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GAILS: an effective multi‑object job 
shop scheduler based on genetic 
algorithm and iterative local search
Xiaorui Shao 1, Fuladi Shubhendu Kshitij 2 & Chang Soo Kim 2*

The job shop scheduling problem (JSSP) is critical for building one smart factory regarding resource 
management, effective production, and intelligent supply. However, it is still very challenging due to 
the complex production environment. Besides, most current research only focuses on classical JSSP, 
while flexible JSSP (FJSSP) is more usual. This article proposes an effective method, GAILS, to deal 
with JSSP and FJSSP based on genetic algorithm (GA) and iterative local search (ILS). GA is used to find 
the approximate global solution for the JSSP instance. Each instance was encoded into machine and 
subtask sequences. The corresponding machine and subtasks chromosome could be obtained through 
serval-time gene selection, crossover, and mutation. Moreover, multi-objects, including makespan, 
average utilization ratio, and maximum loading, are used to choose the best chromosome to guide 
ILS to explore the best local path. Therefore, the proposed method has an excellent search capacity 
and could balance globality and diversity. To verify the proposed method’s effectiveness, the authors 
compared it with some state-of-the-art methods on sixty-six public JSSP and FJSSP instances. The 
comparative analysis confirmed the proposed method’s effectiveness for classical JSSP and FJSSP in 
makespan, average utilization ratio, and maximum loading. Primarily, it obtains optimal-like solutions 
for several instances and outperforms others in most instances.

With the continuous development of global economics, modern industry is more and more complex1,2, causing a 
new challenge for implementing smart factories3. Job shop scheduling plays a core role in the process of building 
one smart factory, which has extracted more attention4,5.

The current methods for solving JSSP consist of exact and approximation methods. The exact methods that 
can obtain optimal solutions while it is very time-consuming and resource-consuming6, especially when meet-
ing one large-scale JSSP instance. Therefore, most current methods mainly focus on approximated methods, 
including the simplest dispatching rules (DRs) and artificial intelligence (AI)7. Among these two methods, DRs 
such as first in first out (FIFO), shortest processing time (SPT), and earliest completion time first (ECTF) are the 
most straightforward and simplest but are far from optimal solutions8. On the contrary, the AI-based methods 
extract the hidden information from the JSSP instances to construct the corresponding rules more accurately 
within a tolerable time, which has been mainstream for solving JSSP. It mainly consists of the artificial immune 
algorithm9,10, genetic algorithm (GA)11, swarm intelligence (SI)12, local search (LS) algorithms, and network-
based approaches13–15, etc. GA and neural network-based (NN) methods have extracted more attention.

GA is one global searching algorithm with parallelism, robustness, wide applicability, and interpretability16, 
which has been widely used for solving JSSP-like optimization problems. For instance, Omar et al. applied one 
improved GA to solve JSSP17, in which they initialed the population with some well-known DRs rather than 
a random solution. Teekeng et al. proposed one improved GA for solving FJSSP by changing three operators: 
selection, crossover, and mutation18. Mohamed19 proposed a new GA based on the island model for solving JSSP 
using a migration selection mechanism to evaluate and select the genes, whose effectiveness is demonstrated on 
52 public JSSP instances. Li et al.7 applied GA to search the global solution first, and then Tabu search was used 
to find the best local solution for solving both JSSP and FJSSP. Sun et al.20 applied GA with variable neighborhood 
search for solving FJSSP. Besides, similar to the idea of GA, Lu et al.21 proposed an improved iterated greedy 
(IIG) algorithm to solve the distributed hybrid flow shop scheduling problem. They constructed three operators 
to search for the global path, and one LS algorithm consisting of four neighborhood structures is designed to 
find its best local path. Moreover, GA-based algorithms are developed to solve other JSSP-like problems, includ-
ing timetabling scheduling22,23, traveling salesman problem (TSP)24, and network parameter optimization25,26.
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The NN-based methods have two branches: traditional and deep reinforcement learning (DRL). Traditional 
learning methods for solving JSSP treat it as one sub-classification problem. It uses other well-known algorithms, 
such as DRs and GA, to obtain corresponding labels (the priority for each sub-task) and simultaneously calculates 
the corresponding statuses used to train the model. The trained model is used to predict the priority of each 
sub-task, which is converted into a JSSP pattern at the end. E. g., Weckman et al.13 are the first to apply NN for 
solving JSSP. They utilized GA to solve 6 × 6 JSSP instances first, and then one NN with three hidden layers was 
adopted to predict each subtask’s priority by inputting twelve features. The comparative results on ft0627 indicated 
that the NN-based method outperforms attribute-oriented induction (AOI) and SPT but is still far from GA.

Recent deep learning (DL) technology has achieved great success in many fields, such as image classification28, 
fault diagnosis29, and medical healthcare30, due to its powerful feature extraction capacity. Also, DL has extracted 
attention in the field of JSSP. For instance, Zang et al.31 applied a convolutional neural network (CNN) to extract 
the hidden features from ten input features and their transformations corresponding to the sub-task generated 
from GA. Shao et al.14 employed GA to generate training samples and long-short-term memory (LSTM) with 
K-means to mine key hidden features for solving JSSP. Besides, Kim et al.8 applied multi-level CNN (ML-CNN) 
to find the approximate global path and applied ILS to explore the best local solution for solving JSSP.

DRL32 describes one JSSP as a Markov decision process (MDP), in which the DL part extracts rich hidden 
features that reflect the current dynamic production environmental state s to predict the corresponding reward 
r . The RL part records a pair of actions and rewards. Significantly, the current state will be transformed into a 
new state s′ by doing action a and returning a reward r . The DRL arranges all sub-tasks in one JSSP instance by 
maximizing the total reward. E.g., Ye et al.33 utilized DRL for resource scheduling, which utilizes one-dimension 
(1-D) CNN to extract the hidden dynamic features. Lin et al.34 proposed a novel multi-class DRL-based method, 
deep Q network (DQN), to select the rule for each machine to arrange a corresponding job, in which six DRs 
are utilized. Considering the shortcoming of a single DQN that predicts and evaluates the action using the same 
model, double DQN (DDQN) is applied to solve JSSP within eighteen DRs4. Besides, Liu et al.35 combined actor-
critic with reinforcement learning (ACRL) to solve JSSP, and the comparative results in terms of makespan on 
some public JSSP instances indicated its effectiveness; and a graph network is combined with Q-learning to solve 
JSSP in traffic management36.

Although the abovementioned methods have obtained good performance, they still have some limitations, 
as described in Table 1. The exact method is the most accurate but cannot deal with large-scale JSSP instances 
and is time-consuming; DRs are simplest but not adequate37; The GA-based method could obtain a near-optimal 
solution for JSSP instances due to its good global exploring ability, but it lacks some of the local searching ability; 
On the contrary, LS lacks global exploring ability; Traditional learning methods could solve JSSP fast but highly 
depends on other algorithms; DRL-based methods are effective and intelligent, but how to design dynamic input 
nodes and reward function still need to think more.

Table 1 shows that no algorithm can handle all JSSP-like optimization problems well. Besides, most current 
methods only focused on JSSP or FJSSP, except for7. They evaluated the proposed method in makespan, which 
could not satisfy human beings’ needs. Motivated by those, this article presents one effective scheduler, GAILS, 
to solve multi-objective JSSP and FJSSP. In which an improved GA based on reference7 is designed to find the 
approximate global solution for the JSSP and FJSSP instances. The initial chromosome of machine and subtask 
sequences are randomly set first. Then, three operators, including selection, crossover, and mutation, are designed 
to explore the global genes for each sequence. Moreover, the multi-object fitness function is designed by combin-
ing makespan, average utilization ratio, and maximum loading to choose the best global chromosome to guide 
ILS to explore the best local path. The reason for choosing ILS rather than other local searching algorithms 
is to find its best local path because ILS can ensure the solution’s diversity by adjusting different perturbation 
strategies38. Powered by GA, ILS, and multi-object fitness function, the proposed method has an excellent search-
ing capacity and could balance globality and diversity for solving JSSP and FJSSP.

The main contributions of this article are summarized as follows:

1.	 An improved GA is proposed to find the global solution of JSSP and FJSSP instances using three new opera-
tors: selection, crossover, and mutation. The comparative results showed that the improved GA is more 
effective than traditional GA.

2.	 The ILS is applied to explore the optimal local path from GA obtained global path, which ensures the solu-
tion is near optimal.

Table 1.   The description of each method for JSSP.

Method Advantages Limitations

Exact Optimal Cannot deal with large-scale instances, time-
consumption

Approximation

DRs Simple Not effective

GA Near-optimal, Good global exploring ability Lacks local searching ability

LS Good local searching ability Lacks global exploring ability

AI-based

 Traditional learning Fast Highly relies on other algorithms

 DRL Effective and intelligent Hard to select input nodes and reward function
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3.	 A multi-object fitness function that contains makespan, average utilization rate (AUR), and maximum load-
ing (ML) is designed to select the best global and local path, which could be easily extended to other optimi-
zation algorithms. Besides, it can easily attach personal goals for different production statutes by adjusting 
their order in the fitness function.

4.	 Based on the good design of GA, ILS, and multi-object fitness function, the proposed method has an excel-
lent searching capacity. It could balance globality and diversity for solving JSSP and FJSSP. The Comparative 
analysis based on sixty public instances confirmed its effectiveness in terms of makespan, average utilization 
rate, and maximum loading. In addition, the effectiveness of GA and ILS has been analyzed in the proposed 
method.

The rest of this article is arranged as follows. Section “Problem definition” defines the JSSP and FJSSP. Section 
“The proposed methods” presents the proposed method in detail. Section “Experimental verification” performs 
the experimental verification based on public JSSP and FJSSP instances. In section “Discussion”, we discuss the 
proposed method in depth. Section “Conclusions” concludes this article.

Problem definition
JSSP aims at  arranging n jobs J = {J1, J2, . . . , Ji . . . , Jn} to be processed by m machines 
M = {M1,M2, . . . ,Mj , . . . ,Mm} with satisfactory metrics such as makespan, AUR, and ML. Where 
each job Ji  consists of ni  operations O = {Oi,1,Oi,2,Oi,3, . . . ,Oi,k, . . . ,Oi,ni |} .  Each operation 
Oi,k(i = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ni) needs to be processed by a functional machine Mj within a particular 
time Ti,j ∈ T = {Ti,1,Ti,2,Ti,3, . . . ,Ti,k , . . . ,Ti,ni

} . Notice that one operation in the JSSP instance can only be 
processed once by one certain machine.

Unlike classical JSSP, FJSSP needs to determine both a job operation and the corresponding machine to 
execute the selected operation to attach good criteria. That is, each operation Oi,j ∈ O needs to be processed 
by a machine Mi,j, out of a given set Ms ∈ M . From the definition of JSSP and FJSSP, we know that FJSSP is one 
complex kind of JSSP. Generally, both JSSP and FJSSP pursue finding the minimized makespan, defined as (1). 
Where Ci,k is the completion time of k th operation for job i , and  Cmax is the maximum completion time for all 
operations. Besides, this manuscript aims at developing one accurate algorithm to attach multiple goals, includ-
ing AUR, and ML, as shown in (2) for AUR, and (3) for ML. Where Endi = max

(

Ci,j

)

mi
 is the ending time of 

machine mi , and idlei is the idle time of mi.

To simplify the problem, we define four constraints for both JSSP and FJSSP, as follows:

Constraint 1: Starting time constraint, Eq. 4 (a) indicated that the completing time Ci,k equals its operation 
time Ti,1 , which indicates that all jobs start from zero.

Constraint 2: Operation order constraint, Eq.  4 (b) indicated that one job Ji has specific orders 
{Oi,1,Oi,2,Oi,3, . . . ,OOi,ni } to execute at corresponding machine {Mi,1,Mi,2,Mi,3, . . . ,Mi,ni }  in a certain time 
{Ti,1,Ti,2,Ti,3, . . . ,Ti,ni} ∈ T for JSSP since the difference between Ci,k+1 and Ci,k is greater or equal to the opera-
tion time Ti,k+1 . For FJSSP, the only difference is that each sub-operation Oi,k requires selecting the best machine 
Mi,j from a given machine set Ms to execute within the corresponding time duration. That is, the next sub-
operation will start after completing the previous sub-operation.

Constraint 3: Resource constraint, Eq. 4 (c) indicated that the machine Mj can only process one given sub-
operation Oi,j at once. Where different sub-operations for the i  th job’s completing time difference Ci,k − Ci,j 
should be greater or equal to the k th sub-operation time Ti,k.

Constraint 4: Eq. 4 (d) showed that we do not consider the set-up and transmission times during scheduling.

The proposed methods
The proposed method consists of two parts: GA finds the global path (step 1 to step 6), and ILS explores the 
optimal local path (step 7 to step 9), whose workflow is shown in Fig. 1. The overall procedure of the proposed 
method is described in the subsequent sections.

Step 1: Setting the parameters of the proposed method, including max generation Gen , population size Popsize , 
crossover ratio Cr , and mutation ratio Mr . Setting a bigger Gen and Popsize may receive more satisfactory results, 
but they require massive resources to find the global path. Considering both performance and time costing, we 
set Gen and Popsize as 400, which is similar to the work of Gao7. Moreover, the relatively bigger crossover and 
smaller mutation ratios can ensure gene diversity while simultaneously preserving excellent genes to optimize 
the algorithm. Thus, we set the crossover ratio Cr and mutation ratio Mr as 0.8 and 0.1, respectively.

(1)Cmax = max(Ci,k|i = 1, 2, .., n; k = 1, 2, .., ni)

(2)AUR =

∑m
i=0(Endi − idlei)/Endi

m

(3)ML = Max(Endi − idlei),wherei = 1, 2, 3, . . . ,m.

(4)











Ci,k = Ti,k(i, k) ∈ Oandk = 14.a
Ci,k+1 − Ci,k ≥ Ti,k+1if

�

i, j
�

→ (i, k), k ∈ Mj4.b
Ci,k − Ci,j ≥ Ti,kOrCi,j − Ti,k ≥ Ci,k ,

�

i, j
�

, (i, k) ⊆ O, j �= k4.c
Ci,k+1 − Ci,k = Ti,k+14.d
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Step 2: Initialize the population Pop . Each individual has an operation sequence (OS) and a machine sequence 
(MS). Both OS and MS are equal to 

∑n
i=0 Oi,ni , generated by algorithm 1. Running algorithm 1 Popsize times 

to initialize populations. The gene in OS represents the processing order of each job’s operations on a specific 
machine over the occurring orders. The gene in MS represents the corresponding machine over the job and 
operation.

Algorithm 1.   OS and MS Encoding Methods
One 3× 3 FJSSP instance is used to explain, as shown in Fig. 2. The code of OS = {1,2,1,2,3} correspond-

ing to operation {O11, O21, O12, O22, O31} ; And MS = {2,2,0,0,1} responds {O11, O12, O21, O21, O22, O23} will be 
processed by machine {3,3,1,1,2}, respectively. After obtaining the final chromosomes, the decoding method 
generates the FJSSP pattern in step 9. The JSSP only needs to update OS while all elements of MS are equal to 0 
since it only requires one machine for one sub-operation.

Step 3: Evaluate the population. If Gen is up to 400, it will output the global solution and feed it into ILS in step 
7. Else, go to step 4. The evaluation metric is the combination of { Makespan,AUR,ML }. The makespan is defined 
as (1), AUR and ML are expressed as (2) and (3). Noticing that the traditional JSSP instance’s operation-machine 
pair is already given and cannot change during the scheduling. Therefore, the ML is the same for all methods 

Figure 1.   The workflow of the proposed GAILS for solving JSSP and FJSSP.
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in JSSP but is different in FJSSP. As a result, the proposed method will first evaluate the population by Cmax ; if 
several solutions have the same Cmax , then check AUR  for JSSP and check AUR and ML for FJSSP, respectively.

Step 4: Selection operator. The proposed method combined elitist and tournament selection methods as 
selection operators. Mainly, elitist selection copies 5% of individuals from the original population Pop as a part 
of the new population newPop . The rest 95% of the new population is generated from the tournament selec-
tion algorithm. The tournament selection algorithm sets k = 2 to select the rest of the individuals. That is, two 
individuals are evaluated using the fitness function Best = {Cm,AUR,ML} , and the best one will be selected and 
added to the new population. The whole algorithm, as described in Algorithm 2.

Algorithm 2.   Selection algorithm
Step 5: Crossover operator. The proposed method adopted precedence operation crossover (POX) and job-

based crossover (JBX) for OS string. Each selected 50% randomly to crossover the OS string and adopted a 
two-point crossover for the MS string, which is identical to7.

Step 6: Mutation operator. The proposed method applies neighbor mutation for 15% of the OS string. The 
process of neighbor mutation is described in the following steps and Fig. 3 (a).

1) Randomly select three different elements in parent P and generate all neighbors of the OS string.
2) Randomly select one neighbor as the current OS string, denoted as C.
Also, adopting a job-based half mutation operator for the MS string, as shown in Fig. 3 (b). The half gene in 

each job will be mutated using a job-based half-mutation operator. After mutation operation, set Gen = Gen+ 1 , 
and go to step 3.

Step 7: Output the global solution and feed it into ILS.
Step 8: The ILS algorithm explores the optimal local path for the JSSP and FJSSP instances. We set the maxi-

mum iteration to be 10, 000 and the maximum no-improved value for make-span is 0.02. The ILS algorithm 
used in this article is the same as our previous paper8.

Step 9: If some criteria are satisfied (generation step up to 10,000 or no improved value is less than 0.02) 
in the ILS algorithm, output the solution. The final solution will be decoded into JSSP or FJSSP pattern using 
reference7. Else, go to step 8.

Experimental verification
The authors implemented the proposed method based on the system of Ubuntu 16.0.4 with Intel(R) i7-7700 CPU 
at 3.60 GHz, and the programming language is Python 3.5. Moreover, we compared the proposed method with 
some leading methods to indicate its effectiveness for both classical JSSP and FJSSP in some public instances.

Verification for JSSP
Makespan
The JSSP is simpler than FJSSP as it does not require machine selection. We compared the proposed method 
with GA39, DDQN4, ACRL35, HDNN31, and ILS, GA1 (the GA in the proposed method) on some famous JSSP 

Figure 2.   One example of a 3 × 3 FJSSP instance.
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instances, including ft10 (10 × 10), ft20 (20 ×5)40, la24 (15 ×10 ), la36 (15 ×15)41, abz7 (20 × 15)42, yn1(20 × 10)43. 
To fairly compare, the comparative results are collected directly from the original paper. The term ’-’ means not 
report, and the term ’GA1’ is the GA part of the proposed method. The comparative results in terms of makespan 
are shown in Table 2.

The results indicated that the proposed method outperforms others for all JSSP instances. Besides, the GA1 
applied in the proposed method performs better than GA39. ILS performs better than GA1 on ft10 and ft20. We 
calculate the scheduling score score = Coptimal

Cal
 , as shown in Fig. 4, except method ACRL35 since it is incomplete. 

Where Cal and COptimal are the makespans of each method and optimal solution. The results indicated that the 
proposed method obtained scheduling scores higher than 90% for six JSSP instances and outperformed others. 
The averaged scheduling scores are also given in Table 2. The results confirmed the proposed method’s effec-
tiveness, with an average scheduling score of 96.94%. To show the priority of the proposed improved GA1, we 
compare it with GA39. The calculation result indicated that GA1 had improved a 36.20% = (94.92–69.69)/69.69 
scheduling score compared to GA39. Also, the application of ILS has improved by 2.13% = (96.94–94.92)/94.92 
of the average scheduling score, which is conducted by comparing the proposed method with GA1. The priority 
of each method could be ranked as: The proposed > GA1 > ILS > DDQN > HDNN > GA.

We also compare the proposed method with the current leading learning-based methods, DDQN4, ACRL35, 
ML-CNN8, and GA1, ILS, on more la01 to la2041. The results in terms of makespan are shown in Table 3. The 
findings showed that the proposed method performs much better than ACRL35 on la11 to la 15, whose solutions 
are optimal, while ACRL35 is not for la12, la133, and la15. Besides, the proposed method won all cases for twenty 
JSSP instances compared to other algorithms. In addition, it received eighteen optimal solutions except for la20. 
It indicated that the proposed method outperforms others and could effectively solve JSSP in terms of makespan. 
The solution of la16 using the proposed method is shown in Fig. 5, whose makespan is 945.

To see the difference between the proposed method and others, we calculate each method’s average schedul-
ing score except ACRL35, as shown in Fig. 6. The results indicated that the proposed method is the most near to 
the optimal method, whose average scheduling scores are 99.97%. Besides, all method’s scheduling scores are 

Figure 3.   Mutation operator for OS and MS.

Table 2.   The comparative results for solving JSSP in terms of makespan.

Method ft10 ft20 la24 la36 abz7 yn1 Average scores

GA39 1203 1511 1336 1806 1050 1472 69.69

DDQN4 980 1208 1029 1355 725 996 92.74

ACRL35 1097 – – – 457 – –

HDNN31 1023 1391 1056 1318 726 995 90.01

GA1 978 1187 971 1328 713 967 94.92

ILS 971 1181 984 1423 787 980 92.24

Proposed 966 1178 950 1288 687 955 96.94

Optimal 930 1165 935 1268 665 886 1.0
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near 99%, but the proposed method is the highest. According to the average scheduling scores, they can rank as: 
The proposed > ML-CNN > ILS > DDQN > ILS. In addition, the application of ILS has improved the scheduling 
scores from 98.84 to 99.97, proving that the GA lacks some local search capacity and that ILS could guide GA 
to find the best local path.

Average utilization rate (AUR)
The proposed method aims at optimizing multiple objects, including makespan, AUR, and ML, for each instance. 
Here, we give the AUR for each JSSP instance using GA1, ILS, and the proposed method since all MLs are the 
same for JSSP, as shown in Fig. 7. The results showed that the proposed method won fourteen times out of twenty 
in terms of AUR, including la01, la02, la05, la06, la07, la09, and la12-la19. On the contrary, GA only won one 
time on la12, and ILS won five times out of twenty, including la03, la04, la08, la10, and la20, respectively. The 
results confirmed each component’s effectiveness again in terms of AUR. In summary, the proposed method 
could process JSSP effectively within a satisfactory makespan and AUR.

Figure 4.   The scheduling scores for each method.

Table 3.   The comparative results for solving JSSP in terms of makespan. Significant values are in bold.

DDQN ACRL35 ML-CNN GA1 ILS Proposed Optimal Score

la01(10 × 5) 666 – 666 666 666 666 666 100

la02(10 × 5) 655 – 655 671 667 655 655 100

la03(10 × 5) 597 – 603 620 617 597 597 100

la04(10 × 5) 609 – 590 602 590 590 590 100

la05(10 × 5) 593 – 593 593 593 593 593 100

la06(15 × 5) 926 – 926 926 926 926 926 100

la07(15 × 5) 890 – 890 890 890 890 890 100

la08(15 × 5) 863 – 863 863 863 863 863 100

la09(15 × 5) 951 – 951 951 951 951 951 100

la10(15 × 5) 958 – 958 958 958 958 958 100

la11(20 × 5) 1222 1222 1222 1222 1222 1222 1222 100

la12(20 × 5) 1047 1111 1039 1039 1039 1039 1039 100

la13(20 × 5) 1151 1181 1150 1150 1150 1150 1150 100

la14(20 × 5) 1292 1292 1292 1292 1292 1292 1292 100

la15(20 × 5) 1221 1288 1207 1209 1207 1207 1207 100

la16(10 × 10) 980 – 968 982 984 945 945 100

la17(10 × 10) 799 – 789 793 792 784 784 100

la18(10 × 10) 859 – 861 869 861 848 848 100

la19(10 × 10) 872 – 846 891 865 842 842 100

la20(10 × 10) 924 – 912 921 907 907 902 99.45

Best rankings 11 – 14 11 14 20 – 20
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Verification for FJSSP
The above section has confirmed the effectiveness of the proposed method for solving JSSP. This section focuses 
on verifying its effectiveness for FJSSP. We compared the proposed method with existing leading methods, 
including TSN1 and TSN244, the improved GA1, and ILS on forty FJSSP instances from rdata44.

Makespan
The comparative results in terms of makespan are shown in Table 4. The results indicated that the proposed 
method won thirty-seven times out of forty FJSSP instances in terms of makespan, while the components of GA1 
and ILS won zero. It illustrates that only using GA1 or ILS cannot solve FJSSP well since GA lacks local exploring 
capacity while ILS lacks global searching capacity. Combining GA and ILS could solve FJSSP effectively. TSN1 
and TSN2 won six and seven times out of forty FJSSP instances. Moreover, ILS generally performs better than 
GA1. Similar to makespan, the scheduling score results showed that the proposed method is near 99% and won 
37 times out of 40 FJSSP instances. Those methods could be ranked as: The proposed > TSN2 > TSN1 > ILS > GA. 
One example of la19’s solution using the proposed method is given in Fig. 8, whose makespan is 704.

To see each method’s difference, we calculate the average scheduling scores of each method, as shown in 
Fig. 9. The results confirmed that the proposed method is one near-optimal method for solving FJSSP, whose 
average scheduling score is 99.0%. Another finding is that only using GA1 or ILS cannot solve FJSSP well, as their 
average scheduling scores are 93.45% and 95.48%, which are far from the proposed method. The performance 

Figure 5.   The solution of la16 with the proposed method.

Figure 6.   The average scheduling scores of each method for solving JSSP on la01-la20.
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of each method for solving FJSSP could be ranked as: The proposed > TSN1 > TSN2 > ILS > GA1 according to 
average scheduling scores.

Average utilization ratio (AUR)
The AUR illustrates each machine’s utilization ratio during the whole production process. Generally, the higher 
the AUR, the better performance the algorithm shows. We calculate the AUR of each method on forty FJSSP, as 
shown in Fig. 10. The results showed that the proposed method performed better and won most cases. It won 
thirty-three times out of 40 FJSPP instances, including la02-la13, la15, la16, la18, la19, la22-la24, la26-la30, and 
la32-la40, respectively. On the contrary, GA1 and ILS only won eight and six times out of forty. The proposed 
method has an absolute advantage on large-scale FJSSP instances conducted from la23-la40. Moreover, all meth-
ods perform well on small-scale FJSSP instances, from la01 to la16, whose AURs are high up to 99%. The above 
findings indicated that the proposed method could arrange each sub-operation well on the selected machine to 
execute for solving FJSSP, and only using GA or ILS cannot obtain satisfactory AUR.

Max loading (ML)
The max loading (ML) represents each machine’s loading capacity. The huge load may damage the machine and 
result in a delay in the whole manufacturing process. Therefore, testing the proposed method’s ML for each FJSSP 
instance is necessary. The results showed that the proposed method has a low ML compared to GA1 and ILS, as 
shown in Fig. 11. The proposed method won thirty-three times out of forty instances, including la01-la18, la22, 
la23, and la25-la37, respectively. However, GA1 only won six times, including la19, la21, la24, la38, la39, and la 
40, respectively; and ILS only won la20. The above evidence showed that the proposed method could deal with 
FJSSP with low max loading, and only using GA1 or ILS cannot find the best solution due to the lack of local 
exploring and global searching capacities.

In summary, the proposed method could process FJSSP instances within satisfactory makespan, AUR, and 
ML due to its excellent global search and local exploring capacities.

Discussion
Job shop scheduling is critical in building one smart factory regarding resource supply and intelligent production. 
Most current methods only focus on one type of job shop scheduling: JSSP or FJSSP, and single-object, which 
cannot satisfy human beings’ needs. This article proposes an effective scheduler, GAILS, to solve JSSP and FJSSP 
with multiple objects, including makespan, AUR, and ML.

Considering each algorithm’s advantages and disadvantages, as summarized in Table 1. The proposed GAILS 
applied GA to find the global path and guide ILS to explore the optimal local path. In GA, three improved 
operators, including selection, crossover, and mutation operators, are utilized to find the best chromosome for 
each instance. Therefore, the proposed method has an excellent search capacity and could balance globality and 
diversity. The whole process of the proposed method includes nine steps, as shown in Fig. 1. Steps 1–6 are to 
find the global path, while steps 7–9 are for best local path exploring.

To verify the proposed method’s effectiveness, we tested and compared the proposed method and several 
leading methods based on sixty-six JSSP instances. We compared the proposed method with GA39, DDQN4, 
ACRL35, HDNN31, and ML-CNN8 on twenty-six JSSP instances to validate its effectiveness for solving classical 
JSSP. The results in terms of makespan showed that the proposed method outperforms others, which can be 
seen in Tables 2 and 3. Besides, we calculated their scheduling scores to see their performance compared to the 

Figure 7.   The average utilization ratio of each method for solving JSSP on la01-la20.
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optimal method. The results indicated that the proposed method is near the optimal method, whose average 
scheduling score is higher than 95%, which could be conducted in Figs. 4 and 6.

To verify each component’s effectiveness for solving JSSP in the proposed method, we compared it with GA1 
and ILS. The results showed that only using GA1 or ILS cannot solve JSSP effectively, as shown in Tables 2, 3, and 
Figs. 4 and 6. One solution using the proposed method for solving la16 is given in Fig. 5. The AUR testing results 
indicated that the proposed method could deal well with JSSP with a good AUR, as shown in Fig. 7.

Moreover, we tested and compared the proposed GAILS with TSN1 and TSN244 on forty FJSSP instances to 
validate its effectiveness. The results in terms of makespan indicated that the proposed method performs the best. 
It won thirty-seven times out of forty, as shown in Table 4. Similar to JSSP, we calculated the scheduling score 
of the proposed method, and the results showed that the proposed method could receive 99.0% of the average 
scheduling score for solving FJSSP, as shown in Fig. 9. It indicated that the proposed method is one near-optimal 
solution for FJSSP. Besides the comparative results between the proposed GAILS and GA1, ILS has confirmed 
each component’s effectiveness. Another finding is that using GA1 or ILS alone cannot solve FJSSP well, as their 

Table 4.   The comparative results for FJSSP in terms of makespan. Significant values are in bold.

GA1 ILS TSN1 TSN2 Proposed Optimal Score

la01(10 × 5) 590 577 580 577 573 570 99.48

la02(10 × 5) 563 541 536 535 532 530 99.62

la03(10 × 5) 495 508 486 486 480 477 99.38

la04(10 × 5) 524 511 509 506 504 502 99.60

la05(10 × 5) 461 464 464 458 458 457 99.78

la06(15 × 5) 805 802 804 803 800 799 99.88

la07(15 × 5) 766 754 754 752 751 749 99.73

la08(15 × 5) 787 770 767 768 766 765 99.87

la09(15 × 5) 860 860 859 857 854 853 99.88

la10(15 × 5) 809 809 806 805 805 804 99.88

la11(20 × 5) 1097 1077 1073 1073 1072 1071 99.91

la12(20 × 5) 1057 939 937 937 937 936 99.89

la13(20 × 5) 1067 1041 1039 1039 1038 1038 100

la14(20 × 5) 1092 1072 1071 1071 1070 1070 100

la15(20 × 5) 1114 1092 1093 1093 1091 1090 99.91

la16(10 × 10) 804 741 717 717 717 717 100

la17(10 × 10) 652 646 646 646 646 646 100

la18(10 × 10) 709 704 674 673 669 666 99.55

la19(10 × 10) 769 761 725 709 704 700 99.43

la20(10 × 10) 814 761 756 756 756 756 100

la21(15 × 10) 916 939 861 861 859 835 97.21

la22(15 × 10) 843 842 790 795 786 760 96.69

la23(15 × 10) 932 945 884 887 859 840 97.79

la24(15 × 10) 878 898 825 830 830 806 97.11

la25(15 × 10) 881 871 823 821 808 789 97.65

la26(20 × 10) 1169 1162 1086 1087 1076 1061 98.61

la27(20 × 10) 1201 1179 1109 1115 1102 1089 98.82

la28(20 × 10)) 1164 1155 1097 1090 1090 1079 98.99

la29(20 × 10) 1087 1079 1016 1017 1008 997 98.91

la30(20 × 10) 1180 1163 1105 1108 1103 1078 97.73

la31(30 × 10) 1633 1567 1532 1533 1526 1521 99.67

la32(30 × 10) 1764 1704 1668 1668 1661 1659 99.88

la33(30 × 10) 1607 1543 1511 1507 1503 1499 99.73

la34(30 × 10) 1639 1565 1542 1543 1539 1536 99.81

la35(30 × 10) 1646 1602 1559 1559 1554 1550 99.74

la36(15 × 15) 1146 1189 1054 1071 1060 1028 96.98

la37(15 × 15) 1218 1211 1122 1132 1108 1074 96.93

la38(15 × 15) 1105 1110 1004 1001 989 960 97.07

la39(15 × 15) 1165 1151 1041 1068 1054 1024 97.15

la40(15 × 15) 1120 1113 1009 1009 994 970 97.59

Best rankings 0 0 6 7 37 – 37
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average scheduling scores are 93.45% and 95.48%, which are far from the proposed method. One solution using 
the proposed method based on the la19 FJSSP instance is given in Fig. 8, whose makespan is 704.

The AUR results showed that the proposed method could deal with FJSSP instances well with satisfactory 
AUR, as shown in Fig. 10. The proposed method has an absolute advantage on large-scale FJSSP instances.

The ML testing results showed that the proposed method could arrange each operation on the selected 
machine well and has a small ML, which could be conducted in Fig. 11. The comparative results between the 
proposed method and GA1, ILS, confirmed the proposed method’s effectiveness again.

In summary, the proposed method could effectively process both JSSP and FJSSP within multiple objectives. 
By changing the order of makespan, AUR, and ML in the fitness function, we can easily receive multiple solu-
tions for different production statuses. However, GA is much more time-consuming as it requires executing 
the selection, crossover, and mutation operations 400 hundred times. Respectively, it takes almost half-day to 
process la40 while ILS only needs ten seconds. How to design one effective and time-saving GA to search global 
path is worth thinking more about.

Figure 8.   The FJSSP solution of la19 using the proposed, whose makespan is 704.

Figure 9.   The average scheduling scores of each method for solving FJSSP on la01-la40.
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Conclusions
This article proposes an effective job shop scheduler, GAILS, to solve both JSSP and FJSSP within multiple 
objects, including makespan, AUR, and ML. In the proposed method, GA is used to search approximate global 
solutions, and the searched solution is fed into ILS to explore the best optimal local solution. In the GA, three 
improved operators, including selection, crossover, and mutation, are designed to select the best chromosome 
for the global solution by using one combination fitness function made of makespan, AUR, and ML. Thus, the 
proposed method has an excellent searching capacity and could balance globality and diversity. The comparative 
analysis based on sixty-six instances has confirmed the effectiveness of the proposed method for both JSSP and 
FJSSP. It received a 96.94% average scheduling score in large-scale JSSP instances (see Table 2), won all cases 
on la01-la20 JSSP instances in terms of makespan, and won fourteen times out of twenty in terms of AUR. For 
FJSSP, it won thirty-seven, thirty-three, and thirty-three times out of forty FJSSP instances in terms of makespan, 
AUR, and ML, respectively.

As discussed in the above section, the GA used in the proposed method is much more time-consuming. In the 
future, we will focus on designing one time-saving GA to combine with ILS for solving JSSP and FJSSP. Besides, 
we will compare the proposed method with other multi-objective JSSP algorithms to validate its effectiveness.

Data availability
The datasets used in this article are from the well-known public dataset, which has been appropriately cited.
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Figure 10.   The AUR of each method for solving FJSSP on la01-la40.

Figure 11.   The ML of each method for solving FJSSP on la01-la40.
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