might not yield substantial improvements in performance beyond a certain 
threshold, especially if the data is redundant or cluttered with noise. While researching object detection using 
non-parametric models, Zhu et al.16 observed that data quality and improved models are more important than 
the data size for better ML outcomes.  Barbedo17 commented that using a limited dataset for training may bring 
many undesirable consequences, negatively impacting the model performance.

Class imbalance can skew performance measurements, leading to potential overestimation, prompting meth-
ods like over-sampling, under-sampling, and synthetic data generation as corrective  measures18. Through an 
experiment on image data, Qu et al.19 noticed that class imbalance influenced ML performance. Class imbalance 
is defined when the frequency of one class in the underlying data is significantly higher than the other and vice 
versa. Many other studies in the literature also observed and explained how class imbalance affected ML per-
formance. For example, Thabtah et al.20 pointed out that class imbalance is a common problem in behavioural 
science. They conducted extensive experiments using tenfold cross-validation on many datasets to study the 
impact of varying class imbalance ratios on classifier performance. In a review article,  Ray21 provided inconsist-
ent evidence regarding the effect of adding more features to an ML model on accuracy.

The inherent properties of the data are defined by its statistical attributes, such as mean, standard deviation, 
skewness and kurtosis. These attributes are pivotal in model performance, gauging data asymmetry and tail 
 behaviour22. Recently, the variance ratio was introduced as an indicator of data  variability23. These attributes can 
directly or indirectly influence the performance of ML models. For instance, data with a highly skewed distribu-
tion might require treatments or transformations suitable for non-normal distributions.

Most current studies explored the impact of meta-level dataset features (e.g., size, class imbalance ratio and 
number of attributes). To our knowledge, no study examined the effect of dataset statistical features on ML per-
formance. In addition to three meta-level features (size, number of attributes and the ratio between positive and 
negative classes), this study considers four statistical features (mean, standard deviation, skewness and kurtosis). 
It will also explore how these seven dataset features affect the performance of five different ML algorithms.

Materials and methods
Data acquisition and preprocessing
This study explores how meta-level and statistical features of datasets affect ML performance. For this purpose, 
we considered 200 open-access tabular datasets from the Kaggle (147) and UCI Machine Learning Repository 
(53). Supplementary Table S1 details the source of these datasets. Each dataset addresses a binary classifica-
tion problem, i.e., the targeted dependent variable can take one of the two possible values, either 0 or 1. Some 
sources have multiple datasets. For example, datasets D126–D174 are from the same Kaggle source, with the 
worldwide University ranking data from different ranking-producing organisations for various years. The same 
is true for datasets D175–D180, from the same UCI source for the Monk’s problem. Kaggle provides powerful 
tools and resources for the data science and AI community, including over 256,000 open-access  datasets24. The 
UCI Machine Learning Repository collects over 650 open-access datasets for the ML community to investigate 
 empirically25.

The datasets used in this study have attributes or variables of a wide range. These attributes can take an 
extensive range of values across datasets. Some appeared on a Likert scale, which captures textual opinions in 
a meaningful  order26. For example, a response could be good, very good or excellent against a question of how 
you feel. We first changed such responses into a chronological numerical order. Second, the responses of some 
categorical attributes do not make an expressive numerical order. An example of such an attribute is gender, 
which can be male or female. A binary transformation of this attribute would lead to a bias, especially for the sta-
tistical mean or average feature. For a dataset with more male responses, if we consider 1 for males, that dataset’s 
mean or average feature will be larger and vice versa. Another example of such features is the marital status. For 
this reason, this study considers a target-based encoding to convert such categorical attributes to a quantitative 
score. The target-based encoding is an approach to replace a categorical variable using information from the 
dependent or target  variable27. Third, the range for some attributes starts from a negative value. We shifted the 
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range for those attributes so that its starting value is 0. If the range for an attribute is − 3 to 3, we move it from 0 
to 6 by adding 3 to all instances. This study’s final preprocessing is to convert all attributes for each dataset into a 
range of 0 and 1 by following the min–max scaling  approach28, which ensures their uniform value range across 
datasets. A dataset’s attribute (e.g., duration) can be 1–10 h. The value for another variable (e.g., age) of the same 
or different dataset may range between 18 and 120 years. We divide each instance of an attribute by the magnitude 
of the range of that attribute. For example, if the adult age range is 18–120 years of an attribute, we divide each 
instance by 102 (120–18). Such a normalisation also neutralises the impact of considering different units for the 
same attribute. Age could be in year or month, but the relative difference across instances will remain the same 
with this normalisation approach. The conversion of each attribute into a range of 0–1 ensures the quantification 
of each statistical feature is from the same value range across datasets.

Dataset features
This study considers three meta-level and four statistical features to investigate their influence on the performance 
of five classical supervised ML algorithms. We quantify these seven features and accuracy values against various 
ML algorithms for each dataset.

Meta‑level features
For each dataset, this study considers three meta-level features. They are the number of attributes or variables 
used to classify the target variable, dataset size and the ratio between the number of yes (or positive) and no 
(negative) classes. A very high or low ratio value results in a class imbalance  issue29. Hence, including this meta-
level feature will help explore how the presence of class imbalance affects ML performance. The dataset size, or 
simply size, is the number of instances of that dataset. If a dataset consists of 100 cases with 60 positive and 40 
negative samples, the ratio will be 1.25 (60 ÷ 40).

Statistical features
The four statistical features considered in this study for each dataset are mean or average, standard deviation, 
skewness and kurtosis.

Mean or average. For a set of N numbers (X1,X2 . . .XN ) , the following formula can quantify the mean or aver-
age ( X  ) value.

Standard deviation. Standard deviation is a commonly used descriptive statistical measure that indicates how 
dispersed the data points are concerning the  mean30. It summarises the difference of each data point from the 
mean value (Fig. 1). A low standard deviation of a given data demonstrates that its data points are clustered 
tightly around its mean value. Conversely, a high standard deviation indicates that data points are spread out 
over a broader range. For a dataset with size N(X1,X2 . . .XN ) and mean X  , the formula for the standard devia-
tion (SD) is as follows.

Skewness. Skewness measures how far a particular distribution deviates from a symmetrical normal 
 distribution30. The skewness value can be positive, zero or negative (Fig.  2). The left tail is longer for nega-
tively skewed data. It is the right tail, which is longer for positively skewed data. Both tails are symmetrical for 
unskewed data. The following formula can measure the skewness ( ̃µ3 ) of a given data (X1,X2 . . .XN ).

X =

∑
N

i=1 Xi

N

SD =

√∑
N

i=1

(
Xi − X

)2

N − 1

Figure 1.  Illustration of low and high standard deviation.
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where, X  and SD are the mean and standard deviation of the data, respectively. In the above formula, if the value 
of µ̃3 is greater than 1, the distribution is right-skewed. It is left-skewed for µ̃3 is less than -1. The tail region may 
be the source of outliers for skewed data, which could adversely affect the performance of any statistical models 
based on that skewed data. Models that assume the normal distribution of the underlying data tend to perform 
poorly with highly skewed (positive or negative)  data30.

Kurtosis. For the probability distribution of a real-valued random variable, kurtosis quantifies the level of 
existing tailedness within that  distribution30. It can identify whether the data are heavy-tailed or light-tailed rela-
tive to the normal distribution. Here is the formula to quantify the kurtosis ( β2 ) of a dataset (X1,X2 . . .XN ) with 
mean and standard deviation of X  and SD , respectively.

Based on the kurtosis value ( β2 ), a distribution can be leptokurtic, mesokurtic and platykurtic (Fig. 3). 
A standard normal distribution has a kurtosis value of 3, known as mesokurtic. An increased kurtosis (> 3), 
known as leptokurtic, makes the peak higher than the normal distribution. A decreased kurtosis (< 3), known 
as platykurtic, corresponds to a broadening of the peak and thickening of the tails. Excess kurtosis indicates 
the presence of many outliers presented in the dataset, which could negatively impact the performance of any 
statistical models based on that  dataset30.

Feature value quantification
The online open-access source for each dataset contains information on the number of attributes and instances 
(dataset size) with further details on the positive and negative splits. The third meta-level ratio feature has been 
calculated by dividing the number of positive cases by the number of negative instances. We followed the same 
approach to quantify each of the four statistical features for a given dataset. First, we calculated the underlying 
feature value for each dataset attribute. If the underlying feature is the skewness and the given dataset has six 
attributes, we then calculate the skewness of each attribute. After that, we aggregate these six skewness values by 
taking their average value. We also follow a weighted approach to aggregate them using each attribute’s principal 
component analysis (PCA) score as its weight. PCA is a popular dimensionality reduction technique that can 
assign scores to each feature based on their ability to explain the variance of the underlying  dataset31.

µ̃3 =

∑
N

i=1 (Xi − X)
3

(N − 1)× SD3

β2 =

{
N(N + 1)

(N − 1)(N − 2)(N − 3)

N∑

i=1

(
Xi − X

SD

)4
}

−
3(N − 1)2

(N − 2)(N − 3)

Figure 2.  Illustration of left and right skewed distribution.

Figure 3.  Illustration of leptokurtic, mesokurtic and platykurtic distribution.
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Machine learning algorithms and experimental setup
This study considers five supervised ML algorithms to investigate how dataset features affect their performance. 
Two (Random forest and Decision tree) are tree-based, and the remaining three (Support vector machine, Logis-
tic Regression and K-nearest neighbours) do not use any tree structure for the classification task.

Decision Trees (DT) are non-parametric methods partitioning datasets into subsets based on attribute values, 
though they can sometimes  overfit3. Random Forest (RF) is an ensemble learning method that constructs mul-
tiple decision trees during training and outputs the mode of the classes for classification or the mean prediction 
for regression tasks, thereby reducing the overfitting risk associated with individual decision  trees32. Support 
Vector Machine (SVM) classifies data by determining the best hyperplane that divides a dataset into  classes2. 
Logistic Regression (LR) analyses datasets where independent variables determine a categorical outcome, com-
monly used for binary  classification33. Lastly, the K-Nearest Neighbours (KNN) algorithm classifies an input 
based on the most common class among its nearest K examples in the training set. It offers versatility at the cost 
of computational  intensity34.

This study used the Scikit-learn  library35 to implement the five ML algorithms with the 200 open-access 
tabular datasets considered in this study. Each dataset underwent an 80:20 split for the training and test data 
separation. We followed a five-fold cross-validation for training model development. For other experimental 
setups, this study used the default settings of the Scikit-learn library. Moreover, this study considered accuracy as 
the performance measure for ML algorithms. It represents the percentage of correct classifications made by the 
underlying ML model. In addition to the basic implementation using the Scikit-learn library, this study imple-
mented all ML algorithms through hyperparameter tuning of different relevant parameters. Hyperparameter 
tuning is selecting a set of optimal parameters for the ML algorithm to boost its model  performance36. We used 
the GridSearchCV function from Scikit-learn to tune different hyperparameters for different ML algorithms, 
such as the kernel type and C value for SVM and the k value in KNN.

After quantifying three meta-level and four statistical features and the ML accuracy for each of the 200 tabular 
datasets, this study applied multiple linear regression to explore their impact on ML performance. We used IBM 
SPSS Statistics software version 28.0.0.037 for multiple linear regression modelling.

Results
This study follows a data-driven approach to explore the impact of dataset meta-level and statistical features 
on the performance of five ML algorithms by using 200 open-access tabular datasets. Table 1 presents the basic 
statistics of the 200 open-access tabular datasets used in this study. Most (147 out of 200) are from the  Kaggle24. 
Only 53 datasets are from the UCI Machine Learning  Repository25. 168 (84%) datasets are from five primary 
contexts: Disease, University ranking, Sports, Fiance and Academia.

We used two approaches to implement the five ML algorithms considered in this study over the 200 open-
access tabular datasets: classic implementation and hyperparameter tuning. On the other hand, this study used 
two techniques in aggregating the statistical attributes: the uniform approach and the weighted approach based 
on PCA. Such considerations of different implementation approaches and aggregating techniques lead to four 
versions of the dataset consisting of seven meta-level and statistical features as independent variables and the 
performance of different ML algorithms as dependent variables. Moreover, we considered two other versions 
of the dataset instance created with classic ML implementation and uniform aggregation: excluding entries for 
extremely imbalanced individual datasets and excluding individual datasets having a single feature with a high 
PCA value. Therefore, we need to develop six multiple regression models to investigate the impact of dataset 
meta-level and statistical features on machine learning performance. This paper presents the findings in the 
following two subsections. The first subsection details the results for all four dataset variants with the classic 
ML implementation: (i) classic ML implementation with uniform aggregation of four statistical features, (ii) 
classic ML implementation with weighted aggregation, (iii) exclude entries for highly imbalanced datasets from 
the first variant, and (iv) exclude entries for datasets having a single feature with a very high PCA value from 
the first variant. The second subsection summarises two multiple regression results from the implementations 

Table 1.  Basic statistics of 200 open-access tabular datasets used in this study.

Item Range Value (%)

Total datasets 200

Attribute [2–2548]

Instance [19–319,795]

Dataset contexts (top five)

 Disease 66(33%)

 University ranking 50 (25%)

 Sports 23 (11.5%)

 Finance 15 (7.5%)

 Academia 14 (7%)

Dataset source

 Kaggle 147 (735%)

 UCI machine learning repository 53 (26.5%)
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through the hyperparameter tuning: one with uniform aggregation and the other with the weighted aggregation 
of statistical features.

Classic ML implementation
This subsection details the results for four dataset variants that underwent the classic ML implementation. Table 2 
presents the results of multiple regression models that explored the impact of three meta-level and four statisti-
cal dataset features on ML algorithm performance for the dataset variant with classic ML implementation and 
uniform aggregation for statistical features. We followed a five-fold cross-validation approach to implementing 
these ML algorithms to the training data. The statistical kurtosis feature negatively impacted the accuracy of all 
non-tree-based ML algorithms (i.e., SVM, LR and KNN) at p ≤ 0.05 level. The meta-level ratio feature revealed a 
statistically positive impact on these three ML algorithms, either at p ≤ 0.05 (KNN) or at p ≤ 0.10 (SVM and LR) 
levels. In addition, the statistical measures of mean and skewness positively impacted both SVM and KNN accu-
racy at different statistically significant levels (p ≤ 0.05 or p ≤ 0.10). Notably, the two tree-based ML algorithms 
(DT and RF) do not display any statistically significant association with the seven dataset features considered 
in this study.

After excluding 27 highly imbalanced datasets, we developed multiple regression models for the five algo-
rithms created with classic ML implementation and uniform aggregation. Although there is no exact definition 
of an imbalanced  dataset18, this study evaluated a dataset as extremely imbalanced if one of its classes has a fre-
quency of ≥ 90% or ≤ 10%. Table 3 shows the corresponding multiple regression results for the five ML algorithms 
in a summarised format, excluding the underlying models’ beta and t‑test details. We noticed two significant 
findings from this imbalanced-free regression results. First, mean and kurtosis features impacted the accuracy 
of three non-tree-based ML algorithms (SVM, LR and KNN) at p ≤ 0.05 or p ≤ 0.10. This impact is in a positive 
direction for the mean but a negative direction for kurtosis. Second, none of the seven dataset features has any 
statistically significant effect on the accuracy of two tree-based ML algorithms (DT and RF). Further, the meta-
level size feature negatively affected SVM and LR accuracy at p ≤ 0.05 and p ≤ 0.10, respectively. Skewness revealed 
a similar significant effect (p ≤ 0.05) for the SVM and KNN accuracy but in the opposite direction.

While implementing ML algorithms against the datasets of this study, we noticed that a single attribute 
significantly impacted the underlying ML classification performance for a few datasets. We found 35 datasets 
where a single variable or attribute revealed ≥ 20% variance explained according to  PCA31 of the Scikit-learn. We 
removed these datasets and then applied multiple regressions on the remaining 165 (200–35) datasets. Table 4 
presents the corresponding results. Mean and kurtosis revealed the same impact on all ML algorithms, as in 
Table 3. These two features showed a statistically significant effect on SVM, LR and KNN accuracy at p ≤ 0.05 
and did not impact the performance of the two tree-based ML algorithms (DT and RF). The meta-level ratio 
feature positively affected the performance of the three non-tree-based ML algorithms (SVM, LR and KNN) at 
p ≤ 0.10. Standard deviation negatively affected LR and KNN accuracy at p ≤ 0.05. Skewness positively affected 
SVN and KNN accuracy at p ≤ 0.10 and p ≤ 0.05, respectively.

Table 5 summarises the multiple regression results for the dataset variant created with classic ML implemen-
tation and weighted aggregation of four statistical measures. Ratio and kurtosis significantly impact non-tree-
based SVM, LR and KNN approaches. Statistical mean and standard deviation measures revealed statistically 
significant positive and negative effects on LR and KNN, respectively, at p ≤ 0.05. Interestingly, the meta-level 
number of attributes discloses a significant positive impact with tree-based DT and RF algorithms at p ≤ 0.05.

Comparing the findings from Tables 2, 3, 4, 5, it is evident that the statistical feature of kurtosis always showed 
a statistically significant negative effect on the performance of the three non-tree-based ML algorithms (SVM, 
LR and KNN). None of the four statistical features significantly impacted the performance of the two tree-based 
ML algorithms (DT and RF). The three meta-level features also revealed the same impact except for the clas-
sic implementation with weighted aggregation (Table 5), where the number of attributes showed a statistically 
positive effect on DT and RF performance at p ≤ 0.05. The mean feature showed a statistically significant positive 
impact in all cases except LR for the original research data for classic implementation with uniform aggregation 
of statistical measures. The meta-level ratio feature also divulged a statistically significant positive effect on SVM, 
LR and KNN performance for dataset variants except for the trimmed version that excludes highly imbalanced 
27 datasets (Table 3).

ML implementation through hyperparameter tuning
Table 6 reports the multiple regression results for the accuracy measure of the five ML algorithms implemented 
through hyperparameter tuning. We followed uniform and weighted aggregation approaches to quantify the four 
statistical features for each dataset. Kurtosis showed a statistically significant impact for most cases except SVM 
implementation with the weighted aggregation. The meta-level ratio feature showed a substantial effect with LR 
and KNN with both aggregation approaches. DT and RF did not significantly relate to any of the seven features 
for uniform aggregation. However, they revealed a significant statistical relation with the number of attributes 
for the weighted aggregation of statistical features. Notably, SVM did not significantly correlate with the seven 
features for the weighted aggregation.

Discussion
In most cases, kurtosis showed a statistically negative effect on the three non-tree-based ML algorithms except 
for SVM with hyperparameter tuning and weighted aggregation. A dataset with a higher kurtosis value (lepto-
kurtic) offers lower SVM, LR and KNN accuracy values, and vice versa. Such leptokurtic datasets have a higher 
pick and tend to have heavier tails on both sides than the standard normal distribution, making them inclined to 
extreme outlier values. Outliers are the data points located far away from other data points and the distribution. 
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Table 2.  Multiple regression results for the accuracy of five machine learning algorithms (classic 
implementation with uniform aggregation for four statistical features). Predictor dataset features are 
categorised into meta and statistical groups.

Standardised beta t-value Significance

(a) The accuracy of the support vector machine (SVM_accuracy) is the 
dependent variable ( R2

= 0.09)

Meta features

  No. of attributes 0.080 1.155 0.250

  Size 0.012 0.164 0.870

  Ratio 0.136 1.928 0.055

 Statistical features

  Mean 0.242 1.939 0.054

  Standard deviation 0.025 0.327 0.744

  Skewness 0.496 1.778 0.077

  Kurtosis − 0.631 − 2.585 0.010

(b) The accuracy of the decision tree (DT_accuracy) is the dependent 
variable ( R2

= 0.01)

 Meta features

  No. of attributes 0.026 0.365 0.716

  Size 0.050 0.671 0.503

  Ratio 0.049 0.667 0.506

 Statistical features

  Mean 0.003 0.023 0.982

  Standard deviation 0.069 0.852 0.395

  Skewness 0.073 0.250 0.803

  Kurtosis − 0.046 − 0.179 0.858

(c) The accuracy of the random forest (RF_accuracy) is the dependent 
variable ( R2

= 0.01)

 Meta features

  No. of attributes 0.026 0.366 0.715

  Size 0.050 0.671 0.503

  Ratio 0.049 0.667 0.506

 Statistical features

  Mean 0.003 0.022 0.982

  Standard deviation 0.069 0.850 0.396

  Skewness 0.072 0.249 0.803

  Kurtosis − 0.045 − 0.178 0.859

(d) The accuracy of the logistic regression (LR_accuracy) is the dependent 
variable ( R2

= 0.08)

 Meta features

  No. of attributes 0.093 1.333 0.184

  Size − 0.067 − 0.928 0.355

  Ratio 0.131 1.839 0.068

 Statistical features

  Mean 0.201 1.605 0.110

  Standard deviation − 0.086 − 1.108 0.269

  Skewness 0.401 1.432 0.154

  Kurtosis − 0.511 − 2.081 0.039

(e) The accuracy of the K-nearest neighbour (KNN_accuracy) is the 
dependent variable ( R2

= 0.09)

 Meta features

  No. of attributes 0.041 0.593 0.554

  Size 0.106 1.474 0.142

  Ratio 0.140 1.982 0.049

 Statistical features

  Mean 0.275 2.208 0.028

  Standard deviation − 0.115 − 1.488 0.138

  Skewness 0.528 1.897 0.059

  Kurtosis − 0.640 − 2.623 0.009
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Table 3.  Summarised multiple regression results (classic machine learning implementation with uniform 
aggregation) excluding extremely imbalanced 27 datasets. A double asterisk (**) and a single asterisk (*) 
indicate that the underlying impact is significant at ≤ 0.05 and ≤ 0.10 levels, respectively. A (+ ve) or (− ve) 
shows the beta-value sign for the corresponding feature variable. A hyphen (–) indicates no statistically 
significant effect.

SVM DT RF LR KNN

Meta features

 No. of attributes – – – – –

 Size (− ve)** – – (− ve)* –

 Ratio – – – – –

Statistical features

 Mean (+ ve)** – – (+ ve)** (+ ve)**

 Standard deviation – – – – (− ve)*

 Skewness (+ ve)** – – – (+ ve)**

 Kurtosis (− ve)** – – (− ve)* (− ve)**

Table 4.  Summarised results for five multiple regression models (classic machine learning implementation 
with uniform aggregation) excluding 35 datasets where a single attribute significantly impacted the 
classification performance (i.e., variance explained is ≥ 20%). A double asterisk (**) and a single asterisk (*) 
indicate that the underlying impact is significant at ≤ 0.05 and ≤ 0.10 levels, respectively. A (+ ve) or (− ve) 
shows the beta value sign for the corresponding feature variable. A hyphen (–) indicates no statistically 
significant effect.

SVM DT RF LR KNN

Meta features

 No. of attributes – – – – –

 Size – – – – –

 Ratio (+ ve)* – – (+ ve)* (+ ve)*

Statistical features

 Mean (+ ve)** – – (+ ve)** (+ ve)**

 Standard deviation – – – (− ve)** (− ve)**

 Skewness (+ ve)* – – – (+ ve)**

 Kurtosis (− ve)** – – (− ve)** (− ve)**

Table 5.  Summarised multiple regression results for the accuracy of five machine learning algorithms (classic 
implementation with weighted aggregation for four statistical features). A double asterisk (**) and a single 
asterisk (*) indicate that the underlying impact is significant at ≤ 0.05 and ≤ 0.10 levels, respectively. A (+ ve) or 
(− ve) shows the beta value sign for the corresponding feature variable. A hyphen (–) indicates no statistically 
significant effect.

SVM DT RF LR KNN

Meta features

 No. of attributes – (+ ve)** (+ ve)** – –

 Size – – – – –

 Ratio (+ ve)* – – (+ ve)** (+ ve)*

Statistical features

 Mean – – – (+ ve)** (+ ve)**

 Standard deviation – – – (− ve)** (− ve)**

 Skewness – – – – (+ ve)*

 Kurtosis (− ve)* – – (− ve)** (− ve)**
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The SVM decision boundary considers a set of points located on the hyperplanes on both sides. The position 
of this boundary line depends on the distance between points on the opposite hyperplanes. Throughout this 
process, SVM effectively ignores data points far from the decision boundary, potentially making it vulnerable 
to  outliers38. A basic assumption of LR is that independent variables have a linear relation with the dependent 
variable. This assumption can be compromised by outliers in the input  data30. Since it considers all data points 
for classification, KNN performance is highly susceptible to  outliers39.

DT and RF do not reveal a statistically significant relation with any of the four statistical features considered 
in this study. For classification, these two tree-based ML algorithms do not use distance measures and consider 
no linearity assumption between independent and dependent attributes. For this reason, they can effectively 
handle non-linear data for classification tasks. DT is a decision-support hierarchical tree-like model based on 
conditional control statements. RF is an ensemble learning method consisting of several DTs. The functional 
approach to conducting classification and not relying on the linearity assumption may make DT and RF not 
sensitive to any meta-level and statistical measures considered in this study. Further research is needed to reach 
a more concrete conclusion in this regard.

Like the current literature, such  as14–16, the meta-level size and ratio features show inconsistent effects on the 
accuracy of the three non-tree-based ML algorithms for different datasets. Size has been found to negatively 
impact SVM and LR performance for datasets that are not highly imbalanced. This relation was insignificant for 
KNN for the same set of datasets. This relation was also not significant for the other dataset variants. A similar 
inconsistent relationship has been noticed for ratio and the number of attribute measures with the three non-tree-
based ML algorithms. Although few statistical features showed a more consistent effect on these three non-tree-
based ML algorithms, the way they contribute to the ML training process remains largely unknown, primarily 
due to the complex learning nature of ML algorithms. Future research could address this issue further in depth.

Our findings could help potential researchers select appropriate non-tree-based ML algorithms for clas-
sification modelling based on the features of the underlying research dataset. For example, for a dataset with a 
high negative kurtosis score, all three non-tree-based ML algorithms would be better for optimal classification 
outcomes. These three algorithms should also be desirable for datasets with higher positive instances than their 
counterparts. KNN would result in a better classification outcome among these three ML algorithms for a bal-
anced dataset with a negative standard deviation.

This study used the min–max scaling for data normalisation. This approach allows each dataset feature to 
have a scale between 0 and 1. Other normalising strategies exist, such as log scaling and z-score. However, they 
are not suitable for this research. We cannot consider the z-score approach since this study evaluated mean and 
standard deviation as the statistical features. Therefore, if we apply the z-score normalisation approach, the values 
of these two features will be 0 and 1, respectively, of these two features for each dataset. On the other hand, the 
highest value of some features is extensive in some datasets. For example, the first  dataset40 has three variables 
(blood pressure, cholesterol and max heart rate), with the highest value of ≥ 200. Considering a log scaling to this 
dataset will make a statistical bias compared to another dataset that does not have variables with such high scores.

Conclusion
Non-tree-based ML algorithms are sensitive to dataset features. We found a statistically significant effect of kur-
tosis on the three non-tree-based ML algorithms across all three versions of the research data. Meta-level ratio 
and statistical mean features often significantly impact these three ML algorithms. Conversely, tree-based ML 
algorithms are not sensitive to any of the seven measures considered in this study. Future studies can explore and 
reveal this difference in the effects of dataset features on performance between non-tree-based and tree-based 
ML algorithms. Until then, based on the seven features of a given dataset, this research could provide helpful 
insight into the selection of ML algorithms and their expected accuracy outcomes.

Table 6.  Summarised multiple regression results for the accuracy of five machine learning algorithms 
(implementation through hyperparameter tuning with uniform and weighted aggregation for four statistical 
features). A double asterisk (**) and a single asterisk (*) indicate that the underlying impact is significant 
at ≤ 0.05 and ≤ 0.10 levels, respectively. A (+ ve) or (− ve) shows the beta value sign for the corresponding 
feature variable. A hyphen (–) indicates no statistically significant effect.

Uniform aggregation Weighted aggregation

SVM DT RF LR KNN SVM DT RF LR KNN

Meta features

 No. of attributes – – – – – – (+ ve)* (+ ve)** –

 Size – – – – – – – – –

 Ratio (+ ve)* – – (+ ve)** (+ ve)* – – – (+ ve)** (+ ve)*

Statistical features – (+ ve)*

 Mean (+ ve)* – – – (+ ve)** – – – (− ve)* (+ ve)**

 Standard deviation (+ ve)* – – – – – – – – (− ve)**

 Skewness (+ ve)* – – – (+ ve)* – – – – –

 Kurtosis (− ve)** – – (− ve)* (− ve)** – – – (− ve)* (− ve)**
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This study concentrates on five supervised ML algorithms and the binary classification of their implemen-
tation on tabular datasets. The target variable of the 200 datasets we used has only two categories. A possible 
extension of this study is to consider other tabular datasets having more than two classes. Another possible 
extension of this study is to evaluate other ML algorithms based on tabular data, such as the ensemble approaches 
of boosting and stacking. A third possible extension would be the consideration of deep learning  methods41. In 
addition to these potential future research opportunities, our findings will open a new arena in understanding 
how dataset meta-level and statistical features impact ML performance.

Data availability
The 200 datasets used in this study are publicly available from open-source repositories.
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