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User identification system based 
on 2D CQT spectrogram of EMG 
with adaptive frequency resolution 
adjustment
Jae Myung Kim 1, Gyuho Choi 2 & Sungbum Pan 1*

User identification systems based on electromyogram (EMG) signals, generated inside the body 
in different signal patterns and exhibiting individual characteristics based on muscle development 
and activity, are being actively researched. However, nonlinear and abnormal signals constrain 
conventional user identification using EMG signals in improving accuracy by using the 1-D feature 
from each time and frequency domain. Therefore, multidimensional features containing time–
frequency information extracted from EMG signals have attracted much attention to improving 
identification accuracy. We propose a user identification system using constant Q transform (CQT) 
based 2D features whose time–frequency resolution is customized according to EMG signals. The 
proposed user identification system comprises data preprocessing, CQT-based 2D image conversion, 
convolutional feature extraction, and classification by convolutional neural network (CNN). The 
experimental results showed that the accuracy of the proposed user identification system using CQT-
based 2D spectrograms was 97.5%, an improvement of 15.4% and 2.1% compared to the accuracy of 
1D features and short-time Fourier transform (STFT) based user identification, respectively.

With the recent development of information technology (IT) and the ubiquity of Internet services in daily life, 
user identification methods to identify personal identity have actively been applied in electronic finance, smart 
medicine, access control, and healthcare services1,2. Conventional user identification methods that require users 
to have a specified password or use a specific device are prone to such problems as password loss, device loss, and 
theft3. To overcome the problems of conventional user identification methods, many researchers take advantage 
of the user’s unique biometric information to prove their identity. Biometric user identification technology 
identifies users by converting an individual’s unique physical and behavioral features into information without 
using a conventional password4.

User identification using biometric information such as face and fingerprints, which are physical features, 
has been applied to various fields. The problems of biometric user identification methods have attracted social 
attention5. In South Korea, user identification technology using physical feature information has been used in 
financial counterfeiting incidents with silicon fingerprints made by 3D printers, and user Face IDs have been 
recognized and disabled by the faces of the user’s family members. Overseas, a German hacker group hacked 
by replicating the iris with a photo of the Russian president. There was also an incident in which a cloned hand 
containing vein authentication information was created, and the vein authentication was deactivated by another 
person. Research is being conducted on using biometric signals generated inside the body to improve the security 
issues of user identification using biometric information6.

Bio-signals are electrical signals that occur inside the body and have unique characteristics of individuals. 
Representative bio-signals include electromyogram (EMG), electrocardiogram (ECG), and electroencephalogram 
(EEG)7. Among bio-signals, EMG signals can generate different signal patterns depending on the muscles used 
and the actions performed and uniform waveforms under certain conditions because the signals are acquired 
as the muscles move. EMG signals can be measured on the surface of the muscle, making it more convenient to 
measure signals compared to ECG and EEG signals. Each person has a different degree of muscle development 
and activity, making them unique. User identification systems based on EMG signals acquired by generating 
different signal patterns and unique features are being actively researched8,9.
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EMG signals are continuous signals that generate different signal patterns owing to muscle strength over 
time, and user identification is being studied with features extracted from the time–frequency domain. Among 
the existing feature extraction methods, fast Fourier transform (FFT) can only analyze frequency components 
in the frequency domain, and short time Fourier transform (STFT) analyzes the time–frequency domain using 
a fixed window length. Thus, there is a problem in improving accuracy due to the limitation of customized 
time–frequency domain feature analysis in EMG signals, which are nonlinear and abnormal. Therefore, this study 
proposes a user identification system that solves the limitations of accuracy improvement using conventional 
1D feature extraction methods in EMG signals, which are nonlinear and abnormal and improves classification 
accuracy by extracting constant Q transform (CQT) based 2D features whose time–frequency resolution is 
customized to the signal by quality factor6.

This study proposes a 2D CQT feature-based user identification system whose time–frequency resolution 
is customized for nonlinear and abnormal EMG signals. After a preprocessing step to remove unwanted noise 
in the EMG signal, the proposed method converts it to CQT with customized time–frequency resolution and 
extracts features in 2D multi-dimensions. The extracted features are converted into 2D spectrograms and then 
classified by convolutional neural networks (CNN) to identify the user. Via the experiments, the user identifica-
tion accuracy was verified to be 97.5% when EMG signals acquired from 40 participants in the public Ninapro 
DB were converted into CQT-based 2D spectrograms by performing actions within the palm range. The user 
identification accuracy using 1D features based on 1D EMG signals was 82.1%, and the user identification accu-
racy using STFT-based 2D spectrograms was 95.4%. Thus, user identification accuracy improved by 15.4% and 
2.1% when converted to CQT-based 2D spectrograms with customized time–frequency resolution.

Related works
EMG signals, characterized by an individual’s unique behavioral features, are applied in various areas such as 
muscle activity, motion control, sign language recognition, and user identification. Early research using EMG 
signals was mainly conducted to detect and analyze muscle activity for medical purposes9. More recently, research 
has been conducted to identify motions using EMG signals generated by muscles. Muscle gestures can be rec-
ognized to help amputees or paralyzed patients control prosthetic hands and limbs or to identify sign language 
and finger spelling using EMG signals from the muscles around the forearm or wrist. Currently, research is being 
conducted on user identification using the characteristic that everyone shows different muscle development and 
activity levels10.

Shioji et al.11 built a user identification system using EMG signals. Here, EMG data acquired from the wrist 
was used to identify motions and users by CNN. The EMG data were acquired at a sampling rate of 128 Hz from 
8 channels, and the input data was structured as 128× 8 . The structured data was processed through a convolu-
tional layer 3× 3 filter of CNN to extract features between neighboring channels and perform motion and user 
identification. The motion identification accuracy of the proposed method here was 94.6%, and the system was 
validated with 95% accuracy for user identification. Shioji et al. used a deep learning-based CNN to improve the 
accuracy of the user identification system.

Lee et al.12 proposed a user identification method using EMG signals generated when walking. Here, user 
identification was performed using linear discriminant analysis (LDA) based on EMG data generated by the legs 
when walking. The data acquired with 11 channels is used to extract the temporal features of root mean square 
(RMS), mean absolute value (MAV), and integrated EMG (iEMG) to identify the user. The user identification 
system’s accuracy was improved to 93% by extracting temporal features from the time domain of EMG signals 
acquired from leg muscles.

Shin et al.13 proposed a user identification method using a self-made EMG measurement module. Here, EMG 
signals were acquired using two channels, and features for user identification were extracted. Using variance 
(VAR), mean, zero crossing (ZC), length, and median frequency as time and frequency features, 100 features were 
extracted. They achieved a user identification accuracy of 95% using a self-made EMG measurement module.

Furthermore, various feature extraction methods have recently been studied to extract features from EMG 
signals for application in user identification. Feature extraction methods are divided into time, frequency, and 
time–frequency domains. Time domain feature extraction methods include MAV, slope sign change (SSC), RMS, 
waveform length (WL), VAR, iEMG, and ZC, and their formulas are listed in Table 114.

A typical feature extraction method in the frequency domain is the FFT. The FFT converts a signal in the 
time domain to the frequency domain, allowing for frequency band analysis. However, owing to its temporal 
limitations, it cannot identify the frequency components over time15. A representative feature extraction method 
in the time–frequency domain is the STFT16. STFT is a method that compensates for the temporal limitations 
of FFT by dividing the time into short bins by setting the desired window length and Fourier transforming each 
bin. Thus, STFT can analyze the frequency component according to the time domain. Therefore, EMG signals 
whose features change over time can be analyzed as time–frequency multidimensional features by applying 
STFT17. However, the time and frequency resolutions cannot be improved simultaneously; hence, it is essential 
to adjust the resolution suitable for the signal by changing the parameters.

One method to simultaneously improve time–frequency resolution is the wavelet-based feature extraction 
approach. However, wavelet-based feature extraction methods have a drawback in that signal analysis can vary 
depending on the choice of mother wavelet18. In contrast, CQT extracts features by analyzing with a wide band-
width at low frequencies and a narrow bandwidth at high frequencies while the bandwidth changes proportion-
ally with the center frequency. Consequently, it improves frequency resolution in the low-frequency domain and 
temporal resolution in the high-frequency domain, such that the time–frequency resolution is customized to the 
signal by the quality factor constant19,20. The formulas for FFT, STFT, Continuous Wavelet Transform (CWT), 
and CQT are shown in Table 2.
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Methods
The experimental procedure of this study was approved by the Institutional Review Board (IRB) of Chosun 
University (IRB No. 2-1041055-AB-N-01-2023-21). The overall structure of the user identification system using 
CQT-based spectrograms proposed here comprises the EMG data construction process, EMG data preprocessing 
process, 1D EMG signal conversion to CQT-based 2D spectrograms, and final identification process, as shown 
in Fig. 1. EMG data is preprocessed by registering/recognizing the system and removing noise through filter-
ing. The de-noised EMG signal is by dividing it into single-period gesture signals and combines the channels 
in the time domain to reconstruct the data. The preprocessed 1D EMG signal is then subjected to CQT, whose 
time–frequency resolution is tailored to the EMG signal, to extract multidimensional features and convert them 
into a 2D spectrogram. For end-user identification, a CNN is used.

Table 1.   Time domain feature extraction method.

Features Equation

MAV 1

N

∑N
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|xn|
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[
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Table 2.   Frequency domain feature extraction method.

Features Equation
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Figure 1.   User identification system using CQT-based 2D spectrogram.
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The 60 Hz power line noise in the EMG signal was removed using a notch filter, and a bandpass filter was 
used to extract the signal in the 10–500 Hz band containing muscle information. The de-noised EMG data was 
split into one cycle for each repetition of a single gesture. The EMG signal split into cycles makes it easier to 
see the activity of each channel. To use the information from all 12 muscles, we combine the channel-specific 
signals from the same gesture cycle and reconstruct them in the time domain. The process of rebuilding the 
EMG signal is shown in Fig. 26.

CQT, a time–frequency feature extraction method, is applied to preprocessed 1D EMG signals to extract 
multidimensional features. FFT, a conventional frequency domain feature extraction method can only analyze 
frequency components and information and does not obtain time information. In addition, STFT, a method that 
compensates for the shortcomings of FFT, can analyze frequency components over time. However, it is limited to 
analyzing signals with a fixed window length in high- and low-frequency bands. Therefore, CQT, which includes 
time–frequency features and can analyze characteristics by frequency band, is applied to extract multidimensional 
features. The segmented EMG signal is converted into a 2D CQT spectrogram by the CQT equation in Table 2. In 
the CQT expression, κ is the frequency bin index; ι is the time frame index; ω is the window analysis of Nk size, 
and M is the frameshift step. Q is a constant calculated as the ratio of the center frequency to the frequency band, 
which controls the resolution through the size of each frequency band. The bandwidth changes proportionally 
to the center frequency, and features are extracted by analyzing with a wide bandwidth at low frequencies and 
a narrow bandwidth at high frequencies.

Because the STFT feature extraction method performs the FFT based on a fixed window length R, the 
resolutions of both time and frequency cannot be improved simultaneously. If R is small, the time resolution 
improves, and the frequency resolution decreases. Conversely, if R is large, the time resolution decreases, and 
the frequency resolution improves. Because the bandwidth of CQT is proportional to the center frequency, 
the frequency resolution is improved in the lower frequency domain, and time resolution is improved in the 
higher frequency domain. The feature extraction and conversion of the 2D image by applying STFT and CQT 
to the 12-channel combined 1D EMG signal is shown in Fig. 3. All the STFT-based spectrograms have the same 
resolution. However, depending on the frequency domain, the CQT-based spectrograms have a customized 
time–frequency resolution.

We used a 2D image input-based deep learning CNN for the final classification. CQT-based 2D images were 
used as input. The overall network structure is shown in Fig. 4. It had three convolutional layers, two max-pooling 
layers, and two fully connected layers, and the active function was configured with Rectified linear unit (Relu). 
The convolutional layer filter size was set to 3× 3 , the pooling layer filter size was set to 2× 2 , and the stride was 
set to 2. The optimization algorithm was set to adaptive momentum estimation (Adam), and the minibatch size 
was set to 128. The maximum number of iterations was 150, the initial weights of each layer were set randomly, 
and the user was identified in the output layer by Softmax9.

Figure 2.   EMG signal preprocessing.

Figure 3.   2D spectrogram conversion of EMG signals using STFT and CQT.
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Experimental method and results
To evaluate the performance of the user identification system using CQT-based spectrograms, we verified the 
accuracy by 1:N matching. EMG data were acquired from 40 participants using Ninapro DB2, and the data 
organization is presented in Table 3. Ninapro db2 was conducted according to the principles expressed in the 
Declaration of Helsinki (www.​wma.​net/​en/​20act​iviti​es/​10eth​ics/​10hel​sinki) and it was approved by the Ethics 
Commission of the Canton Valais (Switzerland). Before the data acquisition began, each subject was given a 
thorough written and oral explanation of the experiment itself, including the associated risks; the subject would 
then sign an informed consent form. In total, there were 40 participants, and the adopted gestures were excluded 
from large gestures to identify them using hand gestures as a password21.

Among the gestures performed within the palm, three hand gestures, rock, paper, and scissors, were used to 
organize the data, as shown in Fig. 5. For each participant, the three gestures were performed for six repetitions 
per gesture, with each gesture lasting 5 s, followed by a 3 s rest. EMG sampling was done at 2000 Hz, and 12 chan-
nels were acquired through the biceps, triceps, and brachialis muscles22. We used 720 data as experimental data, 
and the training data and test data were collected at a 7:3 ratio to analyze the accuracy of the user identification 
system. In addition, owing to the overfitting problem of neural networks that occurs when using small input 
data, this study designed and trained a network with a few layers. The accuracy was calculated by repeating the 
experiment a total of 5 times through k-fold cross-validation and computing the average accuracy.

Figure 4.   Designed CNN structure.

Table 3.   Ninapro DB2 database composition.

Data Information

Participants 40

Hand gestures (actions) 3

Channel 12

Number of repetitions (times) 6

Sampling rate (Hz) 2000

Figure 5.   1D EMG signal according to the gesture.

http://www.wma.net/en/20activities/10ethics/10helsinki


6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1340  | https://doi.org/10.1038/s41598-024-51791-4

www.nature.com/scientificreports/

Here, the experimental results indicated that a user identification accuracy of 97.5% was achieved when 
the CQT-based 2D spectrogram was applied to the proposed EMG signal. The number of bins per octave was 
increased to 96%. The user identification accuracy was 96.25%, with the highest accuracy when the number of 
bins was 12, which was set as a hyper-parameter for system validation. Furthermore, while designing the CNN, 
we examined the accuracy as the number of convolutional layers increased, and the user identification accuracy 
for each convolutional layer is shown in Fig. 6. Therefore, we adopted Conv3 for our design, which showed the 
highest identification accuracy, to identify users.

Table 4 compares user identification accuracy using CQT-based 2D spectrograms proposed here with popular 
existing methods. Shioji et al.11 used a CNN to extract features and perform user identification on EMG signals, 
which are time series data. When using the CNN designed here, like Shioji et al.’s method, we achieved an accu-
racy of 82.1%. Compared to feature extraction using a 1D EMG signal-based CNN, user identification accuracy 
improved by 15.4% when using the CQT-based 2D spectrogram proposed here. Zhai et al.23 also performed EMG 
pattern recognition by converting 1D EMG signals into STFT-based 2D spectrograms and using the spectrograms 
as input to a CNN. When converting EMG signals to STFT-based spectrograms as in Zhai et al. method and 
using the CNN designed here, we achieved an accuracy of 95.4%. The user identification accuracy was improved 
by 2.1% when using CQT-based 2D spectrograms compared to the STFT method using a constant window size. 
We utilized the wavelet-based feature extraction methods of Buelvas et al.24 CWT and Al Taee et al.25 Wavelet 
Scattering Transform (WST) to extract features. The extracted features were transformed into scalograms and 
subsequently employed with a CNN to assess user identification accuracy. The user identification accuracy using 
CWT and WST individually was found to be 91.7% and 96.8% respectively. Furthermore, employing CQT, which 
adjusts the time–frequency resolution according to the center frequency, improved user identification accuracy 
by 5.8% and 0.7% compared to CWT and WST, respectively. This enhancement was achieved by tailoring the 
time–frequency resolution based on the central frequency.

To validate the classification accuracy results of this paper, we evaluated using precision, recall, and F1 score. 
The user identification accuracy based on CQT showed a performance of 97.5%. Precision was 0.9749, recall 
was 0.9785, and the F1 score was 0.9766, confirming the effective classification performance of the deep learn-
ing model without imbalanced or biased data sets. We also conducted Wilcoxon signed-rank tests for each set 
of feature data. At a 95% confidence level, the p-values were found to be less than 0.05, indicating statistically 
significant effects on individual identification.

The user identification method using CQT-based 2D spectrograms proposed here can be analyzed by fre-
quency band over time. It also improves frequency resolution and temporal resolution in the low-frequency 
and high-frequency domains, respectively. Shioji et al. method uses a CNN to extract features from a 1D EMG 
signal. However, EMG signals, which are time series data measured according to behavioral features, can be 
difficult to identify because the features change over time. Thus, we improved the identification accuracy by 
extracting time–frequency multidimensional features of 1D EMG signals. In addition, the STFT method, which 
performs frequency analysis over time with a constant window size in the case of the Zhai et al. method, cannot 
simultaneously improve both time and frequency resolution. In contrast, the CQT method performs the analysis 
proportionately to the center frequency, enabling analysis by frequency band over time. In addition, the frequency 
resolution and time resolution are improved in the low-frequency and high-frequency domains, respectively. 
Consequently, using the CQT-based 2D spectrogram proposed here, the user identification method extracted 
time–frequency multidimensional features of existing EMG signals and improved user identification accuracy 
through time-dependent frequency band analysis. In the latest feature extraction techniques, authors Buelvas 

Figure 6.   User identification performance by convolution layer.

Table 4.   Comparison of user identification accuracy among feature extraction methods.

Method EMG signal + CNN11 STFT + CNN23 CWT + CNN24 WST + CNN25 Proposed

Accuracy (%) 82.1 95.4 91.7 96.8% 97.5

P-value 0.0301 0.0107 0.0145 0.0037 0.0092
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et al. and Al Taee et al. employed wavelet-based methods to classify EMG signals. While wavelet-based feature 
extraction methods offer the advantage of signal analysis in different frequency bands, this paper has improved 
user identification accuracy by extracting multi-dimensional time–frequency features from conventional EMG 
signals using the proposed CQT-based 2D spectrogram method. This approach enhances user identification 
accuracy through time-dependent frequency band analysis.

Conclusions
Previous studies of user identification using EMG signals have used time and frequency features. EMG signals 
are time-series data acquired over time and generated according to each muscle’s different activation levels when 
performing a gesture. However, EMG signals are time-series data; thus, they cannot be repeated with constant 
muscle strength over time, leading to low user identification accuracy when analyzed with 1D features.

To address the limitations of accuracy improvement using 1D feature extraction methods in nonlinear and 
abnormal signals, we proposed a user identification system using CQT-based 2D spectrograms with customized 
time–frequency resolution for EMG signals. After removing the unnecessary noise in the EMG signal, features 
were extracted using CQT, which has time–frequency features and can be analyzed according to frequency bands. 
The extracted features were converted into 2D spectrograms and finally identified using CNN.

The experimental results showed that the user identification accuracy was 97.5% when the EMG signals 
acquired from 40 subjects gestures performed within the palm range were converted into CQT-based 2D spec-
trograms. We found an accuracy improvement of 15.4% compared to the method using 1D EMG signals and 
2.1% compared to using STFT-based 2D spectrograms. Thus, we found that using CQT-based 2D spectrograms 
with customized time–frequency resolution as features proposed here improves user identification accuracy. 
In the future, we plan to investigate a multi-factor, multi-bio-signals-based user identification system using 
multiple bio-signals.

Data availability
The data supporting the findings of the article are available in the Ninapro DB2 at http://​ninaw​eb.​hevs.​ch/ 
(accessed on 1 September 2020), reference number19.
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