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Residual dynamics learning 
for trajectory tracking 
for multi‑rotor aerial vehicles
Geesara Kulathunga 1,2*, Hany Hamed 3 & Alexandr Klimchik 4

This paper presents a technique to model the residual dynamics between a high‑level planner and 
a low‑level controller by considering reference trajectory tracking in a cluttered environment as an 
example scenario. We focus on minimising residual dynamics that arise due to only the kinematical 
modelling of high‑level planning. The kinematical modelling is sufficient for such scenarios due to 
safety constraints and aggressive manoeuvres that are difficult to perform when the environment is 
cluttered and dynamic. We used a simplified motion model to represent the motion of the quadrotor 
when formulating the high‑level planner. The Sparse Gaussian Process Regression‑based technique is 
proposed to model the residual dynamics. Recently proposed Data‑Driven MPC is targeting aggressive 
manoeuvres without considering obstacle constraints. The proposed technique is compared with 
Data‑Driven MPC to estimate the residual dynamics error without considering obstacle constraints. 
The comparison results yield that the proposed technique helps to reduce the nominal model error 
by a factor of 2 on average. Further, the proposed complete framework was compared with four 
other trajectory‑tracking approaches in terms of tracking the reference trajectory without colliding 
with obstacles. The proposed approach outperformed the others with less flight time without losing 
computational efficiency.

List of symbols
Bz  A mapping matrix that projects the full state vector z onto the subspace of states relevant to the 

residual dynamics
fnorm  Nominal system dynamics, it can be either kinematic model or dynamic model
fest  Augmented quadrotor motion model that comprises nominal dynamics and estimated 

residual dynamics by Sparse Gaussian Process (SGP)
fd  Discrete augmented system dynamics
g1(w), g2(w)  The constraints enforced by system dynamics and obstacle for Nonlinear Model Predictive 

Control (NMPC)
gm  Residual dynamics model that is learnt using Sparse Gaussian Process
g(z)  Residual dynamics model that is learnt using Gaussian Process
pk  The robot’s current position pµk ,µ ∈ {x, y, z}

pk  The robot’s current velocity vµk ,µ ∈ {x, y, z}

uref   Desired reference robot control input at time step k
uk  The robot’s current control inputs uk ∈ R

nu , influencing its linear velocity vk ∈ R
3 in meters 

per second and angular velocity ω
ūk  The estimated control input at time step k by NMPC
ûk  Actual control input at time step k after applying the current control ( ̄uk ) to the robot
w  The estimated state trajectories and corresponding control inputs 

( [ūk , . . . , ūk+N−1, x̄k , . . . , x̄k+N ] ) estimated from the NMPC
x̄k  The estimated robot state vector at time step k by using NMPC
xk  The robot’s current state xk ∈ R

nx , given by its position pk ∈ R
3 in meters and orientation α in 

radians at time step k
x̂k  Actual robot state vector at time step k after applying the current control ( ̄uk ) to the robot
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xm  The optimal inducing points employed to construct an approximate multivariate Gaussian 
distribution by using SGP

xref   Desired reference robot state vector at time step k
(x∗)i  A testing data input point that comprises (xi , ūi , x̄i , x̂i)
yi  A testing data expected output point
y∗  The estimated residual dynamics for given x∗
z = [x; u]  The state vector for the Gaussian Process
δt  The integration step for Runge–Kutta 4th order method

Accurate reference trajectory tracking in cluttered  environments1 is still a challenging research problem. Sensing 
capabilities, e.g., how far the sensor can observe the environment, and computational and power capabilities 
are the main constraints that face when solving such research problems. Therefore, the quadrotor’s full maneu-
verability can not be exploited due to those constraints. On the contrary, when the problem formulation uses 
a simplified motion model instead of a complex dynamical model, the residual dynamical error arises between 
the actual controller and desired control commands.

For controlling a quadrotor through high-speed agile maneuvers, it is necessary to consider aerodynamic 
drag effects, which act as the main component of residual dynamics and external aerodynamic effects, e.g., wind, 
that is applied on the quadrotor in addition to other constraints: dynamics and obstacle constraints. However, 
several studies related to agile  maneuvers2–6 do not consider such effects, which are very difficult to incorpo-
rate when modelling system dynamics, except approximating the quadrotor dynamics with simplified motion 
 model7. Even if those effects are incorporated, the necessary external aerodynamic effects are difficult to obtain 
due to high-computational demands that leverage real-time performance. In other words, model complexity is 
constrained by the computational capabilities of the onboard controller. Nonetheless, such aerodynamic effects 
produce negligible impact for the low-speed maneuvers since dynamic effects can be neglected, considering only 
the kinematic modelling, especially in the plan-based control paradigm. Such a paradigm consists of two stages: 
planning and controlling. In the planning stage, a simplified motion model is utilized for generating near-optimal 
control policy, whilst in the controlling stage, the controller depends on the input from the planner and gener-
ates sufficient control commands based on the simplified motion model. However, utilizing an approximated 
motion model in the planning stage produces a dynamical error (residual dynamics) between the planner and 
the low-level controller that is hard to estimate analytically (Fig. 1).

In this research, we used a planner that consists of two sub-planners: a local planner that consists of a 4 degree 
of freedom model (simplified motion model)8 and a  replanner9 that can push the reference trajectory out of 
obstacle zones. The local planner is formulated as a hard constraint optimization problem, whereas the replanner 
is formulated as a box-constrained function minimization problem, which iteratively refines the reference trajec-
tory by pushing away from the obstacle zones. To compensate for the limitations of the simplified motion model, 
a learning mechanism based on the Sparse Gaussian Process (SGP) was introduced. This learning mechanism 
modeled the residual dynamics (y) that arose from the discrepancy between the simplified motion model and 
the actual system dynamics. As depicted in Fig. 1, the residual dynamics is determined by y = g(z), z = [x, u] , 
where g is the model that estimates residual dynamics, given current state and current control ( x, u ). The pro-
posed approach employs velocity residual as the residual dynamics to integrate with the local planner’s nominal 
dynamics, effectively reducing the discrepancy between the estimated control output from the local planner and 
the desired control that the simplified motion model is incapable of estimating.

Figure 1.  The high-level control command generation is based on Model Predictive Control (MPC). Residual 
dynamics (y) that arise between high-level control generated by MPC and low-level control generated by flight 
controller can not be estimated analytically. Hence, the Sparse Gaussian Process (SGP)-based learning technique 
is proposed to estimate y, where xk , x̄ , and x̂ are denoted current state, next desired state, and actual state after 
applying the current control to the system, respectively.
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Related works
Most recent trajectory generation and tracking methods are proposed either without considering obstacles or 
considering partially known or simplified obstacles, e.g., gates. For example,  in10 they have achieved 60km/h 
on a defined racing track. This approach uses Model Predictive Contouring Control (MPCC)11 for local replan-
ning at such a speed. However, such methods are not capable of flying through cluttered environments due to 
generating a time-optimal trajectory, ensuring safety and feasibility that are limited by onboard computational 
capacity. Graph-based planning techniques often rely on geometric methods like Jump Point Search (JPS)12, 
RRT 13, and  A14 to generate an initial trajectory by identifying a path or a set of waypoints for a limited horizon. 
This initial trajectory serves as a guide for subsequent path-planning stages. This trajectory generation can be 
achieved by different methods, including minimum  snap15, B-spline9. These generated trajectories, in general, 
do not guarantee dynamic feasibility. Kinodynamic-based trajectory  planning16,17 addressed these issues through 
kinodynamic search, whilst ensuing dynamic feasibility. Despite addressing such issues, kinodynamic-based 
trajectory planning remains a highly computational footprint.  In18, the authors developed a kinodynamic-based 
framework, yet the framework failed to guarantee consistent smoothness.

Hierarchical trajectory  planning9, e.g., global and local planning, is one of the ways that can address all the 
aforementioned issues when planning in a cluttered environment. In such planning, a global  planner19 tries to 
refine the desired trajectory considering safety constraints. Along with that, a local  planner8 ensures the dynamic 
feasibility and imposes safety constraints. In the DARPA subterranean  challenge20, Tranzatto et al.21 and De Petris 
et al.22 used a modified version of DJI M100 with position level  control23 relying on a highly accurate localisation 
module. Chung et al.24, and Arm et al.25 used multiple depth sensors to build highly accurate elevation maps 
and groundbreaking local motion planning techniques, enabling robots to navigate effectively in complex and 
cluttered underground environments ensuring planning outputs are feasible for low-level controllers targeting 
exploration tasks. On the other hand, with fewer sensing capabilities, incorporating fully-fledged system dynam-
ics makes it harder to solve trajectory planning whilst avoiding obstacles in real-time. Hence, the approaches 
that employ approximated system dynamics use external and internal disturbances alongside approximated 
 dynamics19,26–28. Also, recent advancements in adaptive robust nonlinear control-based  techniques29,30 have 
demonstrated promising results for controlling aerial vehicles. Most of these techniques can be categorized under 
different variations of receding horizon-based control. A special variant of such control, GP-MPC (Gaussian 
Process MPC) excels in estimating unknown quantities, such as residual dynamics, internal disturbances, and 
external disturbances. A recent line of  work7,31–33 has been investigating how to incorporate Gaussian Process 
(GP) to learn system dynamics entirely or partially considering external disturbances, for example,  wind28, from 
data, targeting applications such as reference trajectory tracking and reaching to a specified goal. The choice of 
GPs is preferred for system identification-related tasks, e.g., residual dynamics modelling, compared to more 
expressive modelling techniques such as neural networks in the recent past. GPs are preferred due to the model-
ling constraints for receding horizon planning, e.g., MPC and NMPC. It is sophisticated to develop the back-
propagation  algorithm34 to estimate gradients of the cost function when formulating receding horizon planning 
problems within the optimization solver. However, for GPs, it is relatively easy to implement gradient estimation. 
Hence, variants of GPs are proposed for system identification-related tasks more often than the other techniques.

Instead of learning a complete dynamical model, the authors  of35 proposed to learn only time-varies state 
uncertainty using Gaussian belief propagation. Consequently, learning only the sub-portion of time-varies state 
or/and control uncertainty as the residual dynamics yields quite promising  results7. The latter training technique 
requires less data to learn the residual dynamics. Yet it is advisable to have more training data to improve the 
robustness to learn the residual dynamics. However, a large amount of training data is problematic when GP is 
applied for real-time applications. There are several ways to reduce the overhead that arises when utilizing a high 
volume of training  data36: select a set of points, i.e, inducing  points37,38, that approximate the original training 
data distribution; exploit the structure of the formation of  GP39–41, e.g., Kronecker  Structure42; and use variational 
methods. Sparse  GP43 is such a variant that can be used in different ways to obtain inducing points: Subset of 
Regressors (SoR), Deterministic Training Conditional (DTC), Fully Independent Training Conditional (FITC)38, 
and Structured Kernel Interpolation (SKI)39. The complexity reduces from O(n3) to O(nm3) , where n and m are 
the numbers of points ( n > m ) that are used to model GP and Sparse GP, respectively. Inducing point methods 
are quite appropriate for the real-time setting. However, model accuracy degrades as m decreases, which can be 
seen as a trade-off between model expressiveness reduction versus computational complexity.

In this work, we present how to reduce residual dynamics that arise between high-level planning and low-
level controlling by considering reference trajectory tracking as an example in the plan-based control paradigm 
(Table 1). The proposed approach is not limited to the considered example. It is valid for any motion planner 
which depends on a low-level controller. Depending on the representation of the motion model, the residual 

Table 1.  Comparative analysis of Gaussian process-based residual dynamics learning techniques with the 
proposed technique. KNODE: Knowledge-based Neural Ordinary Differential Equations to augment a model.

Approach Quadrotor model Type of learning Obstacle avoidance
Experiments (real-world or 
simulated) Speed-profile

KNODE-MPC44 KNODE Residual dynamics No Real-world (off-board computation) Low-speed (< 1 m/s)

Data-Driven  MPC7 Simplified Aerodynamic effects No Real-world (on-board computation) High-speed (up to 14 m/s)

KinoJGM26 Full-state Unpredictable aerodynamic effects Yes Only simulated Low-speed (< 3 m/s)

The proposed technique Simplified Residual dynamics Yes Real-world (on-board computation) Low-speed (< 3 m/s)
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dynamics are defined by selecting a set of states and controlling input appropriately. The uniqueness of the pro-
posed approach is that it is invariant to the geometry representation of the trajectory. Hence, once the residual 
dynamics model is trained, it can be deployed without retraining. The following sections explain the training 
process of such residual dynamics model and deploy it in hardware, which shows the effectiveness of incorporat-
ing residual dynamics modelling in high-level planning.

Our contributions are as follows: 

1. To address the limitations of traditional motion models in capturing the actual system dynamics of aerial 
vehicles, we propose a hybrid approach that combines a simplified motion model for high-level planning 
with a learning-based technique, Sparse Gaussian Process, to estimate residual dynamics. This approach 
enables real-time performance by running the entire algorithm on an onboard computer.

2. To augment the replanner’s9 capability to circumvent local minima, we introduce a mechanism that dynami-
cally regenerates the reference trajectory whenever the quadrotor’s actual position deviates substantially 
from the initial reference trajectory. This enhancement effectively precludes the quadrotor from becoming 
ensnared in local minima during the receding horizon control process.

Methodology
This paper tackles the challenge of using a less accurate model (kinematic or dynamic) with Model Predictive 
Control (NMPC) by learning the residual errors between that approximated model and the actual model. Instead 
of a full 6-degree-of-freedom dynamic model, we employ a 4-degree-of-freedom model and propose a Sparse 
Gaussian Process technique to reduce the impact of dynamic factors that depend on the operating conditions and 
can hardly be modelled analytically in advance. Crucially, we aim to maintain trajectory planner performance, so 
we focus on learning the rate of velocity changes as residual dynamics. This choice is invariant to the trajectory’s 
geometric representation, allowing offline learning of the residual dynamics distribution. By generating diverse 
trajectories, we capture the latent distribution of residual dynamics. We then augment the nominal model with 
this learned residual dynamics model and demonstrate it in online NMPC as a feedback controller, especially 
for the quadrotor in the plan-based robot control paradigm.

The plan-based robot control paradigm comprises two stages: planning and controlling. The planning stage 
can be a combination of several planners that run simultaneously or cascade  planners45 that run sequentially. 
In this work, the planning stage is formed by two planners: a replanner and a local planner. We have used the 
approach proposed  in9 as our replanner. It executes continuous refinement of the provided reference trajectory 
out of obstacle regions. The proposed learning-based residual dynamics are augmented into a local  planner8. 
Further, the subsections are organized as follows: formulating the local planner with residual dynamics in the 
Residual Augmented Quadrotor Motion Model; laying down training strategies of residual dynamics in the 
Nonlinear Model Predictive Control local planner, and estimating approximated distribution to represent the 
residual dynamics in Sparse GP Regression.

Residual augmented quadrotor motion model
The proposed residual dynamics learning framework can be integrated with various quadrotor kinematical and 
dynamical models when formulating NMPC. While the choice of model can significantly impact the effectiveness 
of the approach, it also introduces various challenges, including high computational demands, being stuck in local 
minima, low convergence rate, and real-time applicability. In NMPC, finding a delicate balance between avoid-
ing local minima and managing computational costs is crucial. A longer prediction horizon helps evade local 
minima, but it also increases the number of optimization variables, demanding more computational resources. 
Several strategies exist to reduce these variables, but each has its own drawbacks. Increasing the discretization 
interval ( δt ): This relies heavily on the accuracy of the motion model. If the model is approximated, it can lead 
to unrealistic control commands. Increasing maximum control inputs (velocity, acceleration): this raises the 
risk of collisions with obstacles. Using high-degree-of-freedom models: if some degrees of freedom aren’t fully 
utilized, unnecessary computational overhead is introduced. In this work, we chose a 4-degree-of-freedom model 
( fnorm(x, u))8, aligning with our focus on low-speed maneuvering. To compensate for potential inaccuracies, we 
employed Sparse Gaussian Regression to model residual dynamics. This approach strikes a balance between 
avoiding local minima and maintaining computational efficiency, demonstrating the intricate link between these 
two factors in NMPC. Let fest(x, u) be the augmented quadrotor motion model:

where the state vector and the control inputs, defined x and u , respectively. Depending on which states and 
controls are learnt, Bz gives the appropriate transformation, defined in the following sections. The Gaussian 
process was used to model the residual dynamics g(z) ∼ N(µ,�p), z = [x; u] , where �p is a i.i.d (independent 
and identically distributed) process noise and µ estimated mean value. The training data were centered, i.e., 
zero mean, before stating the learning process, which consists of only the diagonal covariance (or assuming 
no correlation between the two states of residual dynamics). The explicit Runge-Kutta 4th order algorithm was 
used to incorporate fest(x, u) motion model in the discrete-time fd(xk , uk , δt) with integration step size δt as 
xk+1 = fd(xk , uk , δt), where k depicts the time index. Since we rely on a less accurate model (or an approximate 
model) using the Runge-Kutta 4th order  method46 compared to the Eular, reduce the integration error of the 
discrete system dynamics.

(1)ẋ = fest(x, u) = fnorm(x, u)+ Bzg(z),
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Nonlinear model predictive control based local planner
To obtain augmented residual motion model fd(x, u, δt) , the local planner calculates near-optimal control policy. 
However, the local planner does not guarantee optimality because NMPC-based planners calculate approximated 
control policy heuristically. In complex and cluttered environments, generating a convex representation of free 
space is generally challenging. However, the incremental Euclidean Distance Transformation Map (EDTM)8, 
when applied along the reference trajectory, can provide accurate obstacle poses. These poses can be incorporated 
as hard constraints in the NMPC formulation, effectively addressing the non-linearity of obstacle constraints. 
NMPC is preferred over linear or convex MPC due to its ability to generate feasible solutions even when dealing 
with non-linear constraints. However, NMPC is susceptible to getting stuck in local minima, unlike convex MPC 
which guarantees global optimality. The following section outlines a proposed method to mitigate this issue.

For a specified time index k, a corresponding slice of the reference trajectory [xrefk , . . . , x
ref
k+N , u

ref
k , . . . ,u

ref
k+N ] 

and the current state xk , and close-in obstacles g2(w) information are available. The local plan-
ner, which was designed using multiple shooting technique, generates near-optimal control policy 
w = [ūk , . . . , ūk+N−1, x̄k , . . . , x̄k+N ] as follows:

where the performance index (or objective function) J(w) aims to minimize the proportional error x̄k+i − x
ref
k+i 

and the control effect ūk+i − u
ref
k+i by employing a quadratic cost function. The continuous and differentiable 

nature of quadratic functions facilitates smooth optimization, enabling efficient solution via sequential quadratic 
programming (SQP)47. The prediction horizon length of NMPC, denoted N. Both maximum and minimum 
pairs of velocities and positions, denoted vmax , xmax and vmin, xmin , respectively. Both the Q and R matrices are 
positive semi-definite and positive definite, respectively. These matrices govern the importance of state vari-
ables and control inputs in the cost function, J(w) . To obtain the discrete dynamical model, the Runge-Kutta 
4th order algorithm is applied to the quadrotor’s motion dynamics, resulting in the discrete dynamical model 
xk+1 = fd(xk , uk , δt) , where δt is the time step. The system dynamic constraints are formulated based on the 
given discrete dynamical model fd(Eq. 2)8.

At each time step k, the desired reference pose and control are denoted by xrefk  and urefk  , respectively. The reference 
trajectory, which provides the desired poses and control inputs, can be represented as a dth-degree polynomial 
function of time. Consequently, desired derivatives up to order d − 1 can be obtained at each time step k. Cubic 
uniform B-spline was employed to define the initial reference trajectory, which was subsequently refined using the 
global  planner9. The obstacle constraints were formulated as a set of nonlinear hard constraints, g2(w) , as follows:

where  No  i s  the  number of  obstacles  at  t ime k,  and dis(xoj , x̄k+h) i s  ca lculated as 

−
√

(xoj − xk+h)
2 + (yoj − yk+h)

2 + (zoj − zk+h)
2 + do, where do is the safe zone distance between a quadrotor 

and close-in obstacles, denoted by xoj ∈ R
3, j = 1, . . . ,No . For the descriptive formulations of g1(w) , g2(w) , x

ref
k  , 

and urefk  , refers  to8,9.

Augmented residual dynamics learning with Gaussian process (GP)
To learn residual dynamics g(z) Eq. (1), the first step is to collect a training dataset. As shown in Fig. 2, generate 
a set of random reference trajectories and formulate the local planner Eq. (2) considering only fnorm(x, u) . Let 
training dataset D be {X, y} , where X = {(xi , ūi , x̄i , x̂i)}

n
i=0 and y = {yi}

n
i=0, i = 0, . . . , n . Terms xi , ūi , x̄i and x̂i 

are current state, (predicted) control input and state using the local planner, and actual states after applying ūi 
to the system, respectively, at time ti . Residual dynamics yi at ti is determined by

Thus, given a training dataset D, Gaussian Process is employed to learn g(zi) . Gaussian Process, in general, can be 
used to infer a distribution (prior) over function directly. Hence, residual dynamics can be determined as follows:

(2)

min
w

J(w) =

N
∑

i=0

∥

∥

∥
x̄k+i − x

ref
k+i

∥

∥

∥

2

Q
+

∥

∥

∥
ūk+i − u

ref
k+i

∥

∥

∥

2

R

s.t. g1(w) = 0, g2(w) ≤ 0,

xmin ≤ x̄k+i ≤ xmax ∀0 ≤ i ≤ N ,

− vmax ≤ ūk+i ≤ vmax ∀0 ≤ i ≤ N − 1,

(3)g1(w) =







xk − x̄k+i

...
fd(x̄k+N−1, ūk+N−1, δt)− x̄k+N






.

(4)g2(w) =







dis(xoj , x̄k)

...
dis(xoj , x̄k+N )






, j = 1, . . . , No, i = 0, . . . ,N ,

(5)yi =
x̂i − x̄i

δti
= g(zi), zi = [xi , ui]
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where ǫi is the corresponding n white noise realization σn . Given an unseen x∗ data points (or test dataset), GP, 
which is a way to estimate the posterior predictive distribution, estimates corresponding residual dynamics y∗ , 
that can be formulated as follows:

where A = σ−2
n XX⊤ +�−1

p  and term s , denoted the prior distribution of the residual dynamics. Nonetheless, 
linear models, e.g., Eq. (6), suffer severely from limited expressiveness. Various methods can be used to transform 
input space ( xi ) into different feature spaces using basis functions; however, the model ( s ) is still linear in param-
eters, which is analytically tractable. Let �(∗) be such a basic function, where ∗ denotes input space. Along with 
that, posterior predictive distribution Eq. (7) becomes: p(y∗|x∗,X, y) ∼ N

(

1
σ 2
n
�(x∗)

⊤A−1�y,�(x∗)
⊤A−1�(x∗)

)

, 
where � = �(X),A = σ−2

n ��⊤ +�−1
p  . This posterior predictive distribution can be reformulated as 

p(y∗|x∗,X, y) ∼ N
(

σ⊤
∗ �p�(K + σ 2

n I)
−1y,�⊤

∗ �p�∗ −�⊤
∗ �p�(K + σ 2

n I)
−1�⊤�p�∗

)

, where �(x∗) = �∗ 

and K = �⊤�p� . Feature space ( �(∗) ) always enters in the form of �⊤�p�,�⊤
∗ �p�, or �⊤

∗ �p�∗ . Thus, the 
entries of these matrices have invariable form �(xµ1)

⊤�p�(xµ2) , where xµ1 and xµ2 come either from training 
or testing sets. Let k(xµ1, xµ2) = �(xµ1)

⊤�p�(xµ2) . Since �p is positive definite, we can define �1/2
p  . Moreover, 

�
1/2
p = UD1/2U⊤ (using Singular Value Decomposition (SVD)). Thus, k(xµ1, xµ2) = ψ(xµ1) · ψ(xµ2) , where 

ψ(xµ1) = �
1/2
p �(xµ1) . If xµ1 and xµ2 are similar, kernel k(xµ1, xµ2) at these points, i.e., f (xµ1) and f (xµ2) , must 

have similar values.
Since data centring is, in general, applied before applying regression, a GP is completely specified by its 

co-variance function k(xµ1, xµ2) for a real process g(x) (or g(z) , where z = [x; u] ). We have used only x as the 
input for GP Eq. (5). Hence, we neglected u from the formulation). The g(x∗) ∼ GP(m(x), cov(x, x∗)) , where 
terms m(x) = E[g(x)],m(x∗) , cov(x, x∗) = E[(g(x)−m(x))(g(x∗)−m(x∗))] , denoted mean for training data, 
mean for testing data and covariance between training and testing data, respectively. Since it is impossible to 
estimate k(xµ1, xµ2) analytically, an approximated kernel function k, e.g., square exponential (SE)48, is required 

(6)yi = g(zi)+ ǫi , ǫi ∼ N(0, σn),

(7)p(y∗|x∗,X, y) =

∫

s
p(y∗, s|X, y, x∗)ds =

∫

s
p(y∗|x∗, s)p(s|X, y)ds ∼ N

( 1

σ 2
n

x⊤∗ A
−1Xy, x⊤∗ A

−1x∗

)

,

Figure 2.  The high-level overview of the proposed framework for learning the residual dynamics. Design 
matrix Bz defines which states and control inputs should be trained. Learned residual dynamics g(zk+i−1) is 
added to nominal dynamics fnorm(xk+i−1, uk+i−1) when formulating NMPC by using the multiple shooting 
technique. In the training stage, collect the data D = {X, y} = {(xi , ūi , x̄i , x̂i), yi}, i = 0, . . . , n for n number 
of times, where (xi , ūi , x̄i , and x̂i) denote current state, estimated near-optimal control inputs and state after 
applying NMPC, and actual system state after applying estimated control inputs, respectively. We used the same 
PD regulator that was proposed  in8. This work focuses on the DJI M100 quadrotor as the representative real 
system..
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to estimate �p is defined as k(xµ1, xµ2) = σ 2
f e

(− 1

2l2
|xµ1−xµ2|

2
)
+ σ 2

n I , where σf  and l are hyper-parameters that 

have to learn; they are unique for the selected kernel function. Along with that, GP is formed to estimate y∗ 
analytically given x∗ as follows:

Thus, using Eq.  (8), the mean and covariance of the testing dataset can be fully determined as 
m(x∗) = k(x∗, x)[k(x, x)+ σ 2

n I]
−1y and cov(x∗, x∗) = k(x∗, x∗)− k(x∗, x)[x, x + σ 2

n I]
−1k(x, x∗) , respectively.

Sparse GP regression
Let yi = gi + ǫi , gi = g(xi) , where g = {gi}

n
i=1 are the latent function values. Once GP is estimated, the prior 

p(g) can be determined. Therefore, the joint probability model p(y, g) = p(y|g)p(g) can be estimated. Sparse 
GP Regression aims to minimize the distance between the exact Gaussian distribution and a proposed pos-
terior Gaussian distribution using variational approximation in which the number of training samples (m) is 
less than the number of training samples (n) for exact GP . Let p(h|y) =

∫

p(h|g)p(g|y)dg be such a posterior 
distribution, where p(h|g) denotes the prior conditional probability on the selected a set of auxiliary induc-
ing points xm and h = gj + ǫj , ǫj ∼ N(0, σm), j = {0, . . . ,m} . ǫj is the corresponding m white noise realization 
σm . After selecting such points, gm be the approximated GP model. Therefore, p(h|y) can be reformulated as: 
p(h|y) =

∫

p(h|gm, g)p(g|gm, y)p(gm|y)dgdgm . Suppose h and g are conditionally independent given gm , i.e., 
p(h|gm, g) = p(h|gm) or gm is sufficient to describe the distribution g:

where �(gm) = p(gm|y) ∼ N(µ,A) . With that, mean and covariance of the approximated posterior GP are 
determined as

respectively. Inducing points xm are estimated to reduce the distance between approximated and actual Gaussian 
distributions. The Kullback-Leibler ( KL ) divergence can be used to minimize the distance between the approxi-
m at e d  p o s t e r i or  q(h) an d  t h e  e x a c t  p o s t e r i or  p(g|y) .  T h e  opt i m a l  e s t i m at i on 
q∗(h) = argmin�(gm)

KL[q
(

h;�(gm)
)

||p(h|y)] . Using Bayesian inference, i.e., p(h|y) = p(h, y)/p(y) , KL diver-
gence can be expanded in the following way:

However, p(y) is an intractable integral, yet p(y) is independent of q(h;�(gm)) . Thus, by maximizing the first 
two terms (evidence lower bound ELBO(q) = L(µ,A, xm)):

(8)
∣

∣

∣

∣

y
y∗

∣

∣

∣

∣

∼ N

(

0,

[

k(x + σ 2
n I , x) k(x, x∗)

k(x∗, x) k(x∗, x∗)

])

(9)q(h) = p(h|y) =

∫

p(h|gm)p(g|gm)�(gm)dgdgm =

∫

p(h|gm)�(gm)dgm =

∫

q(h, gm)dgm

m(x∗) = k(x∗, xm)k(xm, xm)
−1µ,

cov(x∗, x∗) = k(x∗, x∗)− k(x∗xm)k(xm, xm)
−1k(xm, x∗)+ k(x∗, xm)k(xm, xm)

−1Ak(xm, xm)
−1k(xm, x∗)

(10)KL[q
(

h;�(gm)
)

||p(h|y)] = E[log
(

q(h;�(gm))
)

] − E[log
(

p(y, h)
)

] + E[log
(

p(y)
)

]

Figure 3.  Epistemic uncertainty propagation of residual dynamics yy for changing of input velocity vy , where 
subscript y indicates the y axis. Variable yy , defined the rate of the different between predicted velocity v̄y and 
actual velocity v̂y . Inducing points provide an approximation for yy . A Gaussian process is formed using such 
inducing points, i.e., sparse Gaussian process, which can be used to predict residual dynamics for corresponding 
input velocity vy.
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true log marginal likelihood log(p(y)) can be calculated. Thus, relationship between ELBO(q) and 
KL[q(h;�(gm))||p(h|y)] c a n  b e  d e t e r m i n e d  c o n s i d e r i n g  E q s .   ( 1 0 )  a n d  ( 1 1 )  a s 
ELBO(q) = E[log

(

p(y|h)
)

] −KL[q
(

h;�(gm)
)

||p(h)] . Similarly, log marginal likelihood log(p(y)) can also be 

determined by log(p(y)) = ELBO(q)+KL[q
(

h;�(gm)
)

||p(h|y)] . Since KL[q(h;�(gm))||p(h|y)] ≥ 0 for any 
true distribution, i.e. KL is a distance, log(p(y)) ≥ ELBO(q) should hold. Thus, this inequality maximizes the 
ELBO on h , which eventually approximates the actual log-marginal likelihood as follows, which gives the optimal 
inducing points to represent the approximated Gaussian distribution.

Once we obtained the optimal values for xm , µ and A, which are the parameters of �(gm) , can be determined as

respectively.
After selecting the inducing points xm , only those points are considered to formulate the g(z) (Eq. 1). After-

wards, NMPC is formulated (Eq. 2) with an augmented residual dynamics model.

Experimental procedure and results
To assess the improvement of incorporating the proposed GP-based residual dynamics modelling into the local 
planner, we conducted several simulated and real-world experiments. For real-world experiments, the DJI M100 
quadrotor was employed. The developed software stack is built on the ROS1 framework and implemented in 
C++. Since the local planner generates velocity and angular velocity commands, we employed the velocity control 
interface provided by the DJI Onboard-SDK-ROS23. The DJI control interface can handle control commands at a 
frequency of 20 Hz or higher. To bridge the gap between the DJI quadrotor and the local planner, we implemented 
a PD  regulator8 that ensures smooth command transmission at 30 Hz.

Collecting testing dataset
Initially, twenty distinct trajectories were generated, as shown in Fig. 4. The objective was to collect a testing 
dataset in two forms: with and without obstacles. The testing dataset is structured as follows, which is similar to 
the training dataset: D = {X, y} = {(v̄i , v̂i , δi), yi}, i = 0, . . . , n, where n represents the number of data points. 
In this structure: v̄i , v̂i , yi ∈ R

3 and δi ∈ R represent the estimated velocity by NMPC, the actual velocity after 
applying the estimated velocity, the velocity residual, and the time difference between two consecutive data 
points, respectively. The terms v̄i , v̂i , and yi are expressed as: v̄µ, v̂µ, yµ, µ ∈ {x, y, z}, where yµ and vµ denote 
the expected residual dynamics and velocity component in the µ direction, respectively. These values are calcu-
lated at time δi when using only the nominal model ( fnorm ). For simplicity, δi is defined as δv . Accordingly, the 
residual dynamics of the actual system are given by: yi = (x̂i − x̄i)/δi → (v̂i − v̄i)/δv . The data were acquired 
using both a PX4-enabled quadrotor in a Gazebo-based simulated environment and a DJI M100 quadrotor 
(Fig. 4) in real-world conditions.

Since residual dynamics is invariant to the geometric representation of trajectory but variant to velocity 
changes, we focused on collecting the dataset such that the dataset represents the whole distribution of the 
velocity changes. Additionally, since we used two different quadrotors for simulated and real-world experiments, 
residual dynamics learning was carried out separately for both cases. However, for simplicity, we explained the 
results and finding considering the real-world setup.

(11)ELBO(q) = E[log
(

p(y, h)
)

] − E[log
(

q(h;�(gm))
)

]

(12)

L(xm) = log
(

N
(

y|0, σ 2
n I + k(x, x)k(xm, xm)

−1k(xm, x)−
1

2σ 2
n

Tr(k(x, x)− k(x, x)k(xmxm)
−1k(xm, x)

))

µ =
1

σ 2
n

k(xm, xm)
(

k(xm, xm)+ σ−2
n k(xm, x)k(x, xm)

)−1
k(xm, x)y,

A = k(xm, xm)
(

k(xm, xm)+ σ−2
n k(xm, x)k(x, xm)

)−1
k(xm, xm),

Figure 4.  The right sub-figure: A trajectory of motion along all the axes was used to collect the data for learning 
and testing the latent representation of residual dynamics (Fig. 3). The left sub-figure: DJI M100 quadrotor is 
used for real-world experiments and PX4-enabled quadrotor is used for simulated environments.
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Modeling residual dynamics distribution
In cluttered environments, the desired velocity is automatically reduced due to obstacle constraints and com-
putational limitations, both of which are addressed by the local planner. Consequently, in such environments, 
accurate residual dynamics estimation is more crucial for lower velocities than for higher velocities. This is 
because the velocity profile typically falls within a lower range, such as 0–2 m per second, particularly in clut-
tered environments with limited sensing capabilities. Hence, g(z)(Eq. 5) was modelled such that it could gener-
ate residual dynamics with low uncertainty for such velocities, i.e., by selecting more inducing points closer to 
lower velocity regions.

We have compared two inducing points selection approaches, i.e., the proposed approach and the cluster 
selection  approach7, for capturing residual dynamics along each axis: yx , yy , and yz ). The results of our experi-
ments are given concerning the y axis, i.e., yy . However, we applied the same procedure to other axes as well. 
The latter approach targets high-speed maneuvering provided that inducing points should capture the whole 
distribution, which is shown in Fig. 5 in green dots. In contrast, the proposed approach selects more inducing 
points (pink triangles) towards lower velocity ranges.

Assessing the effect of residual dynamics produces on the nominal dynamics
To assess which effect residual dynamics produces on the nominal dynamics Eq. (1), we used the testing dataset 
that was acquired without considering obstacles ( {yµ, vµ, δv} ). Let ȳµ = g(vµ) be the expected residual dynamics. 
Then, the nominal error and the augmented residual error are fully determined by yµ · δv and (yµ − ȳµ) · δv . We 
observed, that the accuracy of the augmented residual dynamics model has increased drastically compared to the 
standalone nominal model (Fig. 5). Such an improvement helps to significantly reduce the trajectory tracking 
error since the control policy that is generated by NMPC after incorporating augmented residual dynamics can 
cope with the mean of epistemic uncertainty, residual dynamics, robustly.

Figure 5.  The relationship between residual dynamics yy and input velocity vy . In left sub-figure: the first 
plot displays how yy and vy vary over time, while the second plot shows the approximation of the yy using two 
different approaches: Sparse Gaussian Process-based (proposed) and cluster selection  approach7, in right sub-
figure: residual dynamics before and after incorporating the learnt Sparse Gaussian process. Root Mean Square 
Error drops from 0.4012 to 0.0751 after introducing the residual dynamics into the nominal motion model.

Figure 6.  Correlation between the number of inducing points and computational power. The number 
of inducing points is inversely proportional to augmented dynamics residual RMSE, yet proportional to 
computational power for two embedded computers: Nvidia Xavier and Nvidia Xavier NX. Since RMSE shows 
no significant change compared to computation time, we selected 30 as the number of inducing points for 
formulating the Sparse Gaussian Process.
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Selecting an optimal number of inducing points
The execution time that is taken to estimate control policy is generated based on NMPC for maneuvering the 
quadrotor. This time is crucial for a smooth flight experience. We have experimented to find the correlation 
among the selected number of inducing points, NMPC execution time on two different embedded devices, and 
model accuracy (Fig. 6). As a result, we have selected only 30 inducing points to represent the residual dynamics. 
Such many inducing points were selected mainly due to two reasons.

First, the accuracy improvement rate is almost negligible compared to NMPC execution time which grows 
exponentially when the number of inducing points is increased. Second, the Nvidia Xavier NX embedded com-
puter was used for onboard computation. Moreover, there is no considerable advantage to using Nvidia Xavier 
over Nvidia Xavier NX since the optimization problem, i.e., local planner, is solved sequentially. The residual 
dynamics model learning is performed as an offline process, ensuring it does not impact real-time performance 
considerably. Therefore, the Graphics Processing Unit (GPU) is only utilized during the learning stage. Once the 
residual dynamics are estimated as a latent distribution, the model parameters are incorporated into the nomi-
nal model (Eq. 2). We employed  Casadi49 with  IPOPT50 as the primary solver for the local planner. Therefore, 
employing a large training dataset that accurately captures the residual dynamics distribution and carefully select-
ing optimal inducing points to represent the residual dynamics distribution effectively minimizes the residual 
dynamics of the model while having a minimum burden on computational cost.

Estimating root mean square error considering with and without obstacles
Furthermore, we have calculated root mean square error (RMSE) with and without considering obstacles 
(Table 2) in a simulated environment. The control policy generation can differ when considering obstacle con-
straints because NMPC can generate different control policies over time for different obstacle constraints. Thus, 
we kept the same initial reference trajectory running the planner with and without considering obstacles and 
then estimated the RMSE of residual dynamics.

RMSE is less when the augmented residual dynamics model is applied in obstacle-free environments, com-
pared to obstacle-cluttered environments. Such behaviour is mainly due to the lack of stability of the global 
map, which is built incrementally as a result of updates within a small range, e.g., 5m from the quadrotor pose. 
Hence, the replanner iteratively refines the trajectory when the global map is changed. Thus, the local planner 
has to incorporate more obstacles and constraints from time to time. Such behaviour can lead to the trap of the 
quadrotor in local minima. None of such problems exists in obstacle-free environments.

Avoiding trapping the quadrotor in local minima
The initial reference trajectory can be within the obstacle zones since the quadrotor has no prior knowledge 
about the environment beyond the sensing range. Hence, the quadrotor can be far from the reference trajectory 
in the presence of a huge obstacle through the reference trajectory (Fig. 7). In such a situation, the  replanner9 
fails to refine the trajectory due to time constraints.

To overcome this issue, we proposed to regenerate a reference trajectory provided that the replanner can push 
the reference trajectory further away from the obstacles. In Fig. 7, one such experiment shows how the proposed 
approach worked in real-world conditions.

Experimenting in real‑world conditions
To evaluate the proposed approach, we conducted two real-world experiments. In the first experiment,a set 
of twenty initial reference trajectories (Fig. 8) was generated for traversing an obstacle-free environment with 
a length range of 40–60 m. The trajectories varied in their geometrical representations, while the maximum 
allowable velocity was set to 1.5 m/s. We first executed the experiment without considering residual dynamic 
estimation in the nominal model. Then, we repeated the experiment after incorporating residual dynamics. 
Both experiments were repeated three times for each trajectory to calculate the average RMSE of the augmented 
residual dynamics. Compared to the provided initial reference trajectory, the average RMSE for trajectories with 
and without augmented residual dynamics were 0.0851 and 0.2681, respectively. This indicates that incorporating 
residual dynamics reduced the residual dynamics error by almost half. The simulated experiment results (Table 2) 
and real-world results show similar RMSE in obstacle-free environments.

In the second experiment, we only compared the RMSE of the trajectories after incorporating residual dynam-
ics due to the dynamic nature of an environment with obstacles. The initial reference trajectory passes through 
a cluttered environment (Fig. 9, which is approximately 60m long.

The traversed trajectory distance is approximately 80 m. The local planner we selected was specifically 
designed for low-speed maneuvering, as the primary objective was to navigate in cluttered environments. Con-
sequently, we set the maximum velocity to 1.5 m/s. However, this restriction is not inherent to the proposed 
residual dynamics modeling approach. The initial reference trajectory was regenerated within the said traversed 
trajectory distance due to the local minima. Such an occasion can be seen in the provided  video51. The RMSE 

Table 2.  Comparison of how different types of inducing points selection affect the nominal model error.

RMSE of augmented residual dynamics (m/s) The proposed approach Cluster selection approach Nominal error

Without obstacles 0.0849 0.1043 0.2116

With obstacles 0.1972 0.2419 0.3314
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of the augmented residual dynamics is 0.1018 (m/s). Even though it is hard to estimate the trajectory smooth-
ness quantitatively, i.e., to assess control policy generation after introducing augmented residual dynamics, the 
smoothness has improved after incorporating augmented residual dynamics into the nominal model (Table 2).

Figure 7.  When the initial reference trajectory and the current pose of the quadrotor are far away from each 
other (left-side figure), e.g., 2 m, regenerate the reference trajectory such that the replanner can try to push the 
reference trajectory further (the right-side figure).

Figure 8.  Example trajectory that is used to estimate the average RMSE of the augmented residual dynamics.

Figure 9.  Experimental results for the proposed approach in a real-world setting. The initial reference 
trajectory within the obstacles is pushed iteratively. The distance between the refined trajectory and its closest 
obstacle poses is 1.5 m. We set a 1.5 m distance between the refined trajectory (traversed trajectory) and the 
quadrotor pose. Due to computational constraints, the map of the environment is built 5 m from the quadrotor 
pose incrementally, though LiDAR can measure up to 100 m. Sub-figure (b) depicts the velocity profile for the 
experiment. Due to our reliance on GPS for quadrotor height estimation, the velocity along the z-axis exhibited 
significant instability compared to the other two axes..
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Comparing with other similar recent works
We compared the proposed approach with four different trajectory planners: sampling-based grid search fol-
lowed by trajectory generation, NMPC-based replanner, hybrid planner (local and global), and KinoJGM. All 
the selected planners have their advantages and limitations with respect to low-speed maneuvers. The matrices 
that we considered are as follows: (1) mean computation time (MCT) (execution time for one iteration of the 
planner), (2) success rate (SR) (the number of times quadrotor reaches from start to goal without any collision), 
and (3) traversed distance (TD) (total distance of quadrotor that is traversed).

In this experiment, we use a random forest with a density of (60 m × 60 m × 10 m). After that, we selected 10 
different start and target poses and executed each planner. The experiment results are given in Table 3. For the 
sampling-based planner, MCT is high because it generates nondeterministic trajectories due to the nature of 
the planner. Replanner generates locally near-optimal control policies, yet execution time is high due to design 
constraints, i.e., the local planner is formulated as a constraint nonlinear optimization problem. Moreover, the 
quadrotor can trap in local minima since the planner optimizes locally. Compared to the listed two planners, 
the hybrid approach has high MCT and SR.

The latter planner executes two sub-planners, local and global, simultaneously. Hence, the planner observes 
the environment in the distance and generates a near-optimal control policy to reach the goal. However, since 
a simplified motion model was used to generate near-optimal control policy, dynamics uncertainty (or residual 
dynamics) between desired control that the planner generated and the actual control that the quadrotor obtained 
is considerably high. Such behaviour leads to trapping the quadrotor in local minima. The proposed approach 
is a modification of this planner by addressing two issues. Traps in local minima and residual dynamics are the 
two issues that the proposed planner addressed. Resolving those issues helps to obtain a low TD compared to 
the hybrid planner and a slightly higher SR. In addition, the proposed planner was compared with the KinoJGM 
planner and its variants: GP-MPC and KinoJSS. Those results were provided by the authors of KinoJGM. GP-
MPC planner is conceptually similar to the proposed one. However, it has no recovery mechanism and ways to 
avoid local minima unlike ours. These are the reasons the proposed planner achieved higher SR compared to 
GP-MPC. MCT of the proposed is slightly lower compared to GP-MPC. However, the obtained MCT is accept-
able for low-speed maneuvers.

Discussion
The trajectory planning problems in the plan-based control paradigm, in general, are solved adhering to these 
steps: path  search52, initial trajectory generation and trajectory  refinement53, high-level control command gen-
eration that can be achieved by several approaches, including differential flatness  mapping54, receding horizon 
planning, and finally low-level control commands generation using a flight controller, for example, PX4, DJI. 
These flight controllers operate independently irrespective of high-level planners. Moreover, due to their inde-
pendence, such controllers reduce the overhead and complexity of developing high-level planning algorithms. 
In other words, the same planner can be deployed on different firmware by implementing an interface between a 
high-level planner and a low-level controller. Therefore, residual dynamics arise between the high-level planner 
and the low-level controller. Gaussian Process-based techniques are used to model these residual dynamics in 
the recent past not only for MAVs but also other types of  vehicles55,56.

In recent years, MAVs-related manifestations, e.g., trajectory tracking, exploration, expanding the range for 
venturing out computationally expensive techniques in various disciplines, including agriculture, aerial photog-
raphy, and crop  monitoring57,58. Low-speed maneuvering, in general, is preferred over high-speed maneuvering 
in executing such demanding tasks due to task complexity. An example of such low-speed maneuver need is 
trajectory planning, where the environment is obstacle-rich. Therefore, the kinematic modelling of a quadrotor 
was considered since the scope of this work is for low-speed maneuvers without consideration of dynamic effects 
(external or/and internal). Similar assumptions were used  in59 for weed detection in crops, which showed the 
necessity of low-speed maneuvering. On the other hand, several studies have been carried out for high-speed 

Table 3.  Comparative analysis in terms of goal-reaching. Ten different start and goal poses were considered 
whilst keeping the same environment. SF: Success Fraction, MCT: Mean Computation Time, Ptn : MPC 
prediction horizon length, ur : map update range incrementally, xm : number of inducing points, st : sampling 
time, KinoJSS; GP-MPC; KinoJGM are three different variants  of26

Algorithm SF MCT (s)

Distance Estimation

Mean (m) Max (m) Min (m)
13 RRT* max_iterations=10000 0.3 3.1 119.56 211.51 98.3
8 Ptn = 15, ur = 5m 0.5 0.43 97.56 143.87 65.98
8 Ptn = 30, ur = 5m 0.6 0.49 95.34 139.6 76.51
9 Ptn = 30, ur = 5m 0.9 0.5 93.14 145.22 79.4
26 KinoJSS st = 50ms, Ptn = 20 0.7 ≈ 0.008 110.48 131.45 95.32
26 GP-MPC st = 50ms, Ptn = 20 0.6 ≈ 0.021 99.23 119.54 90.18
26 KinoJGM st = 50ms, Ptn = 20 0.8 ≈ 0.034 90.34 120.53 81.37

Proposed Ptn = 10, ur = 4m , xm = 20 0.9 0.03± 0.01 84.89 124.90 81.78

Proposed Ptn = 15, ur = 6m , xm = 20 1.0 0.04 ± 0.01 85.41 115.89 79.54
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 maneuvers4–6 with consideration of residual dynamics estimation, while most of them struggle with high-compu-
tational demands for on-board processing and difficulty in maneuvering in cluttered environments. The proposed 
framework can be adapted for high-speed maneuvers as well. However, it requires adding a behavioural planner 
that switches between planners according to the requirements, for example, in the cluttering environment we 
can switch to the low maneuvers while keeping the same control command generation. That will give us several 
benefits compared to existing solutions, e.g., residual dynamics models can be trained separately for low-speed 
maneuvers and high-speed maneuvers. Hence, the proposed solution can be adapted to general control with 
high and low-speed maneuvers introducing two or more operation modes and switching between them based 
on the external conditions.

Since Sparse Gaussian Processing is a non-parametric model, it does not require any parameter tuning. 
However, it is necessary to provide a proper training set that can capture the whole distribution of the latent 
space, i.e., residual dynamics. The simulated experiments of the proposed approach were carried out with an IRIS 
quadrotor with a PX4 flight controller. The real-world experiments were carried out with a DJI M100 with an A3 
flight controller. In both cases, the initial step was to fine-tune the hyper-parameters of the PD regulator. This 
process is required before running the proposed motion planner. Suppose the proposed approach is deployed 
in another MAV. In that case, it is required to fine-turn the listed parameters since the high-level planner does 
not know any information about the low-level controller. However, this is a one-time process. Recently, auto PID 
tuning approaches were  proposed60. Hence, it is required to investigate these aspects to improve the parameter 
tuning of the proposed approach.

The source code and complete experiments are available at  Github51.

Data availibility
The datasets generated and/or analysed during the current study are available in the trajectory-tracker repository, 
https:// github. com/ GPrat hap/ traje ctory- track er.
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