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High dimensional predictions 
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Veterans using ensemble transfer 
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We present an ensemble transfer learning method to predict suicide from Veterans Affairs (VA) 
electronic medical records (EMR). A diverse set of base models was trained to predict a binary 
outcome constructed from reported suicide, suicide attempt, and overdose diagnoses with varying 
choices of study design and prediction methodology. Each model used twenty cross‑sectional and 
190 longitudinal variables observed in eight time intervals covering 7.5 years prior to the time of 
prediction. Ensembles of seven base models were created and fine‑tuned with ten variables expected 
to change with study design and outcome definition in order to predict suicide and combined outcome 
in a prospective cohort. The ensemble models achieved c‑statistics of 0.73 on 2‑year suicide risk and 
0.83 on the combined outcome when predicting on a prospective cohort of ∼ 4.2 M veterans. The 
ensembles rely on nonlinear base models trained using a matched retrospective nested case‑control 
(Rcc) study cohort and show good calibration across a diversity of subgroups, including risk strata, 
age, sex, race, and level of healthcare utilization. In addition, a linear Rcc base model provided a rich 
set of biological predictors, including indicators of suicide, substance use disorder, mental health 
diagnoses and treatments, hypoxia and vascular damage, and demographics.

Predicting suicide risk is complicated by the diverse pathways leading to this  outcome1–7, the desire for acute risk 
 prediction8,9, the lack of available  biomarkers10, and the frequent ambiguity surrounding the cause of  death11–15. 
The relatively low absolute incidence of death by suicide in the US  population16, approximately 14.0/100,000 
population per year or 1–2% of all US  deaths17, amplifies these difficulties. Even with a favorable trade-off 
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between sensitivity and specificity, the majority of patients identified as high-risk do not go on to die by suicide. 
These issues lead to models with poor predictive value and thus can create a significant, potentially unsustain-
able, clinical burden. We hope to enable quantitative analysis of strategies to reach deeper into the risk pool by 
exploring the use of combined outcomes and facilitating the sub-grouping of patients for whom interventions 
could be more-specifically  targeted3. This requires a well-calibrated model characterized by a wide variety of 
variables indicating mechanisms.

ReachVet18,19 and  STORM20,21 models developed by the Veterans Affairs Office of Mental Health and Suicide 
Prevention (VA/OMHSP) target limited clinical resources for suicide prevention and reducing overdose death, 
respectively. ReachVet is based on the extensive EMRs available in the VA, and was designed to intervene spe-
cifically for veterans predicted to be in the top 0.1% of risk for suicide at each of the 150 VA medical centers. 
A recent program evaluation found this intervention to be associated with greater treatment engagement and 
fewer mental health admissions, emergency department visits, and suicide attempts, but not with a reduction 
in suicides or all-cause  mortality22. In this work, we build from these pioneering studies, which provide both 
a rich set of hand-curated variables and an overall workflow developed through years of operational  use22. We 
expanded the time dependence of our predictor variables and introduced new input variables for vital signs 
and common laboratory  metrics23 as well as census data from the American Community  Survey24 matched to 
patients by zip code. To make more effective use of the limited number of cases available to train our statistical 
models, we explored a variety of study designs and predictive modeling methodologies.

Several strategies aid the evaluation of complex medical outcomes, including the use of multiple related 
 outcomes25, longitudinal  analysis26, and case–control study  designs27 with  matching28. We especially utilized 
Ernster’s  description29 of the numerous advantages of retrospective nested case–control (Rcc) and case-cohort 
studies for identifying biological precursors of disease and ascertaining the incidence of disease and its risk 
factors prospectively in a population, respectively, and Justice et al.’s  discussion30 of how to define, incorporate, 
and assess generalizability for predictive models of medical outcomes. The ambiguity surrounding suicide and 
its association with suicide attempts and overdoses suggests using a combined outcome, although one must be 
mindful of how this technique has been misapplied in the  past31.

Transfer  learning32–34 is a flexible machine learning approach that involves training a predictive model on a 
prevalent outcome, then tailoring (or fine-tuning) it to a more specific problem of interest with less abundant 
examples. Ensemble  modeling35,36 is a complementary technique that creates a robust model by combining 
a diverse set of base models created with appropriate types of diversity. These techniques have recently been 
 combined37 to predict a variety of healthcare  outcomes35, breast cancer  histopathology38, COVID-19 from chest 
CT  scans39, and anti-cancer drug  responses40.

In this work we guide our development of an ensemble transfer learning model to characterize the risk factors 
of suicide related behaviors and to accurately predict suicide in a prospective cohort of patients.

Results
We first define our two types of study design, retrospective (Rcc) and prospective (C15, C17, CoxMH, and Cox-
Visit), then compare model coefficients across these cohorts and provide c-statistics for the eight base models and 
the composition of the ensemble model, which is fine-tuned to predict either suicide or combined outcome on 
the C17 cohort. We then present the biological drivers of the combined outcome as captured by the coefficients 
from the Rcc logistic regression base model and calibration plots for important patient subgroups, noting that 
our ensemble models successfully reproduce both the strong effect of healthcare utilization on the model score 
for the combined outcome and the much smaller dependence when predicting suicide. We then characterize 
the dependence of selected variables on age and the confounding effect of the level of healthcare utilization and 
compare the relative risk for suicide and suicide attempt outcomes of subgroups defined by each predictor vari-
able. Finally, we illustrate how our model performs in identifying high-risk patients for targeted clinical care.

Base and ensemble models; transfer learning
Figure 1 shows a histogram of the 45,000 suicides that occurred between 2000 and 2019 in veterans who have 
EMRs within the VA healthcare system, together with first-recorded instances of suicide attempts and overdoses. 
Suicides are sourced from National Death Index (NDI)41 and first-recorded suicide attempts and overdoses for 
each patient are sourced from the VA EMRs. Below this histogram are diagrams describing our retrospective 
nested case-control (Rcc) and prospective cohort study designs. We see that the number of modeled outcomes 
increases from 2812 suicides and 24,446 combined outcomes in a prospective two-year (C17) cohort to 31,371 
suicides and 260,579 combined outcomes in our retrospective case–control (Rcc) study. Because we used the same 
longitudinal data pattern of eight time bins prior to the time of prediction across all cohorts and both outcomes, 
we can predict across both models and outcomes. In this way, we aim to combine the mechanistic insights of 
Rcc with the operational need to compute suicide risk in a prospective cohort.

Figure 2 compares the 210 logistic regression coefficients from our Rcc model to those from our C17 model. 
Many important variables, such as emergency department visit (PoC_ED), opioid use disorder (OUD), metastatic 
cancer (EH_METCANCR), and being married, have similar coefficients in the two models, and correspond to 
plausible risk factors. Also evident are large differences for variables expected to be strongly dependent on study 
design and exclusion criteria, such as suicide attempts, suicide ideation, and overdoses, with the latter provided 
in Supplementary Table S3. Another reason for the differences in coefficients is the greater statistical power of 
the Rcc model (260,579 cases in Rcc vs. 22,446 cases in C17, from Fig. 1); indeed, the number of model selected 
predictor variables for the Rcc cohort was almost double the number for the C17 cohort. These variables appear 
along the x-axis in Fig. 2, including female sex, psychiatric evaluation, and diagnosis of severe adverse effects 
from falls.



3

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1793  | https://doi.org/10.1038/s41598-024-51762-9

www.nature.com/scientificreports/

Comparing c-statistics across cohorts is complicated by differences in the fraction of cases, the case–control 
matching done in Rcc, and different treatments of overdose and suicide attempt as outcome vs. predictor vari-
ables. Because of this, in the top panel of Fig. 3, we compared c-statistic scores on our C17 cohort after performing 
a transfer learning process where we fine-tuned each of our base models (Rcc, Cox-MH, Cox-Visit, or C15) with 
a logistic regression optimization including the ten variables named in the bottom panel of Fig. 3. This process 

Figure 1.  Three important aspects of study design for suicide prediction. At the top is a histogram of the first 
reported instance of each of the three related outcomes. The lack of deaths by suicide after 2018 is a result of 
a lag in available data from the National Death Index (NDI)41. At the bottom left is a diagram describing our 
retrospective case–control (Rcc) study design, with eight time windows of increasing width as the time before 
the outcome increases. At the bottom right is a diagram describing our four prospective cohorts, where our 
eight-time windows, defined as in Rcc, are aligned with a psychiatric visit (Cox-MH), an office visit (Cox-Visit), 
January 1, 2015 (C15), or January 1, 2017 (C17). Below the arrow are the numbers of patients with each outcome 
and the number of controls included in the cohort for Rcc (left) and C17 (right). Further details for all study 
designs are provided in the Methods section, and demographics are provided in Supplementary Table S2.

Figure 2.  Comparison of model coefficients between Rcc and C17 logistic regression calculations. The x-axis 
designates the Rcc coefficients for each variable, while C17 coefficients are plotted along the y-axis, in both 
cases summed across the eight time bins. The area of the symbol is proportional to the number of cases with 
each variable present in at least one time bin, while the color is coded according to the category of variables, as 
described in the figure legend. The diagonal line is of slope one and can be used to assess the level of agreement 
in model coefficients across study designs. Suicide attempt (0.2, 5.1), suicide ideation (3.2, 1.7), and opioid 
overdose (1.8, 3.8) are indicated with arrows because they are off-scale.
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was done for both the combined outcome and suicide. C-statistics for the five prediction methodologies ranged 
from 0.69 to 0.71 for predicting suicide and 0.79–0.81 for predicting the combined outcome.

The situation where a wide variety of distinct models provide similar prediction performance is one in which 
ensemble models are often most  useful35,36. Hence, we next created two ensemble models from the eight base 
models (seven in each ensemble), EnsNDI for suicide (excluding C15 All), and EnsAll for the combined outcome 
(excluding C15 NDI) and fine-tuned them as described above for scoring the base models. This resulted in a 1 
percentage point improvement over any of the base models for both outcomes, as shown in the right-most bar 
at the top of Fig. 3, and improved model calibration, described below.

Parameters of our fine-tuned ensemble models are provided at the bottom of Fig. 3 with an additional descrip-
tion in the Methods section. The bar graph shows the logistic regression coefficients for each component of our 
ensemble transfer learning models, EnsNDI and EnsAll. Note that all of the base models were trained on the 
combined outcome with the exception of C15 NDI, which was trained on suicide as an outcome. We see that 
approximately half of the weight to the EnsNDI model came from the C15 model, and half from the combina-
tions of non-linear Rcc-trained models. Also evident in this figure, the Cox models did not contribute much in 
either ensemble model, despite having relatively high c-statistics (see top panel of Fig. 3). The relatively large 
coefficients for overdose and suicide ideation and attempt are consistent with their strong dependence on study 
design, as discussed in Fig. 2. It is important to realize that the base model scores have roughly five times the 
range of the other ten variables when interpreting Fig. 3, because the ensemble model score has a broader range 
than the binary (0/1) predictor variables.

Model coefficients
The VA EMR dataset boasts sufficient statistical power for LASSO model  selection42 of hundreds of time-depend-
ent predictor variables. Figure 4 provides an overview of these results from our Rcc study design as a stacked bar 
chart. We see a wide variety of variables that are associated with our combined outcome, including demograph-
ics, vital signs, laboratory results, PHQ2 and PHQ9 mental health survey  results43, opioid use, mental health 
diagnoses, serious health conditions, certain aspects of cardiovascular disease, and behavioral health treatments. 
We provide more detailed definitions of the variable definitions in the Methods section, and compare them to 
existing literature in a Supplementary Discussion section, providing here several illustrative results.

The behavioral health treatment variables have many of the largest model coefficients. With the exception 
of ED visits, however, the variables with large coefficients are only present in a small fraction of patients, typi-
cally less than 1%, as can be seen in the bottom panels of Supplementary Figures S1–S8. The results of PHQ-2 
and PHQ-9 surveys, circled in green in Fig. 4, show positive associations with increasing scores for both. For 
each survey, the ’NA’ category, indicating the survey was not given during the 7.5-year prediction window, is 
shown first, followed by categories of increasing scores, with the low score used as a reference category. For 
the case of PHQ-9 surveys, both the total score and the score for question 9 were used, with the latter selected 
over the former by the LASSO model selection process. Similar associations between model coefficients and 
the magnitude of indicators were also seen for pulse pressure, hemoglobin levels, and the three categories of 
head injury: headache, concussion, and TBI. Metastatic cancer diagnoses had a much stronger association than 

Figure 3.  Attributes of ensemble models: (top) C-statistic scores for eight base models and our ensemble 
models, fine-tuned for both the combined (red bars) and suicide (blue bars) outcomes, all evaluated for the C17 
cohort. (bottom) Logistic regression coefficients define the ensemble model component amplitudes and their 
fine-tuning to predict outcomes for the C17 cohort. The eight left-most coefficients define each base model’s 
contribution to the ensemble and typically span a range of five units. The ten coefficients to the right define the 
contributions of the other variables used in the fine-tuning process. Nine of these are binary (0/1) variables, and 
usage ranges from 0 to 100 and is multiplied by 100 in this plot for ease of comparison. The models were fine-
tuned with logistic regression and without cross-validation or model selection. More details of the fine-tuning 
process are provided in the Methods section.
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non-metastatic cancer diagnoses. Accidents due to falls had a much stronger association than those due to motor 
vehicles or other causes. Specific categories of mental health diagnoses, medications, and CVD diagnoses were 
more strongly associated than others.

An important aspect of our Rcc study design is that acute and distal predictor variables are separated across 
eight time bins before each event. This is indicated in Fig. 4 by the shading of time bins, with darker colors indi-
cating more acute predictors. Thus, we can see that metastatic cancer diagnoses, use of anti-anxiety medications, 
and diagnosis with suicide ideation or personality disorder are more relevant 3–6 months before the outcome, 
while pulse pressure, accidental falls, and CVD diagnoses are more relevant 3–7 years before the event.

Model coefficients for Cox-MH, Cox-Visit, and C17 study designs are shown in Supplementary Figures S3–S8. 
The clearest difference between study designs, already visible in Fig. 2, is the reliance of the prospective cohorts 
on fewer variables, and those that tend to be indicators of outcome, rather than indicative of particular pathways 
to these outcomes. This tendency is also quantified in the ’DoF’ column of Supplementary Table S1, which lists 
the number of degrees of freedom surviving model selection in Rcc, Cox-MH, Cox-Visit, and C17 as 607, 279, 
439, and 308, respectively, out of a maximum possible of 1,520. The Rcc constrains more variables both because 
of the greater number of cases and because acute information is available for all of the cases. Cox-MH constrains 
fewer variables, presumably because of the lower contrast between cases and controls when all cases and con-
trols have a behavioral health diagnosis code. Training on suicide as an outcome drops the number of surviving 
predictor variables to 51 in the C17 cohort.

Model calibration
Calibration curves in subgroups complement c-statistics in assessing model  performance44. Such curves stratify 
a test group of patients by their model score and assess the observed fraction having an outcome. Figure 5 shows 
calibration curves (top) together with associated histograms of scores for cases (bottom) for our EnsAll and 
EnsNDI models, both broken down into subgroups according to the level of healthcare utilization.

From the top panels, we see nearly perfect calibration for the medium (green) and high (blue) levels of health-
care utilization, with the circles largely falling at the expected probability of outcome (solid line) across all scores 
while the low utilization (red curve) under-predicts the 30% group (with a score of − 0.3) by ∼ ten percentage 
points. Patients with zero or one diagnosis-coded variable (black) are well-calibrated for suicide prediction, but 
do not show increasing events with increasing scores, potentially indicating a confounding effect (patients with 
zero or one Dx code are unlikely to have their suicide attempt or overdose recorded). The average fraction of 
cases in C17 is 2.3% for the combined outcome and 0.27% for suicides, consistent with the estimated centroid of 
circles in Fig. 5. Also evident is the strong dependence of the histogram of scores for the EnsAll model (left) on 
healthcare utilization level, and the much weaker dependence for the EnsNDI model (right).

Figure 4.  Model coefficients for the Rcc study design and the logistic regression model predicting our 
combined outcome. Stacked bar charts indicate model coefficients, with darker shades indicating acute 
predictors (proximal to the event in Fig. 1), and lighter colors from time bins 3–7 years earlier. Upward direction 
indicates variables that are predictive of outcome events. The * above suicide ideation and psychiatric report 
indicate off-scale values of 3.2 and 1.6, respectively. Values of coefficients, prevalence, and other attributes 
are provided in Supplementary Table S3 for selected predictors. Individual labels are omitted from the 
figure, but the names of all coefficients can be seen together with prevalence information in the bar charts in 
Supplementary Figures S1–S8. The demographics and census data were split into eight even compartments, as 
their value does not change across the time bins.
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The relatively good calibration of our ensemble models is compared in Supplementary Figure S9 to models 
trained on C15, and then fine-tuned to predict the respective outcome for the C17 cohort. Consistent with the 
lower AUROC and AUPRC scores, we see that the C15-derived models have much poorer performance at the 
low end of the risk spectrum, poorer performance at higher scores, and noticeably poorer calibration for all 
levels of healthcare utilization for the combined outcome. The particular pattern of miscalibration evident for 
the C15-GLM-All model in Supplementary Figure S9 is consistent with the linear model being unable to account 
for the nonlinearities of redundant indicators, which should shift to lower coefficients when more information is 
present. This would lead to the observed underestimation of outcome probability for the red (low usage) curves 
and overestimation for the blue (high usage) curves.

Better subgroup calibration in the ensemble than the C15 trained models is also evident in Supplementary 
Figures S10–S12 for indicators of suicide, selected mental health diagnoses and treatments, and the demographic 
variables of race, ethnicity, gender, and age. When models are well-calibrated, the score histograms will accurately 
reflect the risk histogram of observed cases for each subgroup. Thus we can observe in Supplementary Figure S10 
that a diagnosis of suicide ideation in any time bin increases the risk score by ∼ 2.5 units for the EnsAll model 
and ∼ one unit for the EnsNDI model. Smaller shifts are evident for the other three indicators shown. From 
Supplementary Figure S11, we observe similar shifts in risk for both EnsAll and EnsNDI for schizophrenia 
and bipolar diagnoses, despite their differing coefficients in the Rcc linear model. Shifts for diagnosis of major 
depressive disorder and anxiolytic prescriptions are about half as large, and the shift in risk for patients receiving 
opioid medication for pain is minimal, even though the Rcc linear model coefficient is 0.6. Several features are 
important in the demographic subgroups presented in Supplementary Figure S12. Female, Black, Hispanic, and 
young (<55) subgroups all have similar risk profiles to the average for our combined outcome, while old (>65) 
patients show much lower risk. In the case of suicide, however, the risk is much lower for females and Blacks, 
and elevated for younger patients.

Figure 5.  Calibration curves (top) and normalized histograms of scores for cases only (bottom) evaluated on 
the C17 cohort, with subgroups defined by their level of healthcare utilization according to the color code in 
the legend. The calibration curves stratify patients in a test set by score (x-axis) and plot the observed fraction 
of patients with an event on the y-axis, in this case on a logarithmic scale. The line indicates the relationship 
expected between a logistic regression score and the observed probability, so a model is well-calibrated when the 
symbols fall on the line as they do here. Results for EnsAll are at the left and EnsNDI are to the right. Healthcare 
utilization for a given patient is defined by summing all of the time bins with a diagnosis-coded variable present 
and is separated into low (red), medium (green), and high (blue) utilization. Symbol areas in the top graphs are 
proportional to the number of patients in a given subgroup at each score. Comparison with calibration curves 
for models trained on the C15 cohort is shown in Supplementary Figure S9, and analysis for other subgroups are 
provided as as Supplementary Figures S10–S12.
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Variation with age and sub‑outcome
Motivated in part by the large differences in suicide and combined outcome risk among demographic subgroups, 
we present in Fig. 6a the age dependence of our outcome components and selected predictor variables for the C17 
cohort. Evident in this figure is the predominance of suicide attempts below age 60 years and overdoses above, 
with a decrease in overall age-dependent rates by five-fold as age increases from 30 to 80 years. Suicide rates, by 
contrast, are relatively constant above the age of 45 years. Reported instances of suicide ideation, diagnosis of 
bipolar disorder, the prescription of antidepressants and anxiolytics, and results from PHQ2 and PHQ9 surveys 
all follow a similar trend, of being highest for the under-60 patients and dropping off ten-fold or more for older 
patients. Reported instances of severe adverse effects from falls and the diagnosis of metastatic cancer increase 
sharply with age.

We are also interested in the differential predictors of suicide and suicide attempt. Figure 6b compares the 
relative risk for each of our predictor variables. Patients are included as cases for a given variable if that variable 
was present in at least one of the eight time bins. Mental health diagnoses show a relative risk ranging from 1.5 
to 5, and are roughly equally enriched in suicides as suicide attempts (magenta circles). Notable differences are 
evident for severe adverse effects of sedatives and acetaminophen, as well as opioid overdoses, which are two to 
three-fold more enriched in suicide than suicide attempts. Another notable feature is the cluster of ’NA’ vari-
ables that are also two-fold more enriched in suicide than suicide attempts. This effect likely reflects confound-
ing because both predictor variables and the suicide attempt outcome depend on healthcare utilization, while 
NDI-reported suicides do not.

Several predictors are outliers in being more indicative of suicide than suicide attempts, including elevated 
pulse pressure, cancer and lymphoma diagnosis, being underweight, and use of anxiety medications. Note that 
the association of previous suicide attempts with suicide over suicide attempt is likely strongly influenced by 
the use of first suicide attempt in the combined outcome in the Rcc cohort. Increased relative risk for suicide 
attempts over suicide is indicated by several demographic groups, such as being female, Black, and to a lesser 
extent, being Hispanic. A listing of attributes of selected variables is provided in Supplementary Table S3, and a 
complete list in Supplementary Information SI-5.

Implications for screening
Figure 7 quantifies several aspects of our ensemble models for the screening of at-risk patients. The normalized 
risk histograms in Fig. 7a show that cases are shifted to higher risk scores throughout the distribution, with the 
suicide attempt curve (cyan) shifted more than that for suicides (red), and with a greater shift at high scores than 

Figure 6.  (a) Age dependence of the fraction of total patients in the C17 cohort with the indicated components 
of outcome (red) and selected predictor variables, plotted on a logarithmic y-axis. Lines are smoothing splines, 
while red curves also show the raw data as points. Note the stability of suicide across the age range, relative to 
the other studied sub-outcomes of suicide attempt (SA) and overdose (OD), as well as the selected predictor 
variables shown. (b) Comparison of the relative risk for subgroups defined by each of the model variables 
(summed over time) in the Rcc cohort, compared to all patients, for the two sub-outcomes of suicide and suicide 
attempt.
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low. This improved discrimination at higher scores can be better seen in the bottom panel, where the logarithmic 
y-axis means that the vertical distance between curves is proportional to the ratio of the fraction of patients 
with each outcome at each risk score along the x-axis. At the tail of the distribution, this ratio is similar to what 
McCarthy et al.18 called the concentration of risk. For suicide deaths (magenta line vs. blue dots), these ratios 
are 6.3 for the top 1% and 10.3 for the top 0.1%. These and similar values for other output components can be 
found in the table of Fig. 7b.

Figure 7a shows that it is much easier to identify suicide attempts than suicides, even for a model optimized 
for identifying suicides (the cyan curves are both shifted more to higher risk than the red curves), and all models 
show a 2–20 fold higher concentration of risk (CoR) for suicide attempts than suicides. Also, our model distin-
guishes cases from controls throughout the risk spectrum, showing an increasing positive predictive value in 
the high-risk tail of the risk distribution, most readily seen with the logarithmic scale. Overdoses are the most 
poorly predicted component in three of the four models, as indicated by CoR. This could be because overdoses 
have very different predictors than suicide attempts or because our combined outcome definition assigns patients 
with both suicide attempts and overdoses to the suicide attempt category.

Figure 7.  Implications for patient screening: (a) Model performance for component outcome, by model score. 
Normalized histograms of scores are shown for (left) EnsAll and (right) EnsNDI models predicting outcomes 
for the C17 cohort. Top panels have a linear y-axis and bottom a logarithmic y-axis. Cases (red) and controls 
(blue) are plotted as circles, while individual sub-outcomes are shown as lines colored magenta (suicide), 
cyan (suicide attempt), or black (overdoses). (b) Model performance in high risk screening, by sub-outcome. 
Comparison of the two ensemble models and two models directly optimized C15 and C17 cohorts on NDI 
deaths, at identifying the top 1% and 0.1% risk tiers in the C17 cohort for each component of our outcome. 
Rows in the table report the total number of controls and cases, broken down by component outcome. Total 
(computed) is the total sample size evaluated in the top 1% and 0.1%, while the rows labeled Total are corrected 
for the four-fold enrichment of cases in our calculation, thus reflecting the denominator in the original C17 
cohort, that of all patients with a visit in the four months prior to the time of prediction. (c) Assessment of 
model drift by predicting on holdout (unseen future) NDI-reported suicides for two years after January 1, 
2019 for several models trained on 2017 suicide risk or on our Rcc cohort. Models were either fine-tuned on 
2017 NDI suicides (thus having model parameters frozen before presenting with 2017 NDI data) or 2019 NDI 
suicides, as indicated. The two NDI-trained models marked with ( ∗ ) were known by comparison of test (odd 
cohorts) and train (even cohorts) data to be overfit. Their incorporation into our ensemble models degraded 
performance and they are kept in the table primarily to illustrate how overfitting propagates through our 
evaluation protocol. C-statistics for the fine-tuning of models are the average for training on even cohorts and 
testing on odd and vice-versa. Number of suicides predicted to be in the top 1% and 0.1% of risk are indicated 
for all models, and will require screening of a similar number of patients as indicated in Fig. 7b; a four-fold 
random down-sampling of controls occurred for this (and all other) prospective study design (3,300 for top 
0.1% and 35,000 for top 1% after correcting for down-sampling of controls). We see that the EnsNDI model 
is robust against two years of model drift and outperforms the other models presented. There were only 2,689 
suicides in C19, down 5% from 2812 in C19. Specific patient numbers below 11 are not provided, per VA 
privacy protection policy.
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Figure 7b compares four model training strategies in predicting C17 cohort outcomes. The first model com-
parison shows that EnsAll identifies 614 patients attempting suicide out of the 1090 patients in the top 0.1% risk 
in the down-sampled sub-cohort, corresponding to a 20% positive predictive value (PPV) for our combined 
outcome across the active VA patient population. When optimizing the ensemble model to identify NDI-reported 
suicide, the most important metric for the ReachVet program, EnsNDI identified 29 suicides in the top 0.1% 
risk strata, shown in the third row from the bottom of Fig. 7b, or a PPV of 1% in the original C17 prospective 
cohort. In addition to our EnsNDI and EnsAll models, the table provides results for models trained on suicides 
(C15-NDI and C17-NDI) before fine-tuning on C17. These two models correspond to two logical ways of making 
prospective cohort predictions. The C15-NDI model is trained on the most recent two-year period for which 
data are available in time to prospectively evaluate on the C17 NDI cohort. The C17-NDI column split the C17 
cohort into even and odd date of birth cohorts, training on each half while evaluating on the other, then reporting 
the sum (or the average, for the rates) result in the table. Both prospectively trained models were less sensitive 
than the EnsNDI model at predicting suicide within the high-risk strata, with the C15 model performing more 
poorly than C17, even though C17 was effectively trained on only half of the data. This speaks to a lack of model 
generalizability across time or model drift.

In Figure 7c, we assess this two-year time drift more carefully—taking advantage of a holdout set of NDI-
reported suicides for 2019 and 2020 and made available to us after the development of all of the above-presented 
models. The top group of numbers provides a baseline performance of twelve models predicting two-year sui-
cide risk from January 1, 2017. The first four models were trained directly on two-year suicide risk in the C17 
cohort, then fine-tuned with the ten (time-independent) variables shown in Fig. 2. For all linear models (GLM, 
Cox, and all fine-tuning) two models were trained (even and odd cohorts as training) and the average of model 
coefficients was used as the final model. For non-linear models, the model trained on odd cohorts was used to 
evaluate all data. We note that the non-linear NDI-prospectively trained models were seen to be overfit during 
training, with the NNet model not converging (and so not shown), the RF strongly overfit, and the TabNet model 
simply performing poorly. The GLM model performed best, but its LASSO model selection down-selected to 51 
variables, compared to 607 for the GLM combined outcome model. The naive Bayes model was not overfit but 
also performed relatively poorly. Training on the combined outcome and fine-tuning to the NDI-suicide out-
come provided better performance than direct training on NDI outcomes (where the fine-tuning was somewhat 
superfluous), with the non-linear models consistently outperforming the linear models. As noted in Fig. 2, the 
EnsNDI model performance is two percentage points better than any of the component models.

The bottom set of numbers in Fig. 7c evaluate how the models trained without ever seeing the NDI-suicide 
data after January 1, 2019 perform on two-year suicide prediction from that date (C19 cohort). We observe first 
that the NB, RF, and TabNet models trained directly on the C17 NDI-suicide outcome perform much worse 
on the C19 data, with 6–8 percentage point decreases in c-statistic. The rest of the models, including EnsNDI, 
dropped by 1–2 percentage points, with the linear models losing less than the non-linear ones. It should be 
noted that three of the eight time bins of the predictor variables moved from ICD-9 to ICD10-coded variables in 
moving from C17 to C19 outcomes. To assess whether the decrease in performance was due to the base-model 
training or fine-tuning, the middle set of numbers kept the 2017 predictions but enabled fine-tuning on 2019 
data. We see that the updated fine-tuning improved neither EnsNDI nor base model performance. Perhaps 
surprisingly, updating the fine-tuning appears to have decreased the ability of most base models to identify the 
top 0.1% suicide risk.

Discussion
We find that study design, variable definition, prediction methodology, model characterization, and identifica-
tion of cases in a prospective cohort are intertwined, with choices made in one aspect impacting another. Our 
workflow utilized the observation, explained in detail by  Ernster29, that retrospective nested case–control (our 
Rcc) and case-cohort (our C17) cohorts are well-suited for identifying biological drivers of outcome and pre-
dicting cases in a prospective population, respectively. Although primarily motivated by efficiency in sampling 
patients, she also noted that matching can alleviate the impacts of confounding variables and push the model 
toward more mechanistic and generalizable models, while maintaining a well-defined relationship to a cohort 
facilitates comparison across analyses. Ensemble transfer learning exploits these designs in several ways. First, 
the Rcc cohort is structured to maximize statistical power in training non-linear models, and is matched in order 
to minimize the role of age and healthcare utilization in the Rcc model. Second, ensemble learning provides a 
systematic way to identify and leverage the ML models with differing choices in outcome variable definitions. 
Third, because both Rcc and C17 models are derived from the same initial cohort, the transfer learning has a 
simpler task in fine-tuning the predictive model from Rcc to C17; the variables that need to be fine-tuned are 
those involved in matching in Rcc (age and level of healthcare utilization), those changing with outcome defini-
tion, and other outlying data points in Fig. 2, such as demographics.

While the above arguments should seem plausible, any ML-based workflow should be considered heuristic 
and be carefully characterized for discrimination and calibration in important subgroups defined by demo-
graphics, potentially confounded variables, risk strata, important indicators, risk factors, treatments, and sub-
components of the outcome. For linear models, training on outcomes that combine common, less serious, 
outcomes with those that are rare but more serious can be  problematic31. We see from our calibration curves in 
subgroups and the sensitivity for predicting suicide in Fig. 6b that our nonlinear EnsNDI model for suicide did 
not suffer from subgroup-specific biases.

Having a model of reasonable accuracy that is calibrated across the above set of subgroups should enable two 
distinct surveillance strategies to be examined. First, one could reach deeper into the risk pool by subgroup-
ing on patients likely to benefit more from intervention, such as suggested by Pisani et al.3. Second, one could 
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lump together patients from often-misidentified outcomes to establish need, then subgroup based on the type 
of need. We expect that a single, non-linear model that is robust against the multitude of complex variables will 
outperform stratified or separate models by making more effective use of the limited number of cases observed 
for suicide as an outcome.

Figure 4 provides a rich overview of logistic regression coefficients, developed on a date of birth- and age-
matched Rcc model predicting on 961,423 controls and a combined outcome with 31,371 suicides, 136,351 first 
reported suicide attempts, and 92,857 first reported overdoses. While our linear Rcc model ignores interaction 
 terms45, uses incomplete data, and contains incompletely controlled biases, these findings, shown in Fig. 4, pro-
vide a rich set of predictive coefficients of our combined outcome, and, to the extent that Fig. 6b is well-correlated, 
also suicide. In our Supplementary Discussion section, we compare predictors in the areas of indicators of suicide, 
substance use disorder, mental health diagnoses, and treatments, indicators of hypoxia and vascular damage, 
and demographics to the literature, finding a broad degree of support.

Because our EnsAll and EnsNDI models are well calibrated across a wide variety of subgroups, it should be 
possible to use explainability techniques such as  LIME46, SHAP  values47, and saliency  maps48 to probe details 
of interdependent risk factors of suicide. This has been illustrated for some of these methods for a predictive 
model of suicide  attempts49.

Extensive prior work predicts suicide risk from  EMRs5,6,9,15,18,19,50, yet demonstration of suicide reduction as 
an endpoint has been  difficult7,22. In this work, we suggest that the ∼ 3,000 NDI-reported suicides that occur 
in a two-year period among active users of VA medical care are insufficient to constrain a predictive model of 
suicide without relying heavily on coarse-level indicators, and that this has the side-effect of identifying primarily 
patients who are already well-known as suicide risks in the EMR system, as observed by  McCarthy18. We present 
an ensemble transfer learning approach that enables us to effectively utilize a combined outcome and aggregate 
across fifteen years of outcome data, while accounting for the interaction terms and confounding effects related 
to age and level of healthcare utilization. Critical to our effort is extensive calibration analysis in a wide variety of 
subgroups, evaluation of accuracy metrics in prospective cohorts nested into the cohort of all active VA patients, 
and comparison of risk factors emerging from our matched Rcc cohort to those obtained from literature.

We illustrate the difficulty of comparing models across reported studies with a few recent examples. Alemi 
et al.15 report a c-statistic of 0.77 for predicting ’suicide or intentional self-harm’ from a cohort of veterans similar 
to our own. When we applied the naive Bayes methodology that they used to our C17 cohort, we obtained a 
c-statistic 0.741 for predicting our combined outcome and 0.665 for predicting NDI suicides. This is well below 
our EnsAll model performance of 0.83, highlighting the caution needed to avoid conflating a serious and rare 
outcome with a less-serious and more common outcome, as explained in Pocock et al.25. Two articles examin-
ing ninety-day suicide risk in non-veteran cohorts with similar size and available predictor  variables6,9 provide 
another useful comparison. In broad terms, their list of important predictor variables is similar, highlighting in 
particular the value of PHQ9 scores. Their reported c-statistic for predicting ninety day suicide risk, based on 
a cohort with 1240 cases, is 0.833, much larger than our value of 0.714 for two-year risk derived from a data set 
with 31,371 cases in our Rcc cohort. These values cannot be directly compared, however, for several reasons. 
First, their choice to predict across patient-visits rather than patients creates a more unbalanced data set, which 
directly affects the c-statistic, as explained by  Cook44. It also biases the sample towards patients who visit more 
frequently, thus having more extensive medical records, providing a stronger basis for identification. Finally, 
their process of randomizing training and test sets across visits, particularly the highly-correlated multiple vis-
its in the ninety days before a reported suicide, may strongly impact the generalizability of their model. While 
generalizability to independent healthcare  systems30 is a reasonable standard for general adoption of a medical 
outcomes model, which historically has been problematic for predictive models of  suicide7, both Justice et al.30 
and  Ernster29 suggest prospective validation in an easily defined (nested) cohort as a valuable intermediate step 
to assess the value of models predicting medical outcomes.

In terms of the clinical implications of our study, we have not changed the underlying facts that suicide is 
relatively  rare16 with a broad array of non-clinical  drivers2 and risk factors that are  difficult51 or very  difficult52 to 
quantify. We have, however, provided in Fig. 4 a set of self-consistent, time-resolved, linear risk factors for our 
combined outcome, together with a discussion of how predictor variables differ in their relative risk of suicide 
and suicide attempt, in Fig. 6b. One feature evident in these risk factors is epidemiological support for the role 
of vascular damage and hypoxia in suicide and suicide-related behavior, which has support in the literature, 
discussed in the Supplementary Discussion section, along with the other risk factors. Another feature is the 
importance of indicators of suicide, such as the answer to question 9 of the PHQ-9 survey and diagnoses for 
suicide ideation, suicide attempts, or visits to the emergency department. While the linear risk associated with 
indicators presented here are unlikely to generalize well to other populations (this is the nature of indicators), 
they are indicative of what is possible. If PHQ-9 surveys are not regularly given or suicide ideation not diagnosed, 
this evidence suggests they may be of significant value. Also, we have provided a model, based substantially 
on non-linear drivers of suicide described in Fig. 4, that predicts suicide better than models based entirely on 
demographics and indicators and is well-calibrated for many important subgroups of patients, such as those 
defined by age, gender, and healthcare utilization. This provides a path forward to reaching deeper into the 
risk pool and identifying patient subgroups who may be well-suited to particular interventions, as suggested 
by Pisani et al.3 and Sorter et al.53. Finally, we have provided a rich baseline model from which we can evaluate 
the utility of novel predictors of suicide and suicidal behavior, such as genetic  markers54 or thought markers, 
described in Pestian et al.55.

This study suffers from many important limitations. Primary among these are missingness of information and 
difficulty in quantifying the diverse drivers of suicide-related behavior. We have primarily relied on structured 
clinical data from the VA EMRs, and not utilized Centers for Medicare and Medicaid Services (CMS) data, service 
records from the Department of Defense, Veteran’s Benefits Administration, or specialized databases on veteran 
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suicide. Additionally, we have not utilized clinical notes, which would require natural language processing, or 
genetic information in our analysis. While the diverse trajectories leading to suicide suggest the need for diverse 
predictors, our broad base of information, explicit treatment of data missingness, and the existence of studies 
suggesting minimal impacts on mortality prediction when adding Medicare claims data to VA  EMRs56 suggest 
our results can serve as a firm baseline for predicting suicide.

Our cohort was composed of US Veterans who are adults, 90% male, and have a median age of 65 years, 
(see Supplementary Table S2), and so the pathways towards suicide may not generalize to other populations. 
Our study has utilized only representative ML predictive models, with a focus on simpler and more generally 
understood methods, to more clearly elucidate the interplay between study design, ensemble transfer learning, 
and model performance. It appears likely that more elaborate base models will further improve model predic-
tion accuracy.

Conclusion
We present predictive models of suicide and a combined outcome of suicide, suicide attempt, and overdose that 
use 190 longitudinal and 20 cross-sectional hand-curated variables. To identify mechanistic predictors of our 
outcome, we use a retrospective nested case-control (Rcc) study  design29 to predict our combined outcome on 
260,579 cases and 961,423 controls matched on date of birth and overall health care utilization, with variables 
defined retrospectively from the date of the event. This creates enough statistical power for LASSO model selec-
tion to identify a broad range of risk factors involving demographics, vital signs, laboratory results, PHQ surveys, 
a wide range of medical diagnoses, medications, and behavioral health treatments.

We found that the application of ensemble transfer learning techniques combined several nonlinear models 
using our Rcc cohort with prospective cohort models to yield predictions with c-statistics of 0.73 for predict-
ing suicide and 0.82 for predicting our combined outcome, and were well calibrated across a wide variety of 
subgroups. EnsNDI outperformed the base models in placing NDI-reported suicides in the top 0.1% of risk, 
and suffered a two percentage point drop in c-statistic with two-years of model drift. The number of patients 
identified at the top 0.1% risk strata for two-year risk suggests a 1% positive predictive value (PPP) for suicides 
in the active VA patient population using our EnsNDI model and 20% PPV for our combined outcome using 
our EnsAll model.

Methods
The VA EMRs contain multimodal data for 24 million patients, so we created a workflow that supported itera-
tive steps of pulling and linking the data from the patient database, defining the study cohorts, defining the 
variables, encoding the variables, training the predictive models, creating the ensemble models and fine-tuning, 
and finally the evaluation and visualization of results. Two R scripts and one Python script are provided in the 
Supplementary Materials that were used to perform all of these analyses. To facilitate the analysis, the data were 
pulled from the patient database into 100 cohorts of 240,000 patients each, sorted according to their date of birth. 
All patients with a birth date on or after January 01, 1901, and one or more visit recorded after June 30, 2007, 
was considered in our studies. The different study designs imposed additional inclusion and exclusion criteria.

Definition of outcome variables
Outcome variables were constructed from three component outcomes: suicides, suicide attempts, and over-
doses. Suicides were reported through the National Death Index matched by patient to VA medical records, and 
then using regular expressions ’ ˆe95’ to search for ICD9 codes, and ’ ˆT14.91’ or ’ ˆT3[6789]..X2’ or ’ ˆT[456]..
X2’ or ’ ˆX[678]..XX’ or ’ ˆY87.0’ for ICD10 codes, in either underlying or contributing causes of death. Suicide 
attempts were identified using the same set of regular expressions from outpatient visits, inpatient admission, 
and discharge diagnoses, and from the fees table, reflecting reimbursed care provided outside of the VA system. 
Overdoses were identified from the same set (outpatient, inpatient, and fees) of diagnosis codes, but using regular 
expressions ’ ˆe850’ or ’ ˆe8[67]’ or ’ ˆe935’ for ICD9 codes and ’ ˆT40’ for ICD 10 codes.

For the Rcc cohort, we allowed the outcome dates only from Aug 16, 2007 to ensure opportunity for the full 
7.5 years of longitudinal information in the predictor variables, as the EMRs consisted of data from Jan 01, 2000 
onwards. Likewise, the time of prediction was set to 45 days (fixed gap) before the outcome date to ensure that 
there was no outcome information leakage in the predictor variables. This creates one of several arbitrary choices 
associated with the Rcc study design: including patients with suicide attempts and overdoses before this cutoff 
will enable suicide attempts to predict suicide attempts across this boundary, while this will not occur after 2007 
because the outcome is defined as the first instance of a suicide attempt outcome. Ultimately, this problem is 
resolved here by including suicide attempts and overdoses in the fine-tuning process and evaluating accuracy 
scores only on prospective cohorts that have been fine-tuned. Similarly, the time of prediction for the prospective 
cohorts (C15, C17, and C19) was set to be Jan 01, 2015, Jan 01, 2017, and Jan 01, 2019, respectively. To ensure no 
outcome information leakage, we excluded the outcome in the first week after the time of prediction. A shorter 
gap was used than for Rcc because most events are more than several week after the time of prediction, and we 
wanted to keep as many events as possible, for statistical power.

Definition of cases for our combined outcome was done as follows: if there was a death by suicide in the 
allowed time window, then this was used as the outcome. If not, the outcome was defined as the first recorded 
suicide attempt within the allowed window. If there was no documentation of suicide or suicide attempt, then 
the first recorded instance of an overdose in the window was used as the outcome. This heuristic enables the 
model to learn the predictive values of death by suicide, suicide attempt, and overdose while utilizing all recorded 
suicides and not repeatedly counting patients with multiple events.
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Treatment of outcome variables
Suicide provides a binary outcome and cannot recur, so is straightforward to use as an outcome for each of 
our models. Our motivation to combine suicide attempts and overdoses with suicide is partly the relatively 
low incidence of suicide, but also the ambiguity surrounding the cause of death and ascertaining intent for 
potentially suicidal behavior. Additionally, this study’s goal of comparing study designs and transfer learning is 
greatly facilitated by creating a binary variable. Hence, we enrich in more serious events (prioritizing suicide, 
then suicide attempts, then overdoses), and as a secondary criterion, choose first-recorded events after the time 
of prediction over subsequent events.

Constructing our combined outcome by prioritizing suicide, then suicide attempts, and then overdoses creates 
side effects in how suicide attempts and overdoses appear as predictor variables in the different study designs. 
The calendar-based cohorts (C15, C17, and C19) are the most straightforward, where any suicide attempt and 
overdose before the time of prediction can be used as a predictor variable to predict the combined outcome 
obtained as described above. Our matched, nested, retrospective, case-control (Rcc) study design shows the 
strongest effect, where our use of first-recorded component outcome (in accord with the rules described above) 
to define the time of prediction, from Aug 16, 2007 means that while overdoses will still predict both suicide 
attempts and suicide, and suicide attempts will predict suicides, very few suicide attempt will predict other suicide 
attempts and very few overdose will predict another overdose.

The event-driven time-to-event (Cox) models are intermediate, where the time of prediction is triggered 
by either a psychiatric evaluation (Cox-MH) or an office visit (Cox-Visit). Since the first such visit in a three-
year window starting from July 1, 2007 is used, this study design also has the potential to skew the presence of 
predictor variables. This complex interplay of suicide attempts and overdoses as predictor variables is rooted in 
the distinct study designs of Rcc and prospective cohort  studies29. This dependence motivated their inclusion in 
our transfer learning process where we utilize knowledge learned from all the other cohorts to improve learning 
and prediction in our C17/9 cohorts.

Study cohorts
We analyzed 24,558,158 distinct patients from the VA electronic medical records (EMRs), with a date of birth 
on or after January 01, 1901. Our study was focused on patients with the outcomes of interest, including death 
by suicide (as recorded in the National Death Index or NDI), suicide attempt, or overdose (the latter two based 
on diagnosis codes). The top panel of Fig. 1 shows histograms of the first occurrences (since there can be more 
than one suicide attempt or overdose for a given patient) of individual components of the combined outcome 
vs. time for all cases between January 2000 and December 2021.

Five study cohorts were used in this work as characterized in Supplementary Table S2. First is a retrospec-
tive case-control (Rcc) cohort that is defined by time-dependent variables in the indicated windows before an 
outcome event (cases) or a randomly selected diagnosis code (control). For each case, four control patients were 
chosen by randomly selecting medical visits among patients without an outcome event, but over the same period 
as the outcome date for the cases, and then selecting one visit for each of the four chosen controls. The controls 
were chosen from the same date-of-birth cohort as the cases to ensure that cases and controls have roughly the 
same age distribution and their randomly selected medical visit was treated as their ’outcome date’. This allows 
people with more medical visits to be preferentially chosen as controls, which both balances cases and controls 
on the overall level of healthcare utilization and selects an outcome time for controls corresponding to a period 
of healthcare utilization. Matching of variables in a case-control study design is a well-established  procedure28 
which is often motivated by modeling of rare events, but can also help in mitigation of confounded variables 
and those with strong, non-biological, interaction  terms29. Matching can also introduce biases and becomes 
progressively more complex as the number of matched variables  increases28. Consequently, we chose to match 
on only two of the most important confounding and interacting variables, healthcare utilization (see Fig. 5) and 
age (see Fig. 6a) and do so with simple algorithms.

In addition to Rcc, we used several prospective cohorts. Time to event (Cox) models were constructed for 
patients with a psychiatric evaluation (StopCode 502, Cox-MH) or office visits (StopCode 323, Cox-Visit) in 
the three years starting on July 1, 2007, with the time of prediction being the date of the psychiatric evaluation 
or office visit, respectively. For both of the time-to-event (Cox) models, the goal was to mimic a clinical decision 
point and compare the information content in these models to the other study designs. We chose a three-year 
window for the initiation event to allow a lengthy (ten year) follow-up period for patients. Time to event mod-
els were right-censored on deaths, but not on last visit to the VA, specifically to include patients who may have 
dropped out of care. In the end, Rcc provided a richer set of mechanistic predictors and interval prediction of 
prospective two-year risk provided a more flexible characterization of prospective risk, so relatively little analysis 
of these study designs occurred here. Finally, we used two prospective calendar-based cohorts for all patients 
with a recorded visit in the three-month period before the time of prediction, which is either January 01, 2015 
(C15) or January 01, 2017 (C17). For each cohort, data were binned in the eight time periods, and the number of 
controls and cases for each sub-outcome are indicated. These cohorts capture different aspects of the study with 
the Rcc matched on age and overall level of healthcare utilization, and outcome events spread across 15 years 
and the prospective cohorts designed to accurately predict suicide risk in a prospective cohort.

A gap between the time of prediction (which is the end of the observation period) and the event was incor-
porated to prevent inappropriate leakage of outcome-related information into the predictor variables. For the 
retrospective design (Rcc), the event (for cases and controls) could occur at any time between August 15, 2007, 
and January 1, 2022, and the gap between the time of prediction and the event is exactly 45 days. For prospective 
design (C15/17, Psych-ds, and Visit-ds) the gap was only seven days.
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The time bins in the observation period were organized identically for all study designs. They increased in 
width as they moved more distant (earlier) from the time of prediction, on a logarithmic scale in two periods of 
three months, two periods of six months, two periods of one year, and two periods of two years (see bottom of 
Fig. 1). This was done to enable cross-prediction of models, whereby they are trained on one cohort (typically 
Rcc) and evaluated on another typically C17). The fine-tuning of the handful of variables involving demograph-
ics, overlapping with outcome definitions, and matching, enabled accuracy scores of Rcc-trained models to be 
competitive with prospectively-trained models, when predicting in prospective cohorts, as summarized in Sup-
plementary Table S1. As shown in this table, the Rcc cohort was used to train logistic regression, a fully connected 
neural network with three hidden layers, random forest, and TabNet models for the combined outcome. The 
Cox-MH and Cox-Visit cohorts were used to train Cox models for the combined outcome, and the C15 cohort 
was used to train two logistic regression models, one for the combined outcome and another for suicide. All the 
models were then individually fine-tuned on the training set of the C17 cohort and their c-statistic on the test set 
of the C17 cohort was reported. This process created base models, to be used in our ensemble transfer learning 
approach, discussed below in the Prediction Methodologies section.

Supplementary Table S1 shows c-statistics for our base models, evaluated both the Rcc and C17 cohorts, 
before and after an early version of our fine-tuning procedure. Several results evident in this table were impor-
tant in developing our EnsNDI and EnsAll models. In this table, the rows correspond to ten models trained on 
our combined outcome plus one C17 logistic regression model trained on two-year NDI suicide risk, while the 
columns refer to cohorts and outcomes (combined or NDI suicide) that each of the models was evaluated against. 
For each model/cohort pair, the top number is the accuracy score before fine-tuning and the bottom number 
after. For cases where c-statistics differed more than 0.2 percentage points between test and train cohorts, they are 
provided as train/test pairs. Important observations from this table include: Rcc models transfer to prospective 
cohorts much better than in the reverse direction. Combined outcomes can be predicted more accurately than 
suicides. Nonlinear models applied to prospective cohorts predicting NDI suicide are prone to overfitting. None 
of the base models performed as well as our ensemble models, defined in Fig. 3 and characterized through this 
work. The difficulty in training models of the dimensionality used here against prospective suicide risk is evident 
from: 1) the very low number of degrees of freedom (in ’DoF’ column), of 51, making it through LASSO model 
selection when training C17 for suicide outcome, 2) the 1 percentage point difference between test and train 
for the Rcc-trained models predicting on C17 NDI suicides, and 3) the significant difference between test and 
train accuracies evident for the non-linear models when evaluated against NDI suicide outcome after training 
prospectively on our combined outcome. If accuracy scores alone were used to assess models, fewer differences 
would be seen among models.

Predictor variable definitions
Once the date-of-birth cohorts were defined, we worked systematically across 42 specific tables, subsetting by 
date-of-birth cohort, linking to national patient identifiers, unique inpatient or outpatient visit identifiers, and 
standard ontologies for each data domain.

Variables from diagnosis codes
The ReachVet program, administered by the VA OMHSP, has developed a list of hand-curated diagnosis codes, 
building on McCarthy et al.18. These definitions have evolved over the past ten years with significant input from 
clinicians and continuous evaluation of the ReachVet and other behavioral health intervention programs as part 
of VA operations. We mapped International Classification of Diseases (ICD9 and ICD10) diagnosis codes onto 
variables relevant to their operational experience. To harmonize the definitions, we accounted for the differences 
between these two ICD systems by inspecting the histograms of code usage over time and lists of the most-used 
ICD9 and ICD10 codes for each variable, supplied as Supplementary Information SI-2. Diagnosis codes for 
predictor variables, as with outcome variables, are obtained from outpatient, inpatient, inpatient discharge, and 
fees tables of the VA EMRs. All the variables based on the diagnosis codes, medications, and procedure codes 
were binned into the time bins described in 1 and coded as ’absent’ (zero) or ‘present’ (one).

An essential consideration of a study cohort is to account for the evolution of the diagnostic code assign-
ments over the entire study period. Changes in clinical coding practices and the ICD-9 to ICD-10 changeover 
(October 2015) are documented in the yearly updates to coding manuals. The impact of these changes can be 
seen in Fig. 8, where the first panel shows the monthly suicide attempts from 2000 until January 2022. Notice the 
two-fold drop-off in recorded suicide attempts at the ICD-9 to ICD-10 changeover (Oct 2015).

Individual panels in Fig. 8 also include the ICD-9 and ICD-10 codes contributing the most to each variable 
based on the number of occurrences in a 3% sample of the patients in the legends. These include patients in 
the 30th, 50th, and 70th date of birth cohorts. Examination of the specific codes involved shows the difficulty 
in mapping the ICD-9 and ICD-10 codes to suicide attempts. The top three ICD-9 codes (E953.9, E988.9, and 
E958.9) lump together suicide and self-inflicted injury, while the ICD-10 version of this variable, T14.91, is 
specific to suicide attempts.

The second panel in Fig. 8 shows that suicide ideation was not used before 2006, and its prevalence increased 
from 2006 until 2015 as clinicians were encouraged more and more to record it. The component ICD-9 and ICD-
10 codes both indicate suicide ideation. The Cox-MH and Cox-Visit cohorts were designed to fit time-to-event 
models, with a time of prediction most frequently in 2007.

The third panel in Fig. 8, for opioid overdose, shows a three-fold increase from 2000 until 2015, broadly simi-
lar to that shown for heroin usage in  reference57, although the VA data peak several years earlier than the national 
average. The fourth panel shows homelessness, which became an area of focus for the VA from 2008–2016. Over 
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time, the increased prevalence of this variable likely reflects the greater attention this problem received by VA 
rather than an actual increase in homelessness.

Medications, procedures, and PHQ surveys
The medications were selected from the list of medications previously used by Ref.18, supplemented by selected 
drug categories targeting the central nervous system in the VA Drug Classification system, which can be found, 
for example, under the Drug Products by VA Class tab at  reference58.

The procedure codes were selected from the list of the 25 most common Current Procedural Terminology 
(CPT) codes related to mental health in a sample of VA patients, and variables can be found from lines 557 to 
571 of rv10.r, in Supplementary Information SI-3.

PHQ-2 and PHQ-9  surveys43 were encoded as total scores, along with the specific answer to question 9 of 
the PHQ-9 questionnaire.

Laboratory results and vital signs
The laboratory results and records of individual patients were linked to Logical Observation Identifiers Names 
and Codes (LOINC) codes for laboratory tests, MVP Core Data Team’s ’ShortNames’ for 108 of the most com-
mon laboratory  tests59, and a customized mapping based on the VA’s LabChemTestName, VA station, and a 
substantial amount of hand curation. Although LOINC codes were found to be missing and mis-assigned to 
laboratory results in the VA EMRs, we recorded the frequency with which LOINC codes were associated with 
each of our laboratory results (A1c, Glucose, HDLC, LDLC, Total Cholesterol, Triglycerides, Hemoglobin, and 
eGFR) in the fifth tab of Supplementary Information SI-5, the ModelStats.xlsx spreadsheet.

Clinical categories were used to assign numerical values for the labs and vital signs (lines 874-1058 in the R 
code provided in Supplementary Information SI-3). The laboratory results and vitals signs were then defined 
to be categorical variables based on their ranges as ‘very low’, ‘low’, ‘normal’, ‘high’, and/or ‘very high’. Not avail-
able (NA) was included as a category for laboratory results and vital signs. The ‘normal’ range was used as 
the reference category and hence not included in the input matrix. For example, pulse pressure values were 
computed by subtracting diastolic from systolic pressures, then encoding them into four categories (< 30, from 
50 to 70,>70 mm Hg, or NA if no blood pressures are reported in the indicated time interval). Pulse pressures 
between 30 and 50 mm Hg were not included, and used as a reference category in the logistic regression. Labs 
and vital signs were first carried forward (imputed) over time when missing, and if needed, values were then 
carried (imputed) backward. This approach resulted in the lab or vital signs being assigned ’NA’ only in the case 
of patients having no measurements across the entire 7.5 years of the prediction window.

Census data
The 2019 five-year aggregation of the American Community Survey was downloaded from the United States 
Census  website24 and matched to US zip codes downloaded from the US Housing and Urban Development 
 website60 and derived by the method described in  reference61. Patient zip codes are requested at each outpatient 
visit to the VA and recorded in the outpatient workload table in the EMRs. The most frequently reported zip 
code for each of the eight time bins was matched to the ACS variable’s value in that zip code. Census variables 
are defined and normalized in line 801 of rv10.R, distributed in Supplementary Information SI-3.

Prediction methodologies
Five different predictive modeling algorithms were used: logistic regression implemented in the glmnet package 
of  R62,63 with  LASSO42 penalty for model  selection64, Cox proportional hazard  model65, random  forest66, a simple 
fully connected (vanilla) neural network with three hidden  layers67–69, and a transformer-based neural network 
called  TabNet70 to predict the occurrence of the combined outcome, which included death by suicide, suicide 
attempt, or drug overdose. Using 7.5 years of longitudinal EMR data for each patient, we applied these methods 
to the four study designs (Rcc, Psych-ds, Visit-ds, and C15/17 cohorts) discussed above.

Figure 8.  Histogram of monthly incidence of four representative variables in our model, illustrating 
representative time-dependent behavior of the recorded variables. Histograms similar to these, of each of the 
76 Dx-code-based variables together with the ten most prevalent of the component ICD9 and ICD10 codes 
comprising them are provided as Supplementary Information SI-2.
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For random forest, we used 500 trees, the square root of the number of input features for the number of fea-
tures to consider for the best split, and required a minimum of 100 samples at a leaf node. The fully connected 
neural network had 3 hidden layers with 1024, 512, and 256 neurons, respectively, and ReLu  nonlinearity71. The 
Tabnet algorithm used the PyTorch  implementation72 with the default settings for the hyperparameters. These 
included the width of the decision prediction layer (8), the width of the attention embedding (8), the number of 
steps in the architecture (3), and gamma (1.3).

Fine tuning and ensemble transfer learning
To test the robustness and generalizability of the methods, we tested models trained on one study cohort to 
cross-predict on another cohort. For example, we used the logistic regression coefficients fitted on the Rcc study 
design to predict outcomes in all the prospective cohorts and calculated the corresponding c-statistics. We did 
this across all the prediction algorithms and study cohorts. Results of this analysis are presented in Supplementary 
Table S1. We then performed transfer  learning32,33,73,74 on a selected subset of these models (mostly trained on 
Rcc) for making use of the knowledge learned from one study cohort to facilitate learning in a different cohort. 
This is done by fine-tuning the models trained on Rcc or C15 cohorts on the C17 cohort to predict either sui-
cide or the combined outcome, as described in Fig. 3. In keeping with the goals of fine-tuning, only a minimal 
number of variables were included, and these were selected to be ones expected to change with study design (eg 
matched variables or components closely related to outcome definition). Such variables will be well away from 
the diagonal in Fig. 2. We found these variables to include gender, race, ethnicity, young or old, and recorded 
presence of chronic pain, suicide ideation, suicide attempt, and overdose during the 7.5 years of the observation 
period. The number of degrees of freedom fine-tuned was further restricted by aggregating the presence/absence 
across time bins such that presence in any time period counted as present. Additionally, we created one additional 
variable not directly used in the base models, to describe the aggregate level of healthcare utilization, which we 
constructed by summing across al 75 diagnosis-defined variables across all eight time bins, for a possible range 
of zero to 75 x 8 = 600. In practice this number rarely exceeds 100, so we scaled the coefficient presented at the 
far right in Fig. 3 by 100 and labeled it ’100 x usage’.

Next, we used an ensemble transfer learning  approach37 to obtain our best model in terms of predictive 
performance and generalizability for our C17 cohort, with one model predicting suicide (EnsNDI) and another 
predicting our combined outcome (EnsAll). We used an ensemble of seven base models including the four models 
(logistic regression, random forest, neural network, and TabNet) trained on Rcc cohort, two Cox models trained 
on Psych-ds and Visit-ds cohorts, and one logistic regression model trained on the C17 cohort. This ensemble 
of base models was fine-tuned as described in Fig. 3. The code for performing the ensemble transfer learning 
appears from line 1340 to line 1425. Trained models are used to score the patients in C17 and the ten variables 
are created for fine-tuning by aggregating across all eight time bins. Even and odd cohorts are fit without model 
selection and resulting scores are computed on the half of C17 not trained on. These scores can then be used for 
model evaluation for EnsAll and EnsNDI models. This portion of the code also implements the C17 predictions 
for C15 and C17-trained models, again taking care to do all the training on even (or odd) cohorts so that reported 
calibration and discrimination results are on test sets of patients.

Training and testing data sets
All data sets used for training and evaluating base models and fine-tuning across a multitude of study designs, 
prediction methodologies, and outcomes were based on a separation of patients into 100 cohorts in order of date 
of birth, allowing us to use even and odd cohorts to separate test data from training data. For two-stage training, 
both trainings occurred on the same set (eg. even) of patients, leaving the other set (eg. odd) for evaluation. For 
all models except those reported in Fig. 7c, reported accuracy scores are the average of those trained on even 
cohorts and evaluated on odd and vice-versa. For linear models (logistic regression and Cox base models and 
all fine-tuned models, reported coefficients are the average of even- and odd-trained models.

For Fig. 7c, we used a holdout set of NDI outcomes from Jan 1, 2019–Jan 1, 2021 to assess model drift across 
two years of suicide reporting. In this instance, we created our best-possible models of C17 suicide risk, with 
outcomes of suicides through the end of 2018 and combined outcomes through the end of 2021, shown in the 
top of Fig. 1. NDI-specific models were trained on two-year suicide risk during 2017 and 2018. We then exam-
ined the drift in performance of a dozen models in predicting the holdout NDI suicides occurring from Jan 1, 
2019–Jan 1, 2021, under two sets of assumptions. In the first instance, we fine-tuned each of the models on a 
test set of the NDI suicide data, while in the second instance, we fine-tuned the models on two-year 2017 NDI 
suicides, using these coefficients in predicting 2019 suicides. This provided an independent evaluation of model 
generalizability, with the two years of model drift allowing more independence of training and test data than the 
separation into even and odd date of birth cohorts.

Evaluation of model performance
Beyond such metrics as c-statistics and various accuracy metrics, there are no standard metrics for visualizing 
predictive model performance for medical outcomes analysis. We have presented a variety of figures in this 
work that we found useful in evaluating and iteratively improving many aspects of our predictive models. In 
the sections above we have described each aspect of the creation of predictive models in relatively structured 
blocks of code. For the various calibration plots, histograms, and scatter plots that we made, much of the code is 
straightforward joining and subgrouping operations using the data table  package75, and efforts were not made to 
modularize the code. Nevertheless, the reader may find it valuable to see the code fragments used in our analysis.

Interval predictions were evaluated in part using c-statistics, which is the area under the Receiver Operating 
Characteristic Curve (AUROC) or the area under the precision-recall curve. These areas were either integrated 



16

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1793  | https://doi.org/10.1038/s41598-024-51762-9

www.nature.com/scientificreports/

directly (lines 1321–1337 of Supplementary Information SI-3) or computed with the ROCR R  package76. The 
goodness of fit for the Cox models is estimated by computing Harrell’s c-index77. The c-index gives the prob-
ability that a randomly selected patient who experienced an event had a higher risk score than a patient who 
had not experienced an event.

The calibration plots and case score histograms for various subgroups can be found in lines 1560–1776, using 
subgroup variables created on lines 1777–1839. This section of code reads in scores from each of the predictive 
models that we evaluated, together with the predictor variables that were used to define subgroups of patients. The 
code then splits cases and controls into histograms based on scores within each subgroup, computes probabilities 
of cases, and plots the calibration curves. Linear and logarithmic histograms of score histograms, subgrouped 
by the components of the outcome, were made in a similar manner as the calibration curves, as described in 
lines 1514–1542.

Age histograms, comparisons of coefficients, and comparisons of relative risk for sub-outcomes are encoded 
in lines 1839–1906.
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