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GlioPredictor: a deep learning 
model for identification of high‑risk 
adult IDH‑mutant glioma 
towards adjuvant treatment 
planning
Shuhua Zheng 1*, Nikhil Rammohan 2, Timothy Sita 1, P. Troy Teo 1, Yilin Wu 3, Maciej Lesniak 4, 
Sean Sachdev 1 & Tarita O. Thomas 1,5*

Identification of isocitrate dehydrogenase (IDH)‑mutant glioma patients at high risk of early 
progression is critical for radiotherapy treatment planning. Currently tools to stratify risk of early 
progression are lacking. We sought to identify a combination of molecular markers that could be used 
to identify patients who may have a greater need for adjuvant radiation therapy machine learning 
technology. 507 WHO Grade 2 and 3 glioma cases from The Cancer Genome Atlas, and 1309 cases 
from AACR GENIE v13.0 datasets were studied for genetic disparities between IDH1‑wildtype and 
IDH1‑mutant cohorts, and between different age groups. Genetic features such as mutations and copy 
number variations (CNVs) correlated with IDH1 mutation status were selected as potential inputs to 
train artificial neural networks (ANNs) to predict IDH1 mutation status. Grade 2 and 3 glioma cases 
from the Memorial Sloan Kettering dataset (n = 404) and Grade 3 glioma cases with subtotal resection 
(STR) from Northwestern University (NU) (n = 21) were used to further evaluate the best performing 
ANN model as independent datasets. IDH1 mutation is associated with decreased CNVs of EGFR (21% 
vs. 3%), CDKN2A (20% vs. 6%), PTEN (14% vs. 1.7%), and increased percentage of mutations for TP53 
(15% vs. 63%), and ATRX (10% vs. 54%), which were all statistically significant (p < 0.001). Age > 40 
was unable to identify high‑risk IDH1‑mutant with early progression. A glioma early progression risk 
prediction (GlioPredictor) score generated from the best performing ANN model (6/6/6/6/2/1) with 
6 inputs, including CNVs of EGFR, PTEN and CDKN2A, mutation status of TP53 and ATRX, patient’s 
age can predict IDH1 mutation status with over 90% accuracy. The GlioPredictor score identified 
a subgroup of high‑risk IDH1‑mutant in TCGA and NU datasets with early disease progression 
(p = 0.0019, 0.0238, respectively). The GlioPredictor that integrates age at diagnosis, CNVs of EGFR, 
CDKN2A, PTEN and mutation status of TP53, and ATRX can identify a small cohort of IDH‑mutant with 
high risk of early progression. The current version of GlioPredictor mainly incorporated clinically often 
tested genetic biomarkers. Considering complexity of clinical and genetic features that correlate with 
glioma progression, future derivatives of GlioPredictor incorporating more inputs can be a potential 
supplement for adjuvant radiotherapy patient selection of IDH‑mutant glioma patients.

Isocitrate dehydrogenase (IDH)-mutant glioma patients are often diagnosed at a young age (median age of 36 
and 38 years for WHO Grades 2/3 and Grade 4, respectively) with a median survival over 12.3  years1–4. Most 
recently, the INDIGO trial demonstrated efficacy of targeted therapy against mutant IDH1/2 as a well-tolerated 
treatment option for IDH-mutant glioma  patients5. The young age at diagnosis, long-term toxicity of adjuvant 
radiation treatment, and availability of targeted therapy pose unique challenges for physicians, particularly 
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radiation oncologists. Identification of IDH-mutant glioma patients at high risk of early progression is critical 
for personalized radiotherapy treatment planning.

According to the 2021 WHO central nervous system (CNS) classification system, the ATRX (alpha-thalas-
semia/mental retardation, X-linked) retained and 1p/19q-codeleted group defines a WHO Grade 2 or Grade 
3 1p/19q codeleted oligodendroglioma; ATRX lost and homozygous deletion of CDKN2A/B is sufficient to 
classify IDH-mutant glioma as WHO Grade 4, and those without CDKN2A/B deletion are WHO Grade 2 or 3 
 astrocytoma6,7. Therefore, multiple possible WHO Grades can be designated within a biomarker-defined diagnos-
tic entity, representing a major departure from prior histology-based CNS tumor classifications and highlighting 
the importance of molecular biomarkers in guiding glioma  treatment6. Molecular biomarkers currently used for 
IDH-mutant glioma classification have complex interrelationships and multiple other molecular biomarkers are 
emerging as potential new candidates. Therefore, a systematic selection and integration of candidate biomarkers 
for risk assessment of IDH-mutant glioma is warranted. To this end, the objective of this study is to train and 
validate a supervised machine-learning (ML) based algorithm to identify IDH-mutant glioma patient at high 
risk of early progression.

Supervised ML is now widely used in the medical field to produce models and classifiers from training data 
for automation of tasks. Artificial neural network (ANN) is a subtype of ML technology that can analyze large 
datasets as inputs and make predictions with the probability of accuracy as  outputs8,9. An ANN with two or more 
hidden layers is often called a deep neural network (DNN), which is particularly robust in making predictions 
for complex  situations10,11. Basic requirements for supervised DNN training includes identification of relevant 
inputs with reduced dimensionality and redundancy, as well as a set of accurately labeled training data as output 
 values12. Due to the longevity and lack of accurate long-term follow-up data of IDH-mutant patients, disease 
progression information in large public datasets is often censored. We attempted to identify and train genetic 
and clinical features that have no direct causal relation with IDH status to identify IDH-mutant glioma patients 
that have similar genetic background as IDH-wildtype.

Methods
Patient selection
Training and validation of artificial neural networks (ANNs) were carried out using WHO Grade 2 and Grade 3 
cases from The Cancer Genome Atlas dataset. Copy number variations (CNVs) of genes such as PTEN, EGFR, 
CDKN2A, and mutation status of genes such as IDH1, TP53, and ATRX, clinical data including age, gender, 
progression-free interval (PFI), overall survival (OS) days, as well as histological classifications of the TCGA 
cases were derived from the UCSC xena platform (https:// xenab rowser. net/) (Fig. 1). CNVs and RNA-Seq raw 

Figure 1.  Schematic overview of model training. Left panel, illustration of the GlioPredictor structure. The 
neural network construction starts with identification of proper features, and trial and error in refining the 
inputs, model hyperparameters. New features can be added if they can further improve the performance of the 
model.

https://xenabrowser.net/
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data were processed using GISTIC2.0 and Log2(norm_count + 1) algorithms, respectively. 1309 and 404 Grade 2 
and Grade 3 glioma cases from AACR GENIE v13.0 and Memorial Sloan Kettering (MSK) datasets, respectively, 
were derived from publicly assessable cBioportal (https:// www. cbiop ortal. org/). This retrospective study followed 
the STROBE reporting guideline for publicly available datasets including TCGA, and MSK datasets included in 
the cBioportal. Data downloaded from a publicly available cBioPortal database does not require ethical approval. 
All patients whose samples were used in this analysis signed informed consent (https:// docs. cbiop ortal. org/ user- 
guide/ faq/). IDH1-mutant WHO Grade 3 cases with subtotal resection (STR) who received adjuvant concurrent 
chemoRT were derived from Northwestern University (NU) (n = 21). Patient data was accessed with the approval 
of the Institutional Review Board (Study number STU00213078, August 2020) and was performed in accordance 
with the 45 Code of Federal Regulations Part 46 (45 CFR 46), Protection of Human Subjects (https:// irb. north 
weste rn. edu/ about/, irb@northwestern.edu ). The workflow of datasets used for construction and validation of 
the model was illustrated in Fig. 2.

Genomic alterations and genetic mutations
Comparison and alignment of WHO Grade 2 and Grade 3 cases from TCGA dataset (n = 516) of most frequently 
altered chromosome cytobands were conducted in Firebrowse (http:// fireb rowse. org/). Cases were first aligned 
by patients’ age at glioma diagnosis. Corresponding cases with mutated genes were indicated and types of muta-
tions, including frameshift, splice site, missense, inframe, and synonymous mutations, were color-coded. The 
most frequently mutated genes were listed. Copy number gain and loss are also listed based on the frequency of 
alterations. The prevalence of genetic mutations, CNVs of WHO Grade 2 and Grade 3 patients were studied at 
different age groups (18–40, 40–60, > 60) for MSK datasets (n = 279). Age at diagnosis less than 18 were included 
in the 18–40 subgroup. Genetic markers from 1309 glioma patients of AACR GENIE v13.0 dataset were sub-
grouped into IDH1-mutant (IDH1_MT) and -wildtype (IDH1_WT) and aligned based on CNVs status of EGFR, 
CDKN2A, and PTEN, as well as mutation status of TP53 and ATRX.

Data preprocessing
Input data preprocessing was carried out in the Jupyter Notebook using Python programming language. The 
TCGA cases that had missing data on any input parameters were dropped. In the binary output, ‘0’ stands for 
IDH1 mutated, ‘1’ stands for IDH1_WT. Genetic inputs with missense mutation, and truncating mutations 
including nonsense, frameshift, nonstart, nonstop, and splice mutations were considered positive and were 
assigned ‘0’, wildtype inputs were assigned ‘1’. Cases were randomly assigned to the training set, and 30% were 
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Figure 2.  Flowchart showing the development process of GlioPredictor. NU Northwestern University; STR 
subtotal resection; TCGA  The Cancer Genome Atlas; AACR GENIE American Associate for Cancer Research, 
Genomics Evidence Neoplasia Information Exchange; MT mutated type.

https://www.cbioportal.org/
https://docs.cbioportal.org/user-guide/faq/
https://docs.cbioportal.org/user-guide/faq/
https://irb.northwestern.edu/about/
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assigned to the validation set. Inputs were selected and tested based on its variation prevalence in glioma (> 20%) 
and features with a correlation coefficient of > 0.2 or < − 0.2 were considered to be positively or negatively 
correlated.

ANN model construction and performance assessment
The model Sequential was imported from the Keras Python library. Briefly, the argument Dense was deployed 
for each layer with activation function relu for all the hidden layers. Since it is a binary classification task, sig-
moid and adam were chosen as the activation function and optimizer, respectively, for the output layer. The loss 
function was fetched with the ‘binary_crossentropy’ command. The ‘early_stop’ and accuracy functions were 
deployed to prevent overfitting and evaluate models’ performance, respectively. Accuracy and loss function for 
both the training set and the validation set were plotted for each epoch. Figure 3C is a schematic overview of the 
architecture of the ANN (6/6/6/6/1). The best performing ANN was named as GlioPredictor for prediction of 
glioma early progression, with weights and biases derived from Python and reconstructed in Microsoft  Excel®. 
A GlioPredictor score was calculated as 100 minus the integral numbers of sigmoid activation value that was 
multiplied by one hundred:

GlioPredictor Score = (100− INT(100 ∗ 1/(1+ e
(−x))).

Figure 3.  Assessment of genetics and survival of glioma patients at different age groups. (A) WHO Grade 2 
and 3 (n = 279) patients from MSK were grouped into different age groups (18–40, 40–60, > 60) based on the age 
at initial diagnosis of the disease. Genes with highest frequency in any subgroup were presented. (B) Similarly, 
IDH1 mutated glioma patients from MSK were grouped into different age groups (18–40, 40–60, > 60) based 
on the age at initial diagnosis of the disease. (C) Progression free survival (PFS) of glioma patients (n = 250) at 
different age groups of 18–40 (n = 131), 40–60 (n = 91), > 60 (n = 28) from MSK datasets with primary samples 
available (p < 0.0001). (D) PFS of WHO Grade 2 and 3 glioma IDH1-MT patients at different age groups of 
18–40 (n = 113), 40–60 (n = 57), > 60 (n = 12) from MSK dataset with primary samples available (p = 0.89). 
****p < 0.0001; ns statistically non-significant.
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Statistical analysis
Progression-free survival (PFS) analyses were carried out using the GraphPad Prism version 8.0. Patients at risk 
at major time points were listed. Log-rank analysis was used to generate survival curves. Violin plot and one-
way ANOVA analyses of GlioPredictor score for TCGA datasets were also carried out using GraphPad Prism. 
Python 3.9.0 was used for data analysis and model construction. Correlation analysis was performed using the 
‘corr()’ command, which corresponds to pairwise Pearson analysis. ROC curve and AUC score analyses were 
conducted using ‘roc_curve’ and ‘roc_auc_score’ functions derived from the sklearn package. Univariate and 
multivariate analyses were carried out using  IBM®  SPSS®. All statistical tests were 2-sided, and p-values smaller 
than 0.05 were considered statistically significant.

Results
Different age at IDH‑mutant glioma diagnosis reflects unique genetic features
Age > 40 years at diagnosis was the criterion adopted by multiple guidelines in risk stratification for glioma 
 patients13,14. We first tested potential genetic discrepancies of WHO Grade 2 and 3 diffuse glioma cases diagnosed 
at different ages. Progression free survival (PFS) data were derived from the Memorial Sloan Kettering (MSK, 
n = 250) dataset. Patients were subgrouped based on age at disease diagnosis (18–40, 41–60, > 60) (Fig. 3). We 
found 81% of patients aged 20–40 have IDH1 mutation, compared to 31% in age > 60 (Fig. 3A). Younger glioma 
patients have significantly better PFS rates (Fig. 3C, p < 0.001). However, for IDH1-mutant (IDH1_MT) glioma 
cases (n = 182), age at disease diagnosis had no significant impact on PFS rates (Fig. 3D, p = 0.89). This finding is 
also true in the independent TCGA dataset (Supplementary Fig. 1). Genes with the most prevalent mutations at 
different age groups were presented in both IDH1_WT and IDH1_MT glioma (Fig. 3A,B). We found, regardless 
of IDH1 mutation status, younger glioma patients have statistically significant higher prevalence of P53 or ATRX 
mutations, and lower PICK3CA mutations (p < 0.05, Fig. 3A,B). These data indicated that age at glioma diagnosis 
reflects a unique genetic background and using age alone cannot predict progression of IDH_MT glioma.

Identification of genetic features that correlate with IDH1 mutation status
As copy number variations (CNVs) closely regulate glioma tumorigenesis, radioresistance and  prognosis15–18, 
we further evaluated CNVs for patients diagnosed at different age groups. Individual WHO Grade 2 and 3 
glioma patients from TCGA dataset (n = 516) were aligned by age at diagnosis (Fig. 4A). Most prevalent CNVs 
were identified in chromosome arms 7p, 9q, 10p, 10q, 19q and 1p (Fig. 4A). We found that cytobands 10p15, 
9p21, 10q26, and 7p11.2 have the most prevalent and discrepant distribution among different age groups, with 
elderly glioma patients have more frequent 10p15, 9p21, 10q26 copy number (CN)-loss, and 7p11.2 CN-gain 
(Fig. 4A). Corresponding oncogenes located on those cytobands including EGFR (7p11.2), CDKN2A (9p21.3), 
and PTEN (10q23.31), were identified. 1,309 WHO Grade 2 and 3 glioma patients from AACR GENIE v13.0 
datasets were grouped based on IDH1 mutation status, and individual cases were aligned based on CNVs status 
of EGFR, CDKN2A, and PTEN, as well as mutation status of TP53 and ATRX (Fig. 4B,C). Samples carrying EGFR, 
CDKN2A, PTEN CNVs tended to have wildtype ATRX and TP53 in IDH1_WT cohort, whereas majority of 
samples with EGFR, CDKN2A, PTEN CNVs also carry TP53 or ATRX mutation in the IDH1_MT cohort. These 
data indicates a different combination of EGFR, CDKN2A, PTEN CNVs, and TP53, ATRX mutation status reflect 
a unique genetic composition of glioma patients at different age groups and IDH mutation status.

Model construction, dissection and calculation of GlioPredictor score
The construction of artificial neural network (ANN) models requires multiple trials of different combination 
of inputs, and fine tuning of hyperparameters to achieve the best area under the receiver operating character-
istic curve (AUC). Candidate inputs incorporated genetic information (mutation status of TP53, ATRX, EGFR, 
TERT, and CIC; CNVs of EGFR, CDKN2A, PTEN, CUL2), clinical parameters (i.e., age and gender), and histo-
logical features (i.e., astrocytoma, and oligodendroglioma). Variables with the strongest correlation with IDH1 
mutation status include CNVs of EGFR (r = 0.57), PTEN (r = − 0.58), CDKN2A (r = − 0.37), mutational status of 
TP53 (r = 0.34) and ATRX (r = 0.31), and age at diagnosis (r = 0.28). We found that in our best performing ANN 
model, 6 inputs with predefined correlation (r > 0.2 or < − 0.2) can improve model performance (Fig. 5A). The 
best performing model had a structure of 6 inputs (mutation status of TP53, ATRX, CNVs of EGFR, CDKN2A, 
PTEN, and age at diagnosis) with 4 hidden layers (6/6/6/6/2/1). This was associated with prediction accuracy 
consistently around 90% in both the training set and validation set with AUC of 0.91 (Fig. 5B,D,E). No obvious 
overfitting was observed in the loss function analysis (Fig. 5C).

Model evaluation
The GlioPredictor score was calculated for glioma patients in the MSK and TCGA datasets. GlioPredictor score 
of 50 was used as a cutoff. Violin analysis for the distribution of GlioPredictor score in cohorts of WHO Grade 
2 and 3 glioma patients in TCGA dataset with mutated IDH1 (TCGA-IDH1_MT), with wildtype IDH1 (TCGA-
IDH1_WT), and TCGA-Glioblastoma with wildtype IDH1 (TCGA-GBM IDH1_WT) showed significantly dif-
ferent pattern of distribution with mean GlioPredictor score of 79, 27, and 6, respectively (Fig. 6A, p < 0.001). 
Univariate analysis showed hazard ratio (HR) of 4.18 of GlioPredictor score < 50 in WHO Grade 2 and 3 glioma 
early progression (Table 1). Multivariate analysis on the construction set of the 6 inputs and GlioPredictor score 
showed GlioPredictor score < 50 (HR: 2.4, p = 0.001), older age (HR: 1.016, p = 0.008), CDKN2A CN-loss (HR: 
0.67, p = 0.031), PTEN CN-loss (HR: 0.317, p = 0.0002), ATRX mutation (HR: 1.699, p = 0.024) were unfavorable 
prognostic factors for disease progression (Table 1).



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:2126  | https://doi.org/10.1038/s41598-024-51765-6

www.nature.com/scientificreports/

GlioPredictor in predicting glioma progression
We then further attempted to test the efficacy of GlioPredictor score in predicting glioma progression. The 
WHO Grade 2 and 3 glioma patients in TCGA dataset were subgrouped into cohorts of IDH1_MT (n = 286) 
and IDH1_WT (n = 112). We found IDH1_MT glioma patients with GlioPredictor < 50 (n = 29) had significantly 
worse PFS than those with GlioPredictor ≥ 50 (n = 362) (median PFS: 815 vs. 1629 days; p = 0.0019; Fig. 6B), 
whereas no PFS difference were observed when IDH1_ MT patients were grouped based on age of age ≤ 40 vs. 
age > 40 (median PFS: 1886 vs. 1452 days; p = 0.459) (Fig. 7). Analysis of IDH1_MT with GlioPredictor < 50 (High 
Risk) vs. those GlioPredictor ≥ 50 (Low Risk) showed GlioPredictor High Risk patients have no obvious high 
risk clinicopathological features for early progression (Table 2). In the IDH1_WT cohort, again patients with 
GlioPredictor < 50 (n = 82) has significantly worse PFS than those with GlioPredictor ≥ 50 (n = 30) (median PFS: 
402 vs. 1147 days; p = 0.0007; Fig. 6B). Interestingly, in TCGA IDH1_WT cohort, age over 40 (n = 82) was sig-
nificantly associated with poor PFS than those age ≤ 40 (n = 30, median PFS: 362 vs. 2197 days; p < 0.0001; Fig. 7).

GlioPredictor in prognosticating glioma treatment response
We further evaluated the potential of GlioPredictor in prognosticating adjuvant treatment response. In 
TCGA_IDH1_MT WHO Grade 2 and 3 glioma patients treated with adjuvant radiotherapy (w/RT, n = 211), no 
significant difference on PFS was observed between those with GlioPredictor < 50 (n = 11) vs. GlioPredictor ≥ 50 
(n = 200, p = 0.1, Fig. 6C). For those without adjuvant RT (w/o RT, n = 147), we found statistically significant worse 
PFS for the cohort with GlioPredictor < 50 (n = 14) vs. GlioPredictor ≥ 50 (n = 133, p = 0.029, Fig. 6C), indicating 
adjuvant RT is warranted in this molecularly high-risk glioma cohort. We then studied the potential of GlioPre-
dictor in prognostication of glioma patients who histologically would warrant adjuvant treatment. IDH1_MT 

Figure 4.  Identification of molecular markers as potential inputs for neural network construction. (A) WHO 
Grade 2 and 3 glioma cases from TCGA dataset were aligned based on age at diagnosis. Cases with copy 
number gain (top panel) or loss (lower panel) on cytobands that have most frequently copy number variations 
(CNVs) were color-coded. Genes selected as inputs in our final model of neural network were indicated. (B, 
C) 1309 WHO Grade 2 and 3 glioma patients of AACR GENIE v13.0 dataset were grouped into IDH1 mutated 
(IDH1_MT) and IDH1 wildtype (IDH1_WT) cohorts, and aligned based on CNVs status of EGFR, CDKN2A, 
and PTEN, as well as mutation status of TP53 and ATRX. NA data not available, SCNAs number of somatic copy 
number alterations.
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WHO Grade 3 cases with subtotal resection (STR) were derived from Lurie Robert H. Lurie Comprehensive 
Cancer Center of Northwestern University (NU_STR) who had received adjuvant concurrent temozolomide and 
RT. We found a correlation among 87% of NU_STR patients with enhancing lesions on their initial post-surgical 
radiological imaging 87% with a GlioPredictor < 50 vs. 52% of patients with enhancement on radiological imaging 
with a GlioPredictor ≥ 50 as shown in Fig. 6E. For PFS analysis, NU_STR patients with Gliopredictor < 50 (n = 7) 
have earlier disease progression than those with GlioPredictor ≥ 50 (n = 14), p = 0.0238) (Fig. 6D).

Discussion
This study provided a functional deep neural network (DNN) that can identify high-risk IDH-mutant glioma 
patients and assist with prognostication for post-operative management. The model we built first predicted IDH1 
mutation status in the TCGA dataset with a 90% accuracy and AUC score 0.91 with 6 readily available genetic 
and clinical characteristics including: TP53 and ATRX mutation status, CNVs for PTEN, EGFR, and CDKN2A, 
and age at diagnosis. We then used the trained model to generate the GlioPredictor score, with a lower score 
reflecting a genetic background similar to IDH1 wildtype. We then demonstrated that a low GlioPredictor 
score can identify a group of IDH1-mutant patient at higher risk of early progression. Therefore, GlioPredictor 
assessment is capable of integrating important molecular features and clinical information into a simplified risk 
stratification score.

Clinical trial results of Radiation Therapy Oncology Group (RTOG) 9802 and the European Organization for 
Research and Treatment of Cancer (EORTC) 22033–26033 suggests adjuvant radiotherapy (RT) either alone or 
in combination with chemotherapy for high-risk WHO Grade 2 glioma  patients13,14,19,20. Prior to the molecular 
biomarker-based WHO 2021 classification, high-risk WHO Grade 2 glioma patients were often defined as 
patients with age > 40 years or a less than total gross resection, the criterion adopted from the RTOG 9802 trial 
and recommended in the most recent NCCN  guidelines13,14. It is now known that risk assessment and corre-
sponding treatment planning should incorporate a tumor’s genetic features as critical decision-making factors. 
However, molecular biomarkers have complex biological implications and are often interrelated; as such, a 
method to systematically access IDH-mutant glioma patients can add prognostic value.

The role of immediate adjuvant radiotherapy (RT) in IDH-mutant management is debatable, and concerns 
regarding RT-induced long-term neuropsychological side effects are not  negligible19,21,22. All the molecular mark-
ers evaluated in this study, i.e., TP53, ATRX, PTEN, EGFR, and CDKN2A, have been proposed as radiosensitivity 
biomarkers of glioma. The GlioPredictor model integrates these markers with clinicopathologic information to 
provide a tool to evaluate the role of radiation therapy in glioma patients.

While we believe our model has good efficacy and applicability, several drawbacks remain that await further 
study. First and foremost, the sample size and tumor characteristics are limited based on features reported in 
public datasets. If more samples were available to train the neural network, we believe the performance will be 
further improved. Secondly, treatment-related details were not available for datasets involved in model training, 

Figure 5.  Artificial neural network (ANN) feature selection, target identification and ANN construction. 
(A) Correlation study of features of (CNVs of EGFR, CDKN2A, PTEN, and mutation status of TP53, IDH1, 
ATRX, and age at diagnosis). (B) Evaluation of prediction accuracy for both the test dataset and train dataset. 
(C) Evaluation of loss function for both the test dataset and train dataset. (D) ROC curve analysis of the built 
neural network model. (E) Schematic overview of the ANN model (6/6/6/6/2/1). Features selected as inputs are 
indicated.
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Figure 6.  Performance assessment of GlioPredictor score in risk classification. (A) Violin analysis of 
GlioPredictor score in cohorts of WHO Grade 2 and 3 glioma TCGA dataset with mutated IDH1 (TCGA 
IDH-MT), with wildtype IDH1 (TCGA IDH-WT), and TCGA-Glioblastoma with wildtype IDH1 (TCGA-
GBM, IDH-WT). (B) The WHO Grade 2 and 3 glioma cases from TCGA dataset was subgrouped into cohorts 
of IDH1_MT (n = 286) and IDH1_WT (n = 112). PFS were evaluated for patients with GlioPredictor < 50 
(n = 29) vs. those ≥ 50 (n = 362) (median PFS: 815 vs. 1629 days; p = 0.0019) for the IDH1_MT cohort, and 
GlioPredictor < 50 (n = 82) vs. those ≥ 50 (n = 30) (median PFS: 402 vs. 1147 days; p = 0.0007) for IDH1_WT 
cohort. (C) PFS analysis of the TCGA IDH1_MT cohort treated with adjuvant radiotherapy (w/RT, n = 211) 
and those without adjuvant RT (w/o RT, n = 147), which are further subgrouped based on their GlioPredictor 
score. (D) IDH1_MT Grade > 2 cases with subtotal resection (STR) derived from Northwestern University (NU) 
were subgrouped into GlioPredictor < 50 (n = 7) vs. those ≥ 50 (n = 14) (p = 0.0238). (E) Representative MRI of 
initial diagnostic MRI for NU_STR patients with GlioPredictor < 50 vs. those with GlioPredictor ≥ 50. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001.

Table 1.  Univariate and multivariate Cox Regression analyses for progression free survival (PFS) for LGG 
patients with age and genetic alterations as covariables.

Univariate analysis (PFS) Multivariate analysis (PFS)

HR 95% CI of HR p value HR 95% CI of HR p value

Age 1.029 1.018–1.041 < 0.001 1.016 1.004–1.029 0.008

EGFR 1.619 1.443–1.818 < 0.001 0.981 0.834–1.109 0.82

CDKN2A 1.7 0.941–3.068 0.079 0.67 0.467–0.963 0.031

PTEN 0.113 0.075–0.169 < 0.001 0.317 0.154–0.655 0.002

TP53 0.805 0.605–1.071 0.137 0.945 0.599–1.491 0.808

ATRX 0.905 0.676–1.211 0.5 1.699 1.071–2.695 0.024

GlioPredictor 4.188 3.068–5.716 < 0.001 2.417 1.426–4.096 0.001
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validation, and cross validation. Thirdly, prospective studies are required to demonstrate the clinical applicability 
of the model, especially when the definition of glioma progression was not clearly specification in those public 
datasets. w Also, although we tested the trained model in several independent datasets, GlioPredictor was trained 
using TCGA dataset alone and therefore, sample bias and tumor heterogenicity may compromise the clinical 
applicability of the model. Last but not least, multiple clinical parameters such as size of the tumor, extent and 
anatomical location of the tumor involvement, extend of resection, neurological deficits, histology subtypes, 
gender, history of seizures, treatment received, patient baseline performance, as well as other biomarkers were 
not incorporated in the current version of GlioPredictor. Those parameters not included are critical for disease 
status evaluation and treatment recommendation, and can be potential cofounding factors of GlioPredictor 
score. Furthermore, the GlioPredictor model was not validated in paired recurrent tissues, paired progressed 
MRI brain. Utilization of GlioPredictor is not a replacement for those known risk assessment criteria. Instead, 
it is intended to facilitate comprehensive molecular assessment of glioma when clinical decision-making is 
increasingly dependent upon a panel of seemingly unrelated biomarkers ranging from copy number variation 
to mutations.

Data availability
The datasets generated and/or analyzed during the current study are available in the cBioportal repository, 
https:// www. cbiop ortal. org/. Northwestern University (NU) dataset (n = 21) is not publicly available due IRB 
restrictions (Study number STU00213078, August 2020). Please contact the corresponding authors (S.H.Z, 
T.O.T.) for request of access.
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