
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports

GAILS: an effective multi‑object job
shop scheduler based on genetic
algorithm and iterative local search
Xiaorui Shao 1, Fuladi Shubhendu Kshitij 2 & Chang Soo Kim 2*

The job shop scheduling problem (JSSP) is critical for building one smart factory regarding resource
management, effective production, and intelligent supply. However, it is still very challenging due to
the complex production environment. Besides, most current research only focuses on classical JSSP,
while flexible JSSP (FJSSP) is more usual. This article proposes an effective method, GAILS, to deal
with JSSP and FJSSP based on genetic algorithm (GA) and iterative local search (ILS). GA is used to find
the approximate global solution for the JSSP instance. Each instance was encoded into machine and
subtask sequences. The corresponding machine and subtasks chromosome could be obtained through
serval-time gene selection, crossover, and mutation. Moreover, multi-objects, including makespan,
average utilization ratio, and maximum loading, are used to choose the best chromosome to guide
ILS to explore the best local path. Therefore, the proposed method has an excellent search capacity
and could balance globality and diversity. To verify the proposed method’s effectiveness, the authors
compared it with some state-of-the-art methods on sixty-six public JSSP and FJSSP instances. The
comparative analysis confirmed the proposed method’s effectiveness for classical JSSP and FJSSP in
makespan, average utilization ratio, and maximum loading. Primarily, it obtains optimal-like solutions
for several instances and outperforms others in most instances.

With the continuous development of global economics, modern industry is more and more complex1,2, causing a
new challenge for implementing smart factories3. Job shop scheduling plays a core role in the process of building
one smart factory, which has extracted more attention4,5.

The current methods for solving JSSP consist of exact and approximation methods. The exact methods that
can obtain optimal solutions while it is very time-consuming and resource-consuming6, especially when meet-
ing one large-scale JSSP instance. Therefore, most current methods mainly focus on approximated methods,
including the simplest dispatching rules (DRs) and artificial intelligence (AI)7. Among these two methods, DRs
such as first in first out (FIFO), shortest processing time (SPT), and earliest completion time first (ECTF) are the
most straightforward and simplest but are far from optimal solutions8. On the contrary, the AI-based methods
extract the hidden information from the JSSP instances to construct the corresponding rules more accurately
within a tolerable time, which has been mainstream for solving JSSP. It mainly consists of the artificial immune
algorithm9,10, genetic algorithm (GA)11, swarm intelligence (SI)12, local search (LS) algorithms, and network-
based approaches13–15, etc. GA and neural network-based (NN) methods have extracted more attention.

GA is one global searching algorithm with parallelism, robustness, wide applicability, and interpretability16,
which has been widely used for solving JSSP-like optimization problems. For instance, Omar et al. applied one
improved GA to solve JSSP17, in which they initialed the population with some well-known DRs rather than
a random solution. Teekeng et al. proposed one improved GA for solving FJSSP by changing three operators:
selection, crossover, and mutation18. Mohamed19 proposed a new GA based on the island model for solving JSSP
using a migration selection mechanism to evaluate and select the genes, whose effectiveness is demonstrated on
52 public JSSP instances. Li et al.7 applied GA to search the global solution first, and then Tabu search was used
to find the best local solution for solving both JSSP and FJSSP. Sun et al.20 applied GA with variable neighborhood
search for solving FJSSP. Besides, similar to the idea of GA, Lu et al.21 proposed an improved iterated greedy
(IIG) algorithm to solve the distributed hybrid flow shop scheduling problem. They constructed three operators
to search for the global path, and one LS algorithm consisting of four neighborhood structures is designed to
find its best local path. Moreover, GA-based algorithms are developed to solve other JSSP-like problems, includ-
ing timetabling scheduling22,23, traveling salesman problem (TSP)24, and network parameter optimization25,26.

OPEN

1Industrial Science Technology Research Center, Pukyong National University, Busan 608737, Korea. 2Department
of Information Systems, Pukyong National University, Busan 608737, Korea. *email: cskim@pknu.ac.kr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51778-1&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

The NN-based methods have two branches: traditional and deep reinforcement learning (DRL). Traditional
learning methods for solving JSSP treat it as one sub-classification problem. It uses other well-known algorithms,
such as DRs and GA, to obtain corresponding labels (the priority for each sub-task) and simultaneously calculates
the corresponding statuses used to train the model. The trained model is used to predict the priority of each
sub-task, which is converted into a JSSP pattern at the end. E. g., Weckman et al.13 are the first to apply NN for
solving JSSP. They utilized GA to solve 6 × 6 JSSP instances first, and then one NN with three hidden layers was
adopted to predict each subtask’s priority by inputting twelve features. The comparative results on ft0627 indicated
that the NN-based method outperforms attribute-oriented induction (AOI) and SPT but is still far from GA.

Recent deep learning (DL) technology has achieved great success in many fields, such as image classification28,
fault diagnosis29, and medical healthcare30, due to its powerful feature extraction capacity. Also, DL has extracted
attention in the field of JSSP. For instance, Zang et al.31 applied a convolutional neural network (CNN) to extract
the hidden features from ten input features and their transformations corresponding to the sub-task generated
from GA. Shao et al.14 employed GA to generate training samples and long-short-term memory (LSTM) with
K-means to mine key hidden features for solving JSSP. Besides, Kim et al.8 applied multi-level CNN (ML-CNN)
to find the approximate global path and applied ILS to explore the best local solution for solving JSSP.

DRL32 describes one JSSP as a Markov decision process (MDP), in which the DL part extracts rich hidden
features that reflect the current dynamic production environmental state s to predict the corresponding reward
r . The RL part records a pair of actions and rewards. Significantly, the current state will be transformed into a
new state s′ by doing action a and returning a reward r . The DRL arranges all sub-tasks in one JSSP instance by
maximizing the total reward. E.g., Ye et al.33 utilized DRL for resource scheduling, which utilizes one-dimension
(1-D) CNN to extract the hidden dynamic features. Lin et al.34 proposed a novel multi-class DRL-based method,
deep Q network (DQN), to select the rule for each machine to arrange a corresponding job, in which six DRs
are utilized. Considering the shortcoming of a single DQN that predicts and evaluates the action using the same
model, double DQN (DDQN) is applied to solve JSSP within eighteen DRs4. Besides, Liu et al.35 combined actor-
critic with reinforcement learning (ACRL) to solve JSSP, and the comparative results in terms of makespan on
some public JSSP instances indicated its effectiveness; and a graph network is combined with Q-learning to solve
JSSP in traffic management36.

Although the abovementioned methods have obtained good performance, they still have some limitations,
as described in Table 1. The exact method is the most accurate but cannot deal with large-scale JSSP instances
and is time-consuming; DRs are simplest but not adequate37; The GA-based method could obtain a near-optimal
solution for JSSP instances due to its good global exploring ability, but it lacks some of the local searching ability;
On the contrary, LS lacks global exploring ability; Traditional learning methods could solve JSSP fast but highly
depends on other algorithms; DRL-based methods are effective and intelligent, but how to design dynamic input
nodes and reward function still need to think more.

Table 1 shows that no algorithm can handle all JSSP-like optimization problems well. Besides, most current
methods only focused on JSSP or FJSSP, except for7. They evaluated the proposed method in makespan, which
could not satisfy human beings’ needs. Motivated by those, this article presents one effective scheduler, GAILS,
to solve multi-objective JSSP and FJSSP. In which an improved GA based on reference7 is designed to find the
approximate global solution for the JSSP and FJSSP instances. The initial chromosome of machine and subtask
sequences are randomly set first. Then, three operators, including selection, crossover, and mutation, are designed
to explore the global genes for each sequence. Moreover, the multi-object fitness function is designed by combin-
ing makespan, average utilization ratio, and maximum loading to choose the best global chromosome to guide
ILS to explore the best local path. The reason for choosing ILS rather than other local searching algorithms
is to find its best local path because ILS can ensure the solution’s diversity by adjusting different perturbation
strategies38. Powered by GA, ILS, and multi-object fitness function, the proposed method has an excellent search-
ing capacity and could balance globality and diversity for solving JSSP and FJSSP.

The main contributions of this article are summarized as follows:

1.	 An improved GA is proposed to find the global solution of JSSP and FJSSP instances using three new opera-
tors: selection, crossover, and mutation. The comparative results showed that the improved GA is more
effective than traditional GA.

2.	 The ILS is applied to explore the optimal local path from GA obtained global path, which ensures the solu-
tion is near optimal.

Table 1.   The description of each method for JSSP.

Method Advantages Limitations

Exact Optimal Cannot deal with large-scale instances, time-
consumption

Approximation

DRs Simple Not effective

GA Near-optimal, Good global exploring ability Lacks local searching ability

LS Good local searching ability Lacks global exploring ability

AI-based

 Traditional learning Fast Highly relies on other algorithms

 DRL Effective and intelligent Hard to select input nodes and reward function

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

3.	 A multi-object fitness function that contains makespan, average utilization rate (AUR), and maximum load-
ing (ML) is designed to select the best global and local path, which could be easily extended to other optimi-
zation algorithms. Besides, it can easily attach personal goals for different production statutes by adjusting
their order in the fitness function.

4.	 Based on the good design of GA, ILS, and multi-object fitness function, the proposed method has an excel-
lent searching capacity. It could balance globality and diversity for solving JSSP and FJSSP. The Comparative
analysis based on sixty public instances confirmed its effectiveness in terms of makespan, average utilization
rate, and maximum loading. In addition, the effectiveness of GA and ILS has been analyzed in the proposed
method.

The rest of this article is arranged as follows. Section “Problem definition” defines the JSSP and FJSSP. Section
“The proposed methods” presents the proposed method in detail. Section “Experimental verification” performs
the experimental verification based on public JSSP and FJSSP instances. In section “Discussion”, we discuss the
proposed method in depth. Section “Conclusions” concludes this article.

Problem definition
JSSP aims at arranging n jobs J = {J1, J2, . . . , Ji . . . , Jn} to be processed by m machines
M = {M1,M2, . . . ,Mj , . . . ,Mm} with satisfactory metrics such as makespan, AUR, and ML. Where
each job Ji consists of ni operations O = {Oi,1,Oi,2,Oi,3, . . . ,Oi,k, . . . ,Oi,ni |} . Each operation
Oi,k(i = 1, 2, 3, . . . , n; k = 1, 2, 3, . . . , ni) needs to be processed by a functional machine Mj within a particular
time Ti,j ∈ T = {Ti,1,Ti,2,Ti,3, . . . ,Ti,k , . . . ,Ti,ni

} . Notice that one operation in the JSSP instance can only be
processed once by one certain machine.

Unlike classical JSSP, FJSSP needs to determine both a job operation and the corresponding machine to
execute the selected operation to attach good criteria. That is, each operation Oi,j ∈ O needs to be processed
by a machine Mi,j, out of a given set Ms ∈ M . From the definition of JSSP and FJSSP, we know that FJSSP is one
complex kind of JSSP. Generally, both JSSP and FJSSP pursue finding the minimized makespan, defined as (1).
Where Ci,k is the completion time of k th operation for job i , and Cmax is the maximum completion time for all
operations. Besides, this manuscript aims at developing one accurate algorithm to attach multiple goals, includ-
ing AUR, and ML, as shown in (2) for AUR, and (3) for ML. Where Endi = max

(

Ci,j

)

mi
 is the ending time of

machine mi , and idlei is the idle time of mi.

To simplify the problem, we define four constraints for both JSSP and FJSSP, as follows:

Constraint 1: Starting time constraint, Eq. 4 (a) indicated that the completing time Ci,k equals its operation
time Ti,1 , which indicates that all jobs start from zero.

Constraint 2: Operation order constraint, Eq. 4 (b) indicated that one job Ji has specific orders
{Oi,1,Oi,2,Oi,3, . . . ,OOi,ni } to execute at corresponding machine {Mi,1,Mi,2,Mi,3, . . . ,Mi,ni } in a certain time
{Ti,1,Ti,2,Ti,3, . . . ,Ti,ni} ∈ T for JSSP since the difference between Ci,k+1 and Ci,k is greater or equal to the opera-
tion time Ti,k+1 . For FJSSP, the only difference is that each sub-operation Oi,k requires selecting the best machine
Mi,j from a given machine set Ms to execute within the corresponding time duration. That is, the next sub-
operation will start after completing the previous sub-operation.

Constraint 3: Resource constraint, Eq. 4 (c) indicated that the machine Mj can only process one given sub-
operation Oi,j at once. Where different sub-operations for the i th job’s completing time difference Ci,k − Ci,j
should be greater or equal to the k th sub-operation time Ti,k.

Constraint 4: Eq. 4 (d) showed that we do not consider the set-up and transmission times during scheduling.

The proposed methods
The proposed method consists of two parts: GA finds the global path (step 1 to step 6), and ILS explores the
optimal local path (step 7 to step 9), whose workflow is shown in Fig. 1. The overall procedure of the proposed
method is described in the subsequent sections.

Step 1: Setting the parameters of the proposed method, including max generation Gen , population size Popsize ,
crossover ratio Cr , and mutation ratio Mr . Setting a bigger Gen and Popsize may receive more satisfactory results,
but they require massive resources to find the global path. Considering both performance and time costing, we
set Gen and Popsize as 400, which is similar to the work of Gao7. Moreover, the relatively bigger crossover and
smaller mutation ratios can ensure gene diversity while simultaneously preserving excellent genes to optimize
the algorithm. Thus, we set the crossover ratio Cr and mutation ratio Mr as 0.8 and 0.1, respectively.

(1)Cmax = max(Ci,k|i = 1, 2, .., n; k = 1, 2, .., ni)

(2)AUR =

∑m
i=0(Endi − idlei)/Endi

m

(3)ML = Max(Endi − idlei),wherei = 1, 2, 3, . . . ,m.

(4)











Ci,k = Ti,k(i, k) ∈ Oandk = 14.a
Ci,k+1 − Ci,k ≥ Ti,k+1if

�

i, j
�

→ (i, k), k ∈ Mj4.b
Ci,k − Ci,j ≥ Ti,kOrCi,j − Ti,k ≥ Ci,k ,

�

i, j
�

, (i, k) ⊆ O, j �= k4.c
Ci,k+1 − Ci,k = Ti,k+14.d

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

Step 2: Initialize the population Pop . Each individual has an operation sequence (OS) and a machine sequence
(MS). Both OS and MS are equal to

∑n
i=0 Oi,ni , generated by algorithm 1. Running algorithm 1 Popsize times

to initialize populations. The gene in OS represents the processing order of each job’s operations on a specific
machine over the occurring orders. The gene in MS represents the corresponding machine over the job and
operation.

Algorithm 1.   OS and MS Encoding Methods
One 3× 3 FJSSP instance is used to explain, as shown in Fig. 2. The code of OS = {1,2,1,2,3} correspond-

ing to operation {O11, O21, O12, O22, O31} ; And MS = {2,2,0,0,1} responds {O11, O12, O21, O21, O22, O23} will be
processed by machine {3,3,1,1,2}, respectively. After obtaining the final chromosomes, the decoding method
generates the FJSSP pattern in step 9. The JSSP only needs to update OS while all elements of MS are equal to 0
since it only requires one machine for one sub-operation.

Step 3: Evaluate the population. If Gen is up to 400, it will output the global solution and feed it into ILS in step
7. Else, go to step 4. The evaluation metric is the combination of { Makespan,AUR,ML }. The makespan is defined
as (1), AUR and ML are expressed as (2) and (3). Noticing that the traditional JSSP instance’s operation-machine
pair is already given and cannot change during the scheduling. Therefore, the ML is the same for all methods

Figure 1.   The workflow of the proposed GAILS for solving JSSP and FJSSP.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

in JSSP but is different in FJSSP. As a result, the proposed method will first evaluate the population by Cmax ; if
several solutions have the same Cmax , then check AUR for JSSP and check AUR and ML for FJSSP, respectively.

Step 4: Selection operator. The proposed method combined elitist and tournament selection methods as
selection operators. Mainly, elitist selection copies 5% of individuals from the original population Pop as a part
of the new population newPop . The rest 95% of the new population is generated from the tournament selec-
tion algorithm. The tournament selection algorithm sets k = 2 to select the rest of the individuals. That is, two
individuals are evaluated using the fitness function Best = {Cm,AUR,ML} , and the best one will be selected and
added to the new population. The whole algorithm, as described in Algorithm 2.

Algorithm 2.   Selection algorithm
Step 5: Crossover operator. The proposed method adopted precedence operation crossover (POX) and job-

based crossover (JBX) for OS string. Each selected 50% randomly to crossover the OS string and adopted a
two-point crossover for the MS string, which is identical to7.

Step 6: Mutation operator. The proposed method applies neighbor mutation for 15% of the OS string. The
process of neighbor mutation is described in the following steps and Fig. 3 (a).

1) Randomly select three different elements in parent P and generate all neighbors of the OS string.
2) Randomly select one neighbor as the current OS string, denoted as C.
Also, adopting a job-based half mutation operator for the MS string, as shown in Fig. 3 (b). The half gene in

each job will be mutated using a job-based half-mutation operator. After mutation operation, set Gen = Gen+ 1 ,
and go to step 3.

Step 7: Output the global solution and feed it into ILS.
Step 8: The ILS algorithm explores the optimal local path for the JSSP and FJSSP instances. We set the maxi-

mum iteration to be 10, 000 and the maximum no-improved value for make-span is 0.02. The ILS algorithm
used in this article is the same as our previous paper8.

Step 9: If some criteria are satisfied (generation step up to 10,000 or no improved value is less than 0.02)
in the ILS algorithm, output the solution. The final solution will be decoded into JSSP or FJSSP pattern using
reference7. Else, go to step 8.

Experimental verification
The authors implemented the proposed method based on the system of Ubuntu 16.0.4 with Intel(R) i7-7700 CPU
at 3.60 GHz, and the programming language is Python 3.5. Moreover, we compared the proposed method with
some leading methods to indicate its effectiveness for both classical JSSP and FJSSP in some public instances.

Verification for JSSP
Makespan
The JSSP is simpler than FJSSP as it does not require machine selection. We compared the proposed method
with GA39, DDQN4, ACRL35, HDNN31, and ILS, GA1 (the GA in the proposed method) on some famous JSSP

Figure 2.   One example of a 3 × 3 FJSSP instance.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

instances, including ft10 (10 × 10), ft20 (20 ×5)40, la24 (15 ×10 ), la36 (15 ×15)41, abz7 (20 × 15)42, yn1(20 × 10)43.
To fairly compare, the comparative results are collected directly from the original paper. The term ’-’ means not
report, and the term ’GA1’ is the GA part of the proposed method. The comparative results in terms of makespan
are shown in Table 2.

The results indicated that the proposed method outperforms others for all JSSP instances. Besides, the GA1
applied in the proposed method performs better than GA39. ILS performs better than GA1 on ft10 and ft20. We
calculate the scheduling score score = Coptimal

Cal
 , as shown in Fig. 4, except method ACRL35 since it is incomplete.

Where Cal and COptimal are the makespans of each method and optimal solution. The results indicated that the
proposed method obtained scheduling scores higher than 90% for six JSSP instances and outperformed others.
The averaged scheduling scores are also given in Table 2. The results confirmed the proposed method’s effec-
tiveness, with an average scheduling score of 96.94%. To show the priority of the proposed improved GA1, we
compare it with GA39. The calculation result indicated that GA1 had improved a 36.20% = (94.92–69.69)/69.69
scheduling score compared to GA39. Also, the application of ILS has improved by 2.13% = (96.94–94.92)/94.92
of the average scheduling score, which is conducted by comparing the proposed method with GA1. The priority
of each method could be ranked as: The proposed > GA1 > ILS > DDQN > HDNN > GA.

We also compare the proposed method with the current leading learning-based methods, DDQN4, ACRL35,
ML-CNN8, and GA1, ILS, on more la01 to la2041. The results in terms of makespan are shown in Table 3. The
findings showed that the proposed method performs much better than ACRL35 on la11 to la 15, whose solutions
are optimal, while ACRL35 is not for la12, la133, and la15. Besides, the proposed method won all cases for twenty
JSSP instances compared to other algorithms. In addition, it received eighteen optimal solutions except for la20.
It indicated that the proposed method outperforms others and could effectively solve JSSP in terms of makespan.
The solution of la16 using the proposed method is shown in Fig. 5, whose makespan is 945.

To see the difference between the proposed method and others, we calculate each method’s average schedul-
ing score except ACRL35, as shown in Fig. 6. The results indicated that the proposed method is the most near to
the optimal method, whose average scheduling scores are 99.97%. Besides, all method’s scheduling scores are

Figure 3.   Mutation operator for OS and MS.

Table 2.   The comparative results for solving JSSP in terms of makespan.

Method ft10 ft20 la24 la36 abz7 yn1 Average scores

GA39 1203 1511 1336 1806 1050 1472 69.69

DDQN4 980 1208 1029 1355 725 996 92.74

ACRL35 1097 – – – 457 – –

HDNN31 1023 1391 1056 1318 726 995 90.01

GA1 978 1187 971 1328 713 967 94.92

ILS 971 1181 984 1423 787 980 92.24

Proposed 966 1178 950 1288 687 955 96.94

Optimal 930 1165 935 1268 665 886 1.0

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

near 99%, but the proposed method is the highest. According to the average scheduling scores, they can rank as:
The proposed > ML-CNN > ILS > DDQN > ILS. In addition, the application of ILS has improved the scheduling
scores from 98.84 to 99.97, proving that the GA lacks some local search capacity and that ILS could guide GA
to find the best local path.

Average utilization rate (AUR)
The proposed method aims at optimizing multiple objects, including makespan, AUR, and ML, for each instance.
Here, we give the AUR for each JSSP instance using GA1, ILS, and the proposed method since all MLs are the
same for JSSP, as shown in Fig. 7. The results showed that the proposed method won fourteen times out of twenty
in terms of AUR, including la01, la02, la05, la06, la07, la09, and la12-la19. On the contrary, GA only won one
time on la12, and ILS won five times out of twenty, including la03, la04, la08, la10, and la20, respectively. The
results confirmed each component’s effectiveness again in terms of AUR. In summary, the proposed method
could process JSSP effectively within a satisfactory makespan and AUR.

Figure 4.   The scheduling scores for each method.

Table 3.   The comparative results for solving JSSP in terms of makespan. Significant values are in bold.

DDQN ACRL35 ML-CNN GA1 ILS Proposed Optimal Score

la01(10 × 5) 666 – 666 666 666 666 666 100

la02(10 × 5) 655 – 655 671 667 655 655 100

la03(10 × 5) 597 – 603 620 617 597 597 100

la04(10 × 5) 609 – 590 602 590 590 590 100

la05(10 × 5) 593 – 593 593 593 593 593 100

la06(15 × 5) 926 – 926 926 926 926 926 100

la07(15 × 5) 890 – 890 890 890 890 890 100

la08(15 × 5) 863 – 863 863 863 863 863 100

la09(15 × 5) 951 – 951 951 951 951 951 100

la10(15 × 5) 958 – 958 958 958 958 958 100

la11(20 × 5) 1222 1222 1222 1222 1222 1222 1222 100

la12(20 × 5) 1047 1111 1039 1039 1039 1039 1039 100

la13(20 × 5) 1151 1181 1150 1150 1150 1150 1150 100

la14(20 × 5) 1292 1292 1292 1292 1292 1292 1292 100

la15(20 × 5) 1221 1288 1207 1209 1207 1207 1207 100

la16(10 × 10) 980 – 968 982 984 945 945 100

la17(10 × 10) 799 – 789 793 792 784 784 100

la18(10 × 10) 859 – 861 869 861 848 848 100

la19(10 × 10) 872 – 846 891 865 842 842 100

la20(10 × 10) 924 – 912 921 907 907 902 99.45

Best rankings 11 – 14 11 14 20 – 20

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

Verification for FJSSP
The above section has confirmed the effectiveness of the proposed method for solving JSSP. This section focuses
on verifying its effectiveness for FJSSP. We compared the proposed method with existing leading methods,
including TSN1 and TSN244, the improved GA1, and ILS on forty FJSSP instances from rdata44.

Makespan
The comparative results in terms of makespan are shown in Table 4. The results indicated that the proposed
method won thirty-seven times out of forty FJSSP instances in terms of makespan, while the components of GA1
and ILS won zero. It illustrates that only using GA1 or ILS cannot solve FJSSP well since GA lacks local exploring
capacity while ILS lacks global searching capacity. Combining GA and ILS could solve FJSSP effectively. TSN1
and TSN2 won six and seven times out of forty FJSSP instances. Moreover, ILS generally performs better than
GA1. Similar to makespan, the scheduling score results showed that the proposed method is near 99% and won
37 times out of 40 FJSSP instances. Those methods could be ranked as: The proposed > TSN2 > TSN1 > ILS > GA.
One example of la19’s solution using the proposed method is given in Fig. 8, whose makespan is 704.

To see each method’s difference, we calculate the average scheduling scores of each method, as shown in
Fig. 9. The results confirmed that the proposed method is one near-optimal method for solving FJSSP, whose
average scheduling score is 99.0%. Another finding is that only using GA1 or ILS cannot solve FJSSP well, as their
average scheduling scores are 93.45% and 95.48%, which are far from the proposed method. The performance

Figure 5.   The solution of la16 with the proposed method.

Figure 6.   The average scheduling scores of each method for solving JSSP on la01-la20.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

of each method for solving FJSSP could be ranked as: The proposed > TSN1 > TSN2 > ILS > GA1 according to
average scheduling scores.

Average utilization ratio (AUR)
The AUR illustrates each machine’s utilization ratio during the whole production process. Generally, the higher
the AUR, the better performance the algorithm shows. We calculate the AUR of each method on forty FJSSP, as
shown in Fig. 10. The results showed that the proposed method performed better and won most cases. It won
thirty-three times out of 40 FJSPP instances, including la02-la13, la15, la16, la18, la19, la22-la24, la26-la30, and
la32-la40, respectively. On the contrary, GA1 and ILS only won eight and six times out of forty. The proposed
method has an absolute advantage on large-scale FJSSP instances conducted from la23-la40. Moreover, all meth-
ods perform well on small-scale FJSSP instances, from la01 to la16, whose AURs are high up to 99%. The above
findings indicated that the proposed method could arrange each sub-operation well on the selected machine to
execute for solving FJSSP, and only using GA or ILS cannot obtain satisfactory AUR.

Max loading (ML)
The max loading (ML) represents each machine’s loading capacity. The huge load may damage the machine and
result in a delay in the whole manufacturing process. Therefore, testing the proposed method’s ML for each FJSSP
instance is necessary. The results showed that the proposed method has a low ML compared to GA1 and ILS, as
shown in Fig. 11. The proposed method won thirty-three times out of forty instances, including la01-la18, la22,
la23, and la25-la37, respectively. However, GA1 only won six times, including la19, la21, la24, la38, la39, and la
40, respectively; and ILS only won la20. The above evidence showed that the proposed method could deal with
FJSSP with low max loading, and only using GA1 or ILS cannot find the best solution due to the lack of local
exploring and global searching capacities.

In summary, the proposed method could process FJSSP instances within satisfactory makespan, AUR, and
ML due to its excellent global search and local exploring capacities.

Discussion
Job shop scheduling is critical in building one smart factory regarding resource supply and intelligent production.
Most current methods only focus on one type of job shop scheduling: JSSP or FJSSP, and single-object, which
cannot satisfy human beings’ needs. This article proposes an effective scheduler, GAILS, to solve JSSP and FJSSP
with multiple objects, including makespan, AUR, and ML.

Considering each algorithm’s advantages and disadvantages, as summarized in Table 1. The proposed GAILS
applied GA to find the global path and guide ILS to explore the optimal local path. In GA, three improved
operators, including selection, crossover, and mutation operators, are utilized to find the best chromosome for
each instance. Therefore, the proposed method has an excellent search capacity and could balance globality and
diversity. The whole process of the proposed method includes nine steps, as shown in Fig. 1. Steps 1–6 are to
find the global path, while steps 7–9 are for best local path exploring.

To verify the proposed method’s effectiveness, we tested and compared the proposed method and several
leading methods based on sixty-six JSSP instances. We compared the proposed method with GA39, DDQN4,
ACRL35, HDNN31, and ML-CNN8 on twenty-six JSSP instances to validate its effectiveness for solving classical
JSSP. The results in terms of makespan showed that the proposed method outperforms others, which can be
seen in Tables 2 and 3. Besides, we calculated their scheduling scores to see their performance compared to the

Figure 7.   The average utilization ratio of each method for solving JSSP on la01-la20.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

optimal method. The results indicated that the proposed method is near the optimal method, whose average
scheduling score is higher than 95%, which could be conducted in Figs. 4 and 6.

To verify each component’s effectiveness for solving JSSP in the proposed method, we compared it with GA1
and ILS. The results showed that only using GA1 or ILS cannot solve JSSP effectively, as shown in Tables 2, 3, and
Figs. 4 and 6. One solution using the proposed method for solving la16 is given in Fig. 5. The AUR testing results
indicated that the proposed method could deal well with JSSP with a good AUR, as shown in Fig. 7.

Moreover, we tested and compared the proposed GAILS with TSN1 and TSN244 on forty FJSSP instances to
validate its effectiveness. The results in terms of makespan indicated that the proposed method performs the best.
It won thirty-seven times out of forty, as shown in Table 4. Similar to JSSP, we calculated the scheduling score
of the proposed method, and the results showed that the proposed method could receive 99.0% of the average
scheduling score for solving FJSSP, as shown in Fig. 9. It indicated that the proposed method is one near-optimal
solution for FJSSP. Besides the comparative results between the proposed GAILS and GA1, ILS has confirmed
each component’s effectiveness. Another finding is that using GA1 or ILS alone cannot solve FJSSP well, as their

Table 4.   The comparative results for FJSSP in terms of makespan. Significant values are in bold.

GA1 ILS TSN1 TSN2 Proposed Optimal Score

la01(10 × 5) 590 577 580 577 573 570 99.48

la02(10 × 5) 563 541 536 535 532 530 99.62

la03(10 × 5) 495 508 486 486 480 477 99.38

la04(10 × 5) 524 511 509 506 504 502 99.60

la05(10 × 5) 461 464 464 458 458 457 99.78

la06(15 × 5) 805 802 804 803 800 799 99.88

la07(15 × 5) 766 754 754 752 751 749 99.73

la08(15 × 5) 787 770 767 768 766 765 99.87

la09(15 × 5) 860 860 859 857 854 853 99.88

la10(15 × 5) 809 809 806 805 805 804 99.88

la11(20 × 5) 1097 1077 1073 1073 1072 1071 99.91

la12(20 × 5) 1057 939 937 937 937 936 99.89

la13(20 × 5) 1067 1041 1039 1039 1038 1038 100

la14(20 × 5) 1092 1072 1071 1071 1070 1070 100

la15(20 × 5) 1114 1092 1093 1093 1091 1090 99.91

la16(10 × 10) 804 741 717 717 717 717 100

la17(10 × 10) 652 646 646 646 646 646 100

la18(10 × 10) 709 704 674 673 669 666 99.55

la19(10 × 10) 769 761 725 709 704 700 99.43

la20(10 × 10) 814 761 756 756 756 756 100

la21(15 × 10) 916 939 861 861 859 835 97.21

la22(15 × 10) 843 842 790 795 786 760 96.69

la23(15 × 10) 932 945 884 887 859 840 97.79

la24(15 × 10) 878 898 825 830 830 806 97.11

la25(15 × 10) 881 871 823 821 808 789 97.65

la26(20 × 10) 1169 1162 1086 1087 1076 1061 98.61

la27(20 × 10) 1201 1179 1109 1115 1102 1089 98.82

la28(20 × 10)) 1164 1155 1097 1090 1090 1079 98.99

la29(20 × 10) 1087 1079 1016 1017 1008 997 98.91

la30(20 × 10) 1180 1163 1105 1108 1103 1078 97.73

la31(30 × 10) 1633 1567 1532 1533 1526 1521 99.67

la32(30 × 10) 1764 1704 1668 1668 1661 1659 99.88

la33(30 × 10) 1607 1543 1511 1507 1503 1499 99.73

la34(30 × 10) 1639 1565 1542 1543 1539 1536 99.81

la35(30 × 10) 1646 1602 1559 1559 1554 1550 99.74

la36(15 × 15) 1146 1189 1054 1071 1060 1028 96.98

la37(15 × 15) 1218 1211 1122 1132 1108 1074 96.93

la38(15 × 15) 1105 1110 1004 1001 989 960 97.07

la39(15 × 15) 1165 1151 1041 1068 1054 1024 97.15

la40(15 × 15) 1120 1113 1009 1009 994 970 97.59

Best rankings 0 0 6 7 37 – 37

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

average scheduling scores are 93.45% and 95.48%, which are far from the proposed method. One solution using
the proposed method based on the la19 FJSSP instance is given in Fig. 8, whose makespan is 704.

The AUR results showed that the proposed method could deal with FJSSP instances well with satisfactory
AUR, as shown in Fig. 10. The proposed method has an absolute advantage on large-scale FJSSP instances.

The ML testing results showed that the proposed method could arrange each operation on the selected
machine well and has a small ML, which could be conducted in Fig. 11. The comparative results between the
proposed method and GA1, ILS, confirmed the proposed method’s effectiveness again.

In summary, the proposed method could effectively process both JSSP and FJSSP within multiple objectives.
By changing the order of makespan, AUR, and ML in the fitness function, we can easily receive multiple solu-
tions for different production statuses. However, GA is much more time-consuming as it requires executing
the selection, crossover, and mutation operations 400 hundred times. Respectively, it takes almost half-day to
process la40 while ILS only needs ten seconds. How to design one effective and time-saving GA to search global
path is worth thinking more about.

Figure 8.   The FJSSP solution of la19 using the proposed, whose makespan is 704.

Figure 9.   The average scheduling scores of each method for solving FJSSP on la01-la40.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

Conclusions
This article proposes an effective job shop scheduler, GAILS, to solve both JSSP and FJSSP within multiple
objects, including makespan, AUR, and ML. In the proposed method, GA is used to search approximate global
solutions, and the searched solution is fed into ILS to explore the best optimal local solution. In the GA, three
improved operators, including selection, crossover, and mutation, are designed to select the best chromosome
for the global solution by using one combination fitness function made of makespan, AUR, and ML. Thus, the
proposed method has an excellent searching capacity and could balance globality and diversity. The comparative
analysis based on sixty-six instances has confirmed the effectiveness of the proposed method for both JSSP and
FJSSP. It received a 96.94% average scheduling score in large-scale JSSP instances (see Table 2), won all cases
on la01-la20 JSSP instances in terms of makespan, and won fourteen times out of twenty in terms of AUR. For
FJSSP, it won thirty-seven, thirty-three, and thirty-three times out of forty FJSSP instances in terms of makespan,
AUR, and ML, respectively.

As discussed in the above section, the GA used in the proposed method is much more time-consuming. In the
future, we will focus on designing one time-saving GA to combine with ILS for solving JSSP and FJSSP. Besides,
we will compare the proposed method with other multi-objective JSSP algorithms to validate its effectiveness.

Data availability
The datasets used in this article are from the well-known public dataset, which has been appropriately cited.

Received: 4 April 2023; Accepted: 9 January 2024

Figure 10.   The AUR of each method for solving FJSSP on la01-la40.

Figure 11.   The ML of each method for solving FJSSP on la01-la40.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

References
	 1.	 Lu, C., Zhang, B., Gao, L., Yi, J. & Mou, J. A Knowledge-Based Multiobjective Memetic Algorithm for Green Job Shop Scheduling

With Variable Machining Speeds. IEEE Syst. J. 16, 844–855 (2022).
	 2.	 Lu, C., Gao, R., Yin, L. & Zhang, B. Human-Robot Collaborative Scheduling in Energy-efficient Welding Shop. IEEE Trans. Ind.

Inform. PP, 1–9 (2023).
	 3.	 Osterrieder, P., Budde, L. & Friedli, T. The smart factory as a key construct of industry 4.0: A systematic literature review. Int. J.

Prod. Econ. 221, 107476 (2020).
	 4.	 Han, B. A. & Yang, J. J. Research on adaptive job shop scheduling problems based on dueling double DQN. IEEE Access 8,

186474–186495 (2020).
	 5.	 Jiang, E., Wang, L. & Wang, J. Decomposition-based multi-objective optimization for energy-aware distributed hybrid flow shop

scheduling with multiprocessor tasks. Tsinghua Sci. Technol. 26, 646–663 (2021).
	 6.	 Pezzella, F., Morganti, G. & Ciaschetti, G. A genetic algorithm for the Flexible Job-shop Scheduling Problem. Comput. Oper. Res.

35, 3202–3212 (2008).
	 7.	 Li, X. & Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ.

174, 93–110 (2016).
	 8.	 Shao, X. & Kim, C. S. An Adaptive Job Shop Scheduler Using Multilevel Convolutional Neural Network and Iterative Local Search.

IEEE Access 10, 88079–88092 (2022).
	 9.	 Bagheri, A., Zandieh, M., Mahdavi, I. & Yazdani, M. An artificial immune algorithm for the flexible job-shop scheduling problem.

Futur. Gener. Comput. Syst. 26, 533–541 (2010).
	10.	 Li, J., Liu, Z., Li, C. & Zheng, Z. Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem.

IEEE Trans. Fuzzy Syst. 29, 3234–3248 (2020).
	11.	 Wisittipanich, W. & Kachitvichyanukul, V. Differential evolution algorithm for job shop scheduling problem. Ind. Eng. Manag.

Syst. 10, 203–208 (2011).
	12.	 Schranz, M., Umlauft, M. & Elmenreich, W. Bottom-up job shop scheduling with swarm intelligence in large production plants.

Proc. 11th Int. Conf. Simul. Model. Methodol. Technol. Appl. SIMULTECH 2021 327–334 (2021). https://​doi.​org/​10.​5220/​00105​
51603​270334.

	13.	 Weckman, G. R., Ganduri, C. V. & Koonce, D. A. A neural network job-shop scheduler. J. Intell. Manuf. 19, 191–201 (2008).
	14.	 https://​www.​kaggle.​com/​datas​ets/​robik​scube/​hourly-​energy-​consu​mption.
	15.	 Chen, W., Xu, Y. & Wu, X. Deep Reinforcement Learning for Multi-Resource Multi-Machine Job Scheduling. arXiv:​1711.​07440

[cs.DC] 1–2 (2017).
	16.	 Katoch, S., Chauhan, S. S. & Kumar, V. A review on genetic algorithm: past, present, and future. Multimedia Tools and Applications

vol. 80 (Multimedia Tools and Applications, 2021).
	17.	 Omar, M., Baharum, A. & Hasan, Y. A. a Job-Shop Scheduling Problem (Jssp) Using Genetic Algorithm (Ga) (2006).
	18.	 Teekeng, W. & Thammano, A. Modified genetic algorithm for flexible job-shop scheduling problems. Procedia Comput. Sci. 12,

122–128 (2012).
	19.	 Kurdi, M. An effective new island model genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 67, 132–142

(2016).
	20.	 Sun, K. et al. Hybrid genetic algorithm with variable neighborhood search for flexible job shop scheduling problem in a machining

system. Expert Syst. Appl. 215, 119359 (2023).
	21.	 Lu, C., Zheng, J., Yin, L. & Wang, R. An improved iterated greedy algorithm for the distributed hybrid flowshop scheduling problem.

Eng. Optim. https://​doi.​org/​10.​1080/​03052​15X.​2023.​21987​68 (2023).
	22.	 Bashab, A. et al. Optimization techniques in university timetabling problem: Constraints, methodologies, benchmarks, and open

issues. Comput. Mater. Contin. 74, 6461–6484 (2023).
	23.	 Abdipoor, S., Yaakob, R., Goh, S. L. & Abdullah, S. Meta-heuristic approaches for the university course timetabling problem. Intell.

Syst. Appl. 19, 200253 (2023).
	24.	 Abbasi, M., Rafiee, M., Khosravi, M.R. et al. An efficient parallel genetic algorithm solution for vehicle routing problem in cloud

implementation of the intelligent transportation systems. J. Cloud Comp. 9, 6 (2020). https://​doi.​org/​10.​1186/​s13677-​020-​0157-4.
	25.	 Tang, A. M., Quek, C. & Ng, G. S. GA-TSKfnn: Parameters tuning of fuzzy neural network using genetic algorithms. Expert Syst.

Appl. 29, 769–781 (2005).
	26.	 Huang, Y., Gao, Y., Gan, Y. & Ye, M. A new financial data forecasting model using genetic algorithm and long short-term memory

network. Neurocomputing 425, 207–218 (2021).
	27.	 Fisher, H. & Thompson, G. L. Probabilistic Learning Combinations of Local Job-Shop Scheduling Rules. In Industrial Scheduling

225–251 (1963).
	28.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. Proc. IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit. 2016, 770–778 (2016).
	29.	 Shao, X., Wang, L., Kim, C. S. & Ra, I. Fault diagnosis of bearing based on convolutional neural network using multi-domain

features. KSII Trans. Internet Inf. Syst. 15, 1610–1629 (2021).
	30.	 Chen, M., Shi, X., Zhang, Y., Wu, D. & Guizani, M. Deep features learning for medical image analysis with convolutional autoen-

coder neural network. IEEE Trans. Big Data 7790, 1–1 (2017).
	31.	 Zang, Z. et al. Hybrid Deep Neural Network Scheduler for Job-Shop Problem Based on Convolution Two-Dimensional Transfor-

mation. Comput. Intell. Neurosci. 2019 (2019).
	32.	 Li, H., Wei, T., Ren, A., Zhu, Q. & Wang, Y. Deep reinforcement learning: Framework, applications, and embedded implementa-

tions: Invited paper. IEEE/ACM Int. Conf. Comput. Des. Dig. Tech. Pap. ICCAD 2017, 847–854 (2017).
	33.	 Ye, Y. et al. A New Approach for Resource Scheduling with Deep Reinforcement Learning. arXiv:​1806.​08122 [cs.AI] 2–6 (2018).
	34.	 Lin, C. C., Deng, D. J., Chih, Y. L. & Chiu, H. T. Smart manufacturing scheduling with edge computing using multiclass deep Q

network. IEEE Trans. Ind. Informatics 15, 4276–4284 (2019).
	35.	 Liu, C. L., Chang, C. C. & Tseng, C. J. Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE

Access 8, 71752–71762 (2020).
	36.	 Liu, Z. et al. A graph neural networks-based deep Q-learning approach for job shop scheduling problems in traffic management.

Inf. Sci. (Ny) 607, 1211–1223 (2022).
	37.	 Chen, B. & Matis, T. I. A flexible dispatching rule for minimizing tardiness in job shop scheduling. Int. J. Prod. Econ. 141, 360–365

(2013).
	38.	 Ishigaki, A. & Takaki, S. Iterated Local Search Algorithm for Flexible Job Shop Scheduling. Proc. - 2017 6th IIAI Int. Congr. Adv.

Appl. Informatics, IIAI-AAI 2017 947–952 (2017). https://​doi.​org/​10.​1109/​IIAI-​AAI.​2017.​126.
	39.	 Moghadam, A. M., Wong, K. Y. & Piroozfard, H. An efficient genetic algorithm for flexible job-shop scheduling problem. IEEE

Int. Conf. Ind. Eng. Eng. Manag. 2015, 1409–1413 (2014).
	40.	 Fisher, H. & Thompson, G. L. Probabilistic learning combinations of local job-shop scheduling rules. Ind. Sched. 3(2), 225–251

(1963).
	41.	 Lawrence, S. An Experimental Investigation of heuristic Scheduling Techniques. Suppl. Resour. Constrained Proj. Sched. (1984).
	42.	 Applegate, D. & Cook, W. A Computational study of the job-shop scheduling problem. ORSA J. Comput. 3, 149–156 (1991).

https://doi.org/10.5220/0010551603270334
https://doi.org/10.5220/0010551603270334
https://www.kaggle.com/datasets/robikscube/hourly-energy-consumption
http://arxiv.org/abs/hep-th/1711.07440
https://doi.org/10.1080/0305215X.2023.2198768
https://doi.org/10.1186/s13677-020-0157-4
http://arxiv.org/abs/hep-th/1806.08122
https://doi.org/10.1109/IIAI-AAI.2017.126

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:2068 | https://doi.org/10.1038/s41598-024-51778-1

www.nature.com/scientificreports/

	43.	 Yamada, T. & Nakano, R. Job shop scheduling. IEEE Control Eng. Ser. 134 (1997).
	44.	 Hurink, J., Jurisch, B. & Thole, M. Tabu search for the job-shop scheduling problem with multi-purpose machines. OR Spektrum

15, 205–215 (1994).

Acknowledgements
This research was supported by the Basic Science Research Program through the National Research Foundation
of Korea (NRF), funded by the Ministry of Education (2021R1I1A3052605).

Author contributions
Conceptualization, X.S.; methodology, X.S.; validation, X.S. and S.K.F.; data curation, X.S. And S.K.F.; writ-
ing—original draft preparation, X.S.; writing—review and editing, X.S.; visualization, X.S.; supervision, C.S.K.;
project administration, C.S.K.; funding acquisition, C.S.K. All authors have read and agreed to the published
version of the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to C.S.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	GAILS: an effective multi-object job shop scheduler based on genetic algorithm and iterative local search
	Problem definition
	The proposed methods
	Experimental verification
	Verification for JSSP
	Makespan
	Average utilization rate (AUR)

	Verification for FJSSP
	Makespan
	Average utilization ratio (AUR)
	Max loading (ML)

	Discussion
	Conclusions
	References
	Acknowledgements

