
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports

Reconstruction algorithms
for DNA‑storage systems
Omer Sabary *, Alexander Yucovich , Guy Shapira  & Eitan Yaakobi 

Motivated by DNA storage systems, this work presents the DNA reconstruction problem, in which a
length-n string, is passing through the DNA-storage channel, which introduces deletion, insertion
and substitution errors. This channel generates multiple noisy copies of the transmitted string which
are called traces. A DNA reconstruction algorithm is a mapping which receives t traces as an input
and produces an estimation of the original string. The goal in the DNA reconstruction problem is to
minimize the edit distance between the original string and the algorithm’s estimation. In this work, we
present several new algorithms for this problem. Our algorithms look globally on the entire sequence
of the traces and use dynamic programming algorithms, which are used for the shortest common
supersequence and the longest common subsequence problems, in order to decode the original string.
Our algorithms do not require any limitations on the input and the number of traces, and more than
that, they perform well even for error probabilities as high as 0.27. The algorithms have been tested on
simulated data, on data from previous DNA storage experiments, and on a new synthesized dataset,
and are shown to outperform previous algorithms in reconstruction accuracy.

Over the past decade, significant advancements have been made in both DNA synthesis and sequencing
technologies1–7. These advancements have also led to the emergence of DNA-based data storage technology.
A DNA storage system consists of three main components. The first is the DNA synthesis which generates the
oligonucleotides, also called strands, that encode the data. Due to the need for high throughput production with
acceptable error rates, the length of these strands is typically limited to roughly 250 nucleotides8. The second part
is a storage container with compartments which stores the DNA strands, however without order. Finally, DNA
sequencing is performed to read back a representation of the strands, which are called reads or traces.

Current synthesis technologies are not able to generate a single copy for each DNA strand, but only multiple
copies where the number of copies is in the order of thousands to millions. Moreover, sequencing of DNA strands
is usually preceded by PCR amplification which replicates the strands9. Hence, every strand has multiple copies
and several of them are read during sequencing.

The process of encoding the user’s binary data into DNA strands, as well as the reverse process of decoding,
are external to the storage system. Both processes need to be designed to ensure the recoverability of the user’s
binary data, even in the presence of errors. The decoding step consists of three main stages known as 1. cluster-
ing, 2. reconstruction, and finally 3. error correction. The clustering step is the process of partitioning the noisy
sequencing reads into clusters based on their origin, i.e., each cluster contains noisy copies of the same original
designed strand. Following the clustering step, the objective is to reconstruct each individual strand using all
available noisy copies. This stage is the primary focus of study in this paper. Finally, any errors that remain after
the reconstruction step, including mis-clustering errors, lost strands, and other error mechanisms, should be
addressed using an error-correcting code.

During the second stage of the decoding, a reconstruction algorithm is performed on each cluster to retrieve
the original strand from the noisy copies in the cluster. The availability of multiple copies for each strand enables
error correction during this process. In fact, this setup falls within the broader framework of the string reconstruc-
tion problem, which involves recovering a string based on multiple noisy copies of it. Examples of these problems
include the sequence reconstruction problem, initially investigated by Levenshtein10,11, as well as the trace recon-
struction problem12–16. Generally, these models assume that information is transmitted through multiple chan-
nels, and the decoder, equipped with all channel estimations, exploits the inherent redundancy to correct errors.

Generally speaking, the main problem studied under the paradigm of the sequence reconstruction and trace
reconstruction problems is to find the minimum number of channels that guarantee successful decoding either
in the worst case or with high probability. However, in DNA-based storage systems we do not necessary have
control on the number of strands in each cluster. Hence, the goal of this work is to propose efficient algorithms

OPEN

The Henry and Marilyn Taub Faculty of Computer Science, Technion, 3200003 Haifa, Israel. *email: Omersabary@
cs.technion.ac.il

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-51730-3&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

for the reconstruction problem as it is reflected in DNA-based storage systems where the cluster size is a given
parameter. Then, the goal is to output a strand that is close to the original one so that the number of errors the
error-correcting code should correct will be minimized. We present algorithms that work with a flexible number
of copies and various deletion, insertion and substitution probabilities.

In our model we assume that the clustering step has been done successfully. This could be achieved by the
use of indices in the strands and other advanced coding techniques; for more details see17 and references therein.
Thus, the input to the algorithms is a cluster of noisy read strands, and the goal is to efficiently output the original
strand or a close estimation to it with high probability. We also apply our algorithms on simulated data, on data
from previously published DNA-storage experiments18–20, and on our new data. We compare the accuracy and
the performance of our algorithms with state of the art algorithms known from the literature.

DNA Storage and DNA Errors
In the last decade, several DNA storage experiments were conducted20–23. The processes of synthesizing, stor-
ing, sequencing, and handling DNA strands are susceptible to errors. Each step within these processes has the
potential to introduce a notable number of errors independently. Furthermore, the DNA storage channel pos-
sesses distinct characteristics that set it apart from other storage media, such as tapes, hard disk drives, and flash
memories. We will provide an overview of some of these dissimilarities and discuss the unique error behavior
observed in DNA.

1.	 Deletion, insertion, and substitution errors can be introduced in both the read and synthesized strands dur-
ing the processes of synthesis and sequencing.

2.	 Existing synthesis methods are incapable of producing a single copy for each strand. Instead, they generate
thousands to millions of noisy copies, each with its own unique error distribution. Additionally, certain
strands may have a substantially larger number of copies, while others may not have any copies at all.

3.	 The use of DNA for storage or other applications typically involves PCR amplification of the strands in the
DNA pool9. The PCR process sometimes prefer some of the strands over others. Thus, it is possible that this
process can effect the distribution of the number of copies of individual strands and their error profiles24,25.

4.	 Longer DNA strands can be sequenced using designated sequencing technologies, e.g. PacBio and Oxford
Nanopore20,23,26,27. However, the error rates of these technologies can be higher, with deletions and substitu-
tions as the most dominant errors28,29.

5.	 Furthermore, there are emerging synthesis technologies, e.g. photolithographic light-directed synthesis28,30,
in which the reported error rates are up to 25%-30%.

A detailed characterization of the errors in the DNA-storage channel and more statistics about previous DNA-
storage experiments can be found in9,29.

This work
In this work, we introduce several novel reconstruction algorithms specifically tailored for DNA storage systems.
Our primary goal is to address the reconstruction problem as it is reflected in DNA storage systems, and thus our
algorithms focus on maximizing the similarity between the algorithms’ outputs and the original strands. Notably,
our algorithms differ from previously published reconstruction algorithms in several key aspects. First, we do
not impose any assumptions on the input. This means that the input can be arbitrary and does not necessarily
adhere to an error-correcting code. Second, our algorithms are not restricted to specific cluster sizes, nor do
they require dependencies between error probabilities or assume zero errors at specific strand locations. Third,
we have the capability to control the complexity of our algorithms, allowing us to limit their runtime when
applied to real data derived from prior DNA storage experiments. Finally, given that clusters in DNA storage
systems can exhibit variations in size and error distributions, our algorithms are designed to minimize the edit
distance between our output and the original strand, while considering that these errors can be corrected using
an error-correcting code.

Preliminaries and problem definition
We denote by �q = {0, . . . , q− 1} the alphabet of size q and �∗

q �
⋃∞

ℓ=0 �
ℓ
q . The length of x ∈ �n is denoted by

|x| = n . The Levenshtein distance between two strings x, y ∈ �∗
q , denoted by dL(x, y) , is the minimum number

of insertions and deletions required to transform x into y . The edit distance between two strings x, y ∈ �∗
q ,

denoted by de(x, y) , is the minimum number of insertions, deletions and substitutions required to transform x
into y , and dH (x, y) denotes the Hamming distance between x and y , when |x| = |y| . For a positive integer n, the
set {1, . . . , n} is denoted by [n].

The trace reconstruction problem was first proposed in12 and was later studied in several theoretical works;
see e.g.14–16,31. Under this framework, a length-n string x , yields a collection of noisy copies, also called traces,
y1, . . . , yt where each yi is independently obtained from x by passing through a deletion channel, under which
each symbol is independently deleted with some fixed probability pd . Suppose the input string x is arbitrary. In
the trace reconstruction problem, the main goal is to determine the required minimum number of i.i.d traces
in order to reconstruct x with high probability. This problem has two variants. In the “worst case”, the success
probability refers to all possible strings, and in the “average case” (“random case”) the success probability is
guaranteed for a random (uniformly chosen) input string x.

The trace reconstruction problem can be extended to the model where each trace is a result of x passing
through a insertion-deletion-substitution channel. Here, in addition to deletions, each symbol can be switched with

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

some substitution probability ps , and for each j, with probability pi , a symbol is inserted before the jth symbol
of x . Under this setup, the goal is again to find the minimum number of channels which guarantee successful
reconstruction of x with high probability. For this purpose, it should be noted that there are many interpretations
for the insertion-deletion-substitution, most of them differ on the event when more than one error occured on
the same index. Our interpretation of this channel is described in “Results” section.

Motivated by the storage channel of DNA and in particular the fact that different clusters can be of different
sizes, this work is focused on another variation of the trace reconstruction problem, which is referred by the
DNA reconstruction problem. The setup is similar to the trace reconstruction problem. A length-n string x is
transmitted t times over the deletion-insertion-substitution channel and generates t traces y1, y2, . . . , yt . A DNA
reconstruction algorithm is a mapping R : (�∗

q)
t → �∗

q which receives the t traces y1, y2, . . . , yt as an input and
produces x̂ , an estimation of x . The goal in the DNA reconstruction problem is to minimize de(x, x̂) , i.e., the
edit distance between the original string and the algorithm’s estimation. When the channel of the problem is the
deletion channel, the problem is referred by the deletion DNA reconstruction problem and the goal is to minimize
the Levenshtein distance dL(x, x̂) . While the main figure of merit in these two problems is the edit/Levenshtein
distance, we will also be concerned with the complexity, that is, the running time of the proposed algorithms. Due
to lack of space, this paper presents only the main results for the DNA reconstruction problem. Our algorithm
and results of the deletion DNA reconstruction problem can be found in the supplementary material.

Related work
This section reviews the related works on the different reconstruction problems. In particular we list the
reconstruction algorithms that have been used in previous DNA storage experiments. A summary of some of
the main theoretical results on the trace reconstruction problem can be found in the supplementary material.

Batu et al.12 studied the trace reconstruction problem as an abstraction and a simplification of the multiple
sequence alignment problem in bioinformatics. Here the goal is to reconstruct the DNA of a common ancestor
of several organisms using the genetic sequences of those organisms. They focused on the deletion case of this
problem and suggested a majority-based algorithm to reconstruct the sequence, which they referred by the
bitwise majority alignment (BMA) algorithm. They aligned all traces by considering the majority vote per symbol
from all traces, while maintaining pointers for each of the traces. If a certain symbol from one (or more) of the
traces does not agree with the majority symbol, its pointer is not incremented and it is considered as a deletion.
They showed and proved that even though this technique works locally for each symbol, its success probability
is relatively high when the deletion probability is small enough.

Viswanathan and Swaminathan presented in32 a BMA-based algorithm for the trace reconstruction problem
under the deletion-insertion-substitution channel. Their algorithm extends the BMA algorithm so it can support
also insertions and substitutions. It works iteratively on “segments” from the traces, where a segment consists of
consecutive bits and its size is a fixed fraction of the trace that is given as a parameter to the algorithm.

Gopalan et al.33 used the approach of the BMA algorithm from12 and extended to support DNA storage
systems. In their approach, they considered deletion errors as was done in12, and also considered insertion and
substitution errors. Their method works as follows. They considered a majority vote per symbol as was done
in12, but with the following improvements. For any trace that its current symbol did not match the majority
symbol, they used a “lookahead window” to look on the next 2 (or more) symbols. Then, they compared the next
symbols to the majority symbols and classified it as an error accordingly. Organick et al. conducted a large scale
DNA storage experiments in20 where they successfully reconstructed their sequences using the reconstruction
algorithm of Gopalan et al.33.

For the case of sequencing via nanopore technology, Duda et al.34 studied the trace reconstruction problem,
while considering insertions, deletions, and substitutions. They focused on dividing the sequence into
homopolymers (consecutive replicas of the same symbol), and proved that the number of copies required for
accurately reconstructing a long strand is logarithmic with the strand’s length. Yazdi et al. used in23 a similar
but different approach in their DNA storage experiment. They first aligned all the strands in the cluster using
the multiple sequence alignment algorithm MUSCLE35,36. Then, they divided each strand into homopolymers
and performed majority vote to determine the length of each homopolymer separately. Their strands were
designed to be balanced in their GC-content, which means that 50% of the symbols in each strands were G or
C. Hence, they could perform additional majority iterations on the homopolymers’ lengths until the majority
sequence was balanced in its GC-content. All of these properties guaranteed successful reconstruction of the
strands and therefore they did not need to use any error-correcting code in their experiment23. Another related
characterization of the DNA storage channel was discussed in37. In their work, the error model is different
compared to our work, since it also includes rearrangement errors. In rearrangement errors several parts of two
or more strands are stuck to each other to inform one read. The suggested reconstruction method of their work
was based on de Bruijn graphs.

For the case where the error probabilities are priorly known, Bar-Lev et al.38 and Srinivasavaradhan et al.39
presented two different methods to solve the reconstruction problem. Srinivasavaradhan et al. based their method
on trellises that model the probability to obtain the traces from any possible sequence, and then returning the
sequence with the highest probability. Bar-Lev et al. presented a DNN based algorithm that is trained with labeled
simulated data and then uses transformer to estimate the original sequence from its noisy copies.

Methods
This section studies the DNA reconstruction problem. Assume that a cluster consists of t traces, y1, y2, . . . , yt ,
where all of them are noisy copies of a synthesized strand. This model assumes that every trace is a sequence
that is independently received by the transmission of a length-n sequence x (the synthesized strand) through a

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

deletion-insertion-substitution channel with some fixed probability pd for deletion, pi for insertion, and ps for
substitution. Our goal is to propose an efficient algorithm which returns x̂  , an estimation of the transmitted
sequence x , with the intention of minimizing the edit distance between x and x̂ . In our simulations, we consider
several values of t and a wide range of error probabilities. Additionally, we tested our suggested algorithm on
new biological data sets, as well as on data from previous DNA storage experiments18–20,28,39; see more details in
“Results” section. Due to space limitation, some of our algorithms, as well as more simulations and examples
can be found in the supplementary material.

Definitions and notations
While all previous works of reconstructing algorithms used variations of the majority algorithm on localized
areas of the traces, we take a different global approach to tackle this problem. Namely, the algorithms presented in
this work are heavily based on the maximum likelihood decoder for multiple deletion channels as studied recently
in40,41 as well as the concepts of the shortest common supersequence and the longest common subsequence. Hence,
we first briefly review the main ideas of these concepts, while the reader is referred to40 for a more comprehensive
study of this summary.

For a sequence x ∈ �∗
q and a set of indices I ⊆ [|x|] , the sequence xI is the projection of x on the indices

of I which is the subsequence of x received by the symbols at the entries of I. A sequence x ∈ �∗ is called a
supersequence of y ∈ �∗ , if y can be obtained by deleting symbols from x , that is, there exists a set of indices
I ⊆ [|x|] such that y = xI . In this case, it is also said that y is a subsequence of x . Furthermore, x is called
a common supersequence (subsequence) of some sequences y1, . . . , yt if x is a supersequence (subsequence)
of each one of these t sequences. The length of the shortest common supersequence (SCS) of y1, . . . , yt is
denoted by SCS(y1, . . . , yt) . The set of all shortest common supersequences of y1, . . . , yt ∈ �∗ is denoted
by SCS(y1, . . . , yt) . Similarly, the length of the longest common subsequence (LCS) of y1, . . . , yt , is denoted by
LCS(y1, . . . , yt) , and the set of all longest subsequences of y1, . . . , yt is denoted by LCS(y1, . . . , yt).

Before we present the algorithm, we list here several more notations and definitions. An error vector of y and
x , denoted by EV(y, x) , is a vector of minimum number of edit operations to transform y to x . Each entry in
EV(y, x) consists of the index in y , the original symbol in this index, the edit operation and in case the operation
is an insertion, substitution the entry also includes the inserted, substituted symbol, respectively. Note that for
two sequences y and x , there could be more than one sequence of edit operations to transform y to x . The edit
distance between a pair of sequences is computed using a dynamic programming table and the error vector is
computed by backtracking on this table. Hence, EV(y, x) is not unique and can be defined uniquely by giving
priorities to the different operation in case of ambiguity. That is, if there is an entry in the vector EV(y, x) (from
the last entry to the first), where more than one edit operation can be selected, then, the operation is selected
according to these given priorities. The error vector EV(y, x) also maps each symbol in y to a symbol in x (and
vice versa). We denote this mapping as VEV (y, x) : {1, 2, . . . , |y|} → {1, 2, . . . , |x|} ∪ {?} , where VEV (y, x)(i) = j if
and only if the ith symbol in y appears as the jth symbol in x , with respect to the error vector EV(y, x) . Note that
in the case where the ith symbol in y was classified as a deleted symbol in EV(y, x) , VEV (y, x)(i) =? . Furthermore,
since inserted symbols appear only in x and not in y , these symbols are not represented in the mapping VEV (y, x) ,
and are only referred as insertions in the error vector EV(y, x) . The mapping VEV (y, x) can also be represented
as a vector of size |y| , where the ith entry in this vector is VEV (y, x)(i) . The reversed cluster of a cluster C , denoted
by CR , consists of all the traces in C where each one of them is reversed. The reverse trace of yi ∈ C is denoted
by yRi ∈ C . The symbols of each trace yRi ∈ C

R are arranged in reverse order compared to how they appear in
their original form yi ∈ C . For example, for the cluster C = {y1 = ACGTC, y2 = CCGTA} , the reversed cluster
is CR = {yR1 = CTGCA, yR2 = ATGCC}.

The iterative reconstruction algorithm
We are now ready to discuss the main algorithm of this work, referred to as the iterative reconstruction algorithm
or in short ITR algorithm. The ITR algorithm receives the design length n and a cluster of t noisy traces, all
generated from the same design strand x . The algorithm consists of several different procedures that are used
to create candidates from the traces. Candidates are revised version of traces from the cluster, or some other
estimations that are created by the algorithm and its procedures. The revisions applied on a trace are intended
to decrease the edit distance between the resulting candidate and the designed sequence x . The candidates that
are being created by the algorithm’s procedures are then assessed by the algorithm, and a score is given to each
of them based on their number of occureneces and their average edit distance to the other traces in the cluster.
Finally, the candidate with the highest score is returned by the algorithm (while ties are broken arbitrarily).

The different procedures that are used in the algorithm are given below in a high level description. For
a detailed description of each of the procedures, as well as the ITR algorithm, the reader is referred to the
supplementary material of this paper.

1.	 The Error-Vector Majority Algorithm (EV Algorithm).
	  Brief description. The EV algorithm selects a random trace from the cluster yk and uses dynamic

programming in a pairwise manner to compute the required vector of edit operations (insertion, deletion,
or substitution) that should be taken in order to transform yk into any of the other traces in the cluster.
Then, the algorithm calculates the most common operation on each of the symbols, and if it finds out that
they include insertions or substitutions, it performs these operations on yk . Deletions are ignored by the
EV algorithm, since in most of the cases they are corrected more accurately by the PP algorithm, which is
described next. The revised version of yk is considered as a candidate.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

	  Intuition and motivation. This algorithm extends the majority vote approach that was used in the BMA
algorithm12 and in the BMA lookahead33. By using dynamic programming, the algorithm takes into account
that deletion, insertion, and substitution errors occur. Thus, it is possible to detect specific symbols that were
inserted into yk and do not appear in most of the other traces, or symbols that were substituted with others.
Therefore, these two types of errors are corrected by the EV algorithm. The correction of deleted symbols is
done by the PP algorithm which is described next.

	  Computational Complexity. The algorithm iterates on every pairing of yk with another trace yi , for i = t ,
where the cluster size is t, thus it works on (t − 1) pairs. For each such pairs of traces, the algorithm uses
dynamic programming to calculate the edit distance, which works in quadratic complexity with the design
length n. Thus, the complexity of this algorithm is O(tn2).

2.	 The Pattern Path Algorithm (PP Algorithm).
	  Brief description. The PP algorithm explores patterns in the cluster, which are subsequences that appear

around the same location in two or more traces. To do so, the algorithm starts with a trace from the cluster
yk , and uses dynamic programming in order to find the longest common subsequence (LCS) of yk and any
of the other traces in the cluster. These LCSs are then used to create a directed acyclic graph that describes
the different patterns, and their location together with their occurrences in the computed LCSs. The longest
path in this graph induces a sequence that is then serves as a candidate.

	  Intuition and motivation. This algorithm exploits the LCS of yk and any of the other traces in the cluster
to detect the most common patterns in the cluster. The graph is used to represent the different patterns, their
location and the number of times they appeared in each of the observed LCSs. The weight of the edges in the
graph are defined by the number of times each pattern was seen in a specific location in the LCSs. Therefore,
the longest path in the graph, is served as the algorithm selected candidate. The patterns that are computed
by the PP algorithm also consider deletions. The pattern of a deleted symbol includes not just the deleted
symbol itself but also the two symbols preceding it in the traces and the two symbols immediately following
it. Moreover, since the patterns in the graph are weighted by their frequency of occurrence, we believe that
the PP algorithm is able to correct deletion errors more precisely. Thus, the PP algorithm is used by the VR
algorithm and the HR algorithm (described below) to correct deletion errors.

	  Computational Complexity. This algorithm calculates the LCS of yk and each of the other traces in the
cluster. The cluster size is t, and thus the algorithm calculates the LCS for t − 1 pairs. The calculation of the
LCS is done with dynamic programming which takes O(n2) complexity. Then, for every such a pair, the
algorithm calculates the patterns that were observed in the LCS and this process is done in linear time with
the length. Lastly, the algorithm creates the directed acyclic graph, in which it has at most nt vertices. Hence,
the complexity of finding its longest path is linear with respect to the number of vertices and number of
edges, which is at most nt2 . To conclude, the overall complexity of this algorithm is O(n2t + nt2).

3.	 The Vertical Reconstruction Algorithm (VR Algorithm).
	  Brief description. The VR algorithm is invoked on each of the traces in the cluster. In each of these

iterations, the VR algorithm starts with the kth trace in the cluster, yk , and performs the following algorithms
on it. First, the algorithm performs the EV algorithm to correct substitution and insertion errors in yk and
the PP Algorithm to correct deletions in yk . The correction of these errors is done by editing yk based on
the algorithms’ outputs. The revised version of yk is then inserted into the cluster. The algorithm is invoked
again on the updated cluster, with the new inserted revised version of yk.

	  Intuition and motivation. This algorithm is invoked twice in two iterations on each trace in the cluster
yk (for 1 � k � t ). In the first iteration, it is performed on the original cluster, and in the second time it is
invoked on the updated cluster that include the traces of the cluster with one additional trace, which is the
algorithm estimation from the first iteration. This algorithm employs the PP and EV algorithms on yk to
edit it with the goal of correcting any of its errors. Then, the revised version of yk is inserted into the cluster,
and the algorithm is invoked one additional time on the updated cluster.

	  Computational Complexity. For any trace yk ∈ C , the VR algorithm works in two iterations, in which
the EV algorithm, the PP algorithm are performed two, four times, respectively. Thus, its complexity for a
single trace is given by 6(n2t + nt2) = O(n2t + nt2) , and its total complexity is O(n2t2).

4.	 The Horizontal Reconstruction (HR Algorithm).
	  Brief description. Similarly to the VR algorithm, the HR algorithm performs the EV algorithm to correct

substitution and insertion errors in yk and the PP Algorithm to correct deletions in yk , for any yk ∈ C .
However, this algorithm creates the set of candidate differently. In the HR algorithm, the cluster is updated
with the addition of the revised versions of yk after any iteration of the EV/PP algorithm (where in the VR
algorithm, the cluster is updated only after performing both of them). That is, any iteration of each of these
algorithms is followed by considering a new candidate, which is the revised version of yk and adding it into
the cluster. Similarly to the previous algorithm, this algorithm is invoked two times, when on the second
time is performed on the updated cluster.

	  Intuition and motivation. This algorithm works similarly to the HR algorithm, however, it adds a few
more candidates to the set of candidates. Some of the added candidates may be added more than once.
Thus, the algorithm helps assessing the number of time they occur, which is crucial to the selection of the
algorithm’s output.

	  Computational Complexity. Similarly to the VR algorithm, the HR algorithms also works in two itera-
tions of the same form, for any yk ∈ C . Hence, its complexity is O(n2t2).

The four algorithms described above are invoked by the ITR algorithm on both the original cluster C and the
reversed cluster CR . Considering also the reversed cluster CR can help detect and eliminate the synchronization

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

effect that is created when deletion errors shorten the traces. Thus, the ITR algorithm creates a set of candidates.
As mentioned in the beginning of this section, the candidates are evaluated and scored by the ITR algorithm
based on their length, number of occurrences and their distance with the original traces in the cluster. Finally,
the ITR algorithm returns as an output the candidates with the highest score. This calculation also works in
quadratic complexity, and thus the overall complexity of the algorithm is O(n2t2) . The ITR algorithm is applied
twice on each cluster. This is because, for the majority of clusters, the set of candidates converges after the second
iteration, and further iterations, such as the third, do not lead to improved results.

The pattern path algorithm (PP Algorithm)
In this section we present the Pattern Path algorithm, or in short the PP Algorithm. The algorithm, described
also in Algorithm 1, is the main procedure of the iterative algorithm (ITR Algorithm) that corrects edit errors.
Denote by w an arbitrary LCS sequence of x and y of length ℓ . The sequence w is a subsequence of x , and hence,
all of its ℓ symbols appear in some indices of x , and assume these indices are given by ix1 < ix2 < · · · < ixℓ . It should
be noted that a subsequence can have more than one set of such indices, while the number of such sets is defined
as the embedding number42,43. In our algorithm, we chose one of these sets arbitrarily. Furthermore, given a set
of such indices ix1 < ix2 < · · · < ixℓ , we define the embedding sequence of w in x , denoted by ux,w , as a sequence
of length |x| where for 1 � j � ℓ , ux,w(ixj) equals to x(ixj) and otherwise it equals to ?.

The gap of x , y and their length-ℓ LCS sequence w in index 1 � j � |x| with respect to ux,w and uy,w , denoted
by gapuy,wux,w (j) , is defined as follows. In case the jth or the (j − 1) th symbol in ux,w equals ?, gapuy,wux,w (j) is defined as
an empty sequence. Otherwise, the symbol ux,w(j) also appears in w . Denote by j′ , the index of the symbol ux,w(j)
in w . Recall that the sequence w is an LCS of x and y , and uy,w is the embedding sequence of w in y . Given uy,w ,
we can define the sequence of indices iy1 < i

y
2 < · · · < i

y
ℓ , such that w(j′) = y(i

y
j′) for 1 � j′ � ℓ . Given such a

sequence of indices, gapuy,wux,w (j) is defined as the sequence y[iy
j′−1

+1:i
y

j′
−1] , which is the sequence between the appear-

ances of the j′ th and the (j′ − 1) th symbols of w in y . Note that since iyj′ can be equal to iyj′−1 + 1 , gapuy,wux,w (j) can
be an empty sequence. Roughly speaking, the gapuy,wux,w (j) holds every symbol that appears in y between the
(j′ − 1) th and j′ th symbols of the LCS w , based on the embedding sequence uw,y.

The pattern of x and y with respect to the LCS sequence w , its embedding sequences ux,w and uy,w , an index
1 � i � |x| and a length m � 2 , denoted by Ptn(x, y,w, ux,w , uy,w , i,m) , is defined as:

 where for i < 1 and i > |x| , the symbol ux,w(i) is defined as the null character and gapuy,wux,w (i) is defined as an
empty sequence. The parameter m defines the length of the pattern, that is the number of embedding sequences
and gaps that comprises the patterns. In our implementation of the algorithm, the length of the patterns is
defined as m = 2.

We also define the prefix and suffix of a pattern Ptn(x, y,w, ux,w , uy,w , i,m) to be:

Finally, we define

The Pattern Path Algorithm receives a cluster C of t traces and one of the traces in the cluster yk . First, the
algorithm initializes L[yk] , which is a set of |yk| empty lists. For 1 � i � |yk| , the ith list of L[yk] is denoted by
L[yk]i . The algorithm pairs yk with each of the other traces in C . For each pair of traces, yk and yh , the algorithm
computes an arbitrary LCS sequence w , and an arbitrary embedding sequence uyk ,w . Then it uses w and uyk ,w
to compute P(yk , yh,w, uyk ,w , uyh ,w ,m) . For 1 � i � |yk| , the algorithm saves Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m) in
L[yk]i . Then, the algorithm builds the pattern graph Gpat(yk) = (V(yk),E(yk)) , which is a directed acyclic graph,
and is defined as follows.

1.	 V(yk) = {((Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m), i) : 1 � h � t, h �= k, 1 � i � |yk|} ∪ {S,U}.
	  The vertices are pairs of patterns and their index. Note that the same pattern can appear in several vertices

with different indices i. The value |V| equals to the number of distinct pattern-index pairs.
2.	 E(yk)={e=(v, u):v=(Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m), i), u=(Ptn(yk , yh,w, uyk ,w , uyh ,w , i+1,m), i+1),
	  Suffix(Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m) = Preffix(Ptn(yk , yh,w, uyk ,w , uyh ,w , i+1,m)}.
3.	 The weights of the edges are defined by w : E → N as follows:
	  For e = (v, u) , where u = (Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m), i) , it holds that

 which is the number of appearances of Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m) in L[yk]i.
4.	 The vertex S, which does not correspond to any pattern, is connected to all vertices of the first index. The

weight of these edges is the number of appearances of the incoming vertex pattern.
5.	 The vertex U has incoming edges from all vertices of the last index and the weight of each edge is zero.

Ptn(x, y,w, ux,w , uy,w , i,m)� (ux,w(i−1), gap
uy,w
ux,w (i), ux,w(i), . . . , gap

uy,w
ux,w (i +m−1), ux,w(i+m−1)),

Prefix(Ptn(x, y,w, ux,w , uy,w , i,m))� (ux,w(i−1), gap
uy,w
ux,w (i), ux,w(i), . . . , ux,w(i+m−2)),

Suffix(Ptn(x, y,w, ux,w , uy,w , i,m) � (ux,w(i), gap
uy,w
ux,w (i + 1), . . . , ux,w(i +m− 1)).

P(x, y,w, ux,w , uy,w ,m) � {Ptn(x, y,w, ux,w , uy,w , , i,m) : 1 � i � |x|}.

w(e) = |{Ptn ∈ L[yk]i : Ptn = Ptn(yk , yh,w, uyk ,w , uyh ,w , i,m)}|,

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

Finally, the Pattern Path Algorithm identifies a longest path from S to U in the graph. This path induces a
sequence, denoted by ŷk , which is formed by concatenating the patterns of yk (including their gaps if such exist),
that appears in the vertices of the longest path in the pattern graph. It’s important to note that ŷk represents a
modified version of yk , as it incorporates the patterns present in yk . The algorithm returns ŷk , which is an updated
rendition of yk , while also incorporating any gaps inherited from the vertices along the longest path. To illustrate
the Pattern Path Algorithm’s workflow, we provide an example in the following section.

Input:
• Cluster C of t noisy traces: y1,y2, . . . ,yt.
• Design length = n

• yk ∈ C - a trace from cluster C.
Output:

• ŷk - a revised version of yk. The sequence ŷk consists of yk’s original symbols and also includes some
additional symbols, which are estimations of the symbols deleted from yk.

1. L[yk] = {L[yk]1, . . . , L[yk]|yk|}, a list of |yk| empty lists, where each represents the list of patterns
before the symbol i in yi, where the last list represents symbols before the end of the sequence.

2. /*In this stage we pair yk with all the copies from the cluster, create list L[yk] of |yk| lists of patterns
of symbol i and their frequencies*/

for yh ∈ C do
(a) Compute w an LCS sequence of yk,yh.
(b) Compute uyk,w an embedding sequence for yk and w.
(c) Compute P (yk,yh,w,uyk,w,m = 3).
(d) For each 1 � i � yk add to L[yh]i the pattern Ptn(yk,yh,w,uyk,w, i, 3).

end for

3. Build Gpat = (V,E) - the pattern graph.
4. Find the longest path from the source vertex S in Gpat.
5. Let ŷk bet the sequence that inherited from the patterns of the vertices of the longest path. That is,

ŷk is the sequence that is created by concatinating the patterns of the longest path, one after the other,
based on their positions in the sequence. It should be noted, that in the patterns deletion and insertion
errors are marked by X and lower case symbols, respectively. Thus, the sequence ŷk can be used to
correct these errors.

6. Return ŷk.

Algorithm 1.   The Pattern Path Algorithm (PP Algorithm)

Example 1  Example of the PP Algorithm
We present here a short example of the Pattern Path Algorithm and its related definitions.

Step 1 - Input of the algorithm. The original strand in this example is x which is given below. The cluster of
its t = 5 traces is C = {y1, . . . , y5} . The original design length of x is n = 10 . The traces are noisy copies of x
and include deletions, insertions, and substitutions. In this example Algorithm 1 receives the cluster C and the
trace yk = y1 as its input.

•	 x = GTA​GTG​CCTG.
•	 y1 = GTA​GGT​GCCG.
•	 y2 = GTA​GTC​CTG.
•	 y3 = GTA​GTG​CCTG.
•	 y4 = GTA​GCG​CCAG.
•	 y5 = GCA​TGC​TCTG.

Step 2 - Computation of the LCSs and the patterns in cluster. After receiving the input the PP algorithm
continues with the next step of computing the LCSs and the patterns of the cluster. Figure 1 presents the pro-
cess of computing the patterns of (y1, y2), (y1, y3), (y1, y4), (y1, y5) . For each pair, y1 and yi , Fig. 1 depicts wi ,
which is an LCS of the sequences y1 and yi . Then, the figure presents uy1,wi and uyi ,wi , which are the embedding
sequences that the Pattern Path Algorithm uses in order to compute the patterns. Lastly, the list of patterns of

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

each pair is depicted in an increasing order of their indices. Note that lowercase symbols present gaps and X
presents the symbol ?.

Step 3 - Evaluating the patterns and their accuracy. The following list summarizes the patterns and their
frequencies. Each list includes patterns from specific index. The numbers on the right side of each pattern in a
list represents the pattern’s frequency.

•	 L[y1]1 = {GT : 3, GX : 1}.
•	 L[y1]2 = {GTA : 3, GXcA : 1}.
•	 L[y1]3 = {TAX : 2, TAG : 1, XcAX : 1}.
•	 L[y1]4 = {AXG : 2, AGX : 1, AXX : 1}.
•	 L[y1]5 = {XGT : 2, GXX : 1, XXT : 1}.
•	 L[y1]6 = {GTG : 1, GTX : 1, XXcG : 1, XTG : 1}.
•	 L[y1]7 = {TGC : 2, TXC : 1, XcGC : 1}.
•	 L[y1]8 = {GCC : 2, XCC : 1, GCtG : 1}.
•	 L[y1]9 = {CCtG : 2, CCaG : 1.CtCtG : 1}.
•	 L[y1]10 = {CtG : 3, CaG : 1}.

Step 4 - Creating the pattern path graph. Next, based on the list of patterns above, the pattern path is created.
it can be shown that every pattern is a vertex in the graph, and that is represented by its sequence and its position
in the sequence ( 1 � i � 10) . Furthermore, the weights of the edges in the graph represents the frequencies of
the patterns. As can be seen in Fig. 2, the created graph is a directed acyclic graph.

Figure 1.   Algorithm 1 Example - Patterns of y
1
.

Figure 2.   The pattern-path graph.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

Step 5 - Output.
It is not hard to observe that the longest path in the pattern path graph of this example is:

and the algorithm output will be ŷ1 = GTAGTGCCTG = x.

The divider BMA algorithm
In this section we shortly describe the Divider BMA algorithm, our own variation to the BMA-Lookahead
algorithm presented in33, that can improve results on large clusters. This algorithm is a stand-alone algorithm,
designed for cases in which the clusters are relatively large and have lower error rates with shorter run time on
such clusters (compared to the ITR algorithm and the PP algorithm). The Divider BMA algorithm receives a clus-
ter and the design length n. The Divider BMA algorithm divides the traces of the cluster into three sub-clusters
by their lengths, traces of length n, traces of length smaller than n, and traces of length larger than n. It performs
a majority vote on the traces of length n. Then, similarly to the technique presented in the BMA algorithm12 and
in33, the Divider BMA algorithm performs a majority vote on the sub-cluster of traces of length smaller than n,
while detecting and correcting deletion errors. Lastly, the Divider BMA algorithm uses the same technique on the
traces of length larger than n to detect and correct insertion errors. The time complexity of this algorithm is linear.

Results
In this section we present an evaluation of the accuracy of our algorithms on our new data set and on data from
previous DNA storage experiments18–20,28,39. The presented algorithms include the ITR algorithm, which uses
the Pattern Path Algorithm (Algorithm 1) along with other algorithms that are described in the supplmentary
material. We also implemented the linear-time algorithm from33, in the implementation we used several
different value of the window size parameter of the algorithm, denoted by w. That is, our results include the
algorithm from33 with 2 � w � 4 . Additionally, we also implemented the algorithm from32, with parameters of
ℓ = 5 , δ = (1+ ps)/2 , r = 2 and γ = 3/4 , while for the data of the DNA storage experiments the substitution
probability ps was taken from29. For further information about the parameters we used in the algorithms from32,33,
the reader is referred to their original papers. Finally, we also included an additional algorithm which is our
variation of the BMA algorithm12,33 to support also insertion and substitution errors, which is referred by the
Divider BMA Algorithm.

In our new dataset, we designed 1000 random strands, each of length 128 symbols, and we matched each
one of the strands with an index of length 12. The synthesis of this dataset was done by Twist Bioscience.
The synthesized strands were amplified using 8 PCR cycles with the enzyme NebNext Q5 high-fidelity DNA
polymerase. The sequencing was done using Oxford MinION, with the LSK109 ligation kit. The clustering of
the data was done with the SOLQC tool29 by binning the reads by their indices. The error characterization was
also done using the SOLQC tool29. The characterization process was done by calculating the edit distance of the
traces and their original design sequence (which is given to SOLQC as input for error characterization). For
further details about the clustering process and the error characterization process please see29. The inspected
error rate of the data is 3.5% . Additionally, we also evaluated our algorithm on a new data set that is based on
the design from39. We re-ordered the same design sequences as in39 from Twist Bioscience. Then we amplified
the synthesized DNA molecules with 8 PCR cycles using the Q5 enzyme and performed the sequencing using
Oxford MinION, with the LSK110 ligation kit. According to our analysis the error rate in this data set is 3.41%.

Figure 3 presents the results of the tested algorithms on data from previous DNA storage experiments18–20,28,39
as well as on our new designed dataset. The clustering of these data sets was made by the SOLQC tool29. We
performed each of the tested algorithms on the data and evaluated the edit error rates. Note that in order to
reduce the runtime of the ITR algorithm we filtered clusters of size t > 25 to have only the first 25 traces. The
ITR algorithm presented the lowest edit error rates in almost all of the tested data sets.

We also evaluated the accuracy of our algorithms by simulations. First, we present our interpretation of the
insertion-deletion-substitution channel, in which the sequence is transmitted symbol-by-symbol. First, before
transmitting the symbol, it checks for an insertion error before the transmitted symbol. The channel flips a coin,
and with probability pi , an insertion error occurs before the transmitted symbol. If an insertion error occurs,
the inserted symbol is chosen uniformly. Then, the channel checks for a deletion error, and again flips a coin,
and with probability pd the transmitted symbol is deleted. Lastly, the channel checks for a substitution error.
The channel flips a coin, and with probability ps the transmitted symbol is substituted to another symbol. The
substituted symbol is chosen uniformly. In case that both deletion and substitution errors occurs in the same
symbol, we refer to it as a substitution.

We simulated 100,000 clusters of size t = 10, 20 , the sequences length was n = 100 , and the alphabet size was
q = 4 . The deletion, insertion, and substitution probabilities were all identical, and ranged between 0.01 and 0.1.
It means that the actual error probability of each symbol was 1− (1− pi)(1− ps)(1− pd) and ranged between
0.029701 and 0.271. We reconstructed the original sequences of the clusters using the ITR Algorithm and the
algorithms from33 and from32. For each algorithm we evaluated its edit error rate and the success rate which is the
fraction of clusters that were reconstructed successfully with no error. The edit error rate of the ITR Algorithm
was the lowest among the tested algorithms, while the algorithm from32 presented the highest edit error rates.
Moreover, it can be seen that the ITR Algorithm presented significantly low edit error rates for higher values
of error probabilities. Such high probabilities can reflect the error probabilities of light-directed array-based
synthesis as reported in28. The results on the simulated data for t = 20 are depicted in Fig. 4.

Additionally, we performed another simulation to study the accuracy of our algorithms on the expected near-
future DNA synthesis technologies. To do so, we simulated 10, 000 clusters of sequences of length n = 300 . For

S→GT→GTA→TAX→AXG→XGT→GTG →TGC→GCC→CCtG→CtG→U ,

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

each cluster, we simulated t = 20 noisy traces as described in the previous paragraph. Finally, we evaluate the
accuracy of our algorithm on these data sets. In all cases the ITR algorithm shows significantly lower error rates
compare to any of the other tested algorithms. The results are summarized in Fig. 6.

Lastly, we compared our algorithms with the Trellis BMA algorithm that was published in39. This algorithm
was designed to support data sets with higher error rate and hence we evaluated it on the data sets that presented
relatively higher rates. These data sets include our new designed data sets, and the data set from28,39. Similarly to
what the authors suggested in39, to improve the accuracy and the running time of the algorithm and to ensure
fair comparison of this algorithm, we evaluated it on clusters of size 10 or less. Thus, we randomly sampled 10
traces from each of the clusters in these data sets and then invoked the algorithms on them. For clusters of size
10 or less we simply ran the algorithms on the entire cluster. The error rates of the algorithms are described in
Fig. 5, where it can be seen that the ITR algorithm shows less error rates compared to the Trellis BMA algorithm39
and the BMA Lookahead algorithm33.

Performance evaluation
We evaluate the performance of the different algorithms discussed in this paper. The performance evaluation
was performed on our server with Intel(R) Xeon(R) CPU E5-2630 v3 2.40 GHz. To test their performances we
implemented our algorithms as well as the previously published algorithm from33 and from39, which presented

Figure 3.   Edit error rate by the reconstruction algorithm, the results are presented on our new designed data
sets and on data from DNA storage experiments18–20,28,39.

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

the second-lowest error rates in our results from “Results” section. In order to present reliable performance
evaluation, the clusters in our experiments were reconstructed in serial order. However, it is important to note,
that for practical uses, additional performance improvements can be made by performing the algorithms on the
different clusters in parallel and shortening the running time.

•	 Experiment A evaluates the running time of the algorithms on simulated data of 450 clusters of sequence
length of n = 110 , pd = ps = pi = 0.05 , so the total error rate was 0.142625. The cluster sizes were distributed
normally between t = 1 and t = 30 . The algorithm from33 (with parameter w = 3 ) reconstructed the full data
set in 0.6 second with total error rate of 0.02111, and success rate of 0.531. The ITR algorithm reconstructed
the 450 clusters in 683 seconds and presented significantly less errors with total edit error rate of 0.000566,
and success rate of 0.982262.

•	 Experiment B studies the running time of the reconstruction of the data set from39. This data set includes 9984
clusters. Algorithm achieved a success rate of 0.875714, error rate of 0.00211 with total run time of 11, 486
seconds, and reported error rate of roughly 7% . The algorithm from33 (with parameter w = 3 ) was able to
reconstruct this data set in 12 seconds, while achieving three times larger error rate of 0.006 and success rate

Figure 4.   Edit error rate and success rate by the error probabilities for cluster size of t = 20 . The length of the
original sequence was n = 100 and the error probabilities ranges between 0.029701 and 0.271.

Figure 5.   Edit error rate by the reconstruction algorithm on small clusters, the results are presented on our new
designed data set and on data from DNA storage experiments28,39.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

of 0.779948. It should be further noted that the runtime of the Trellis BMA algorirthm, that was presented
in39 is significantly larger when running serially, and takes more than 10 days.

•	 Experiment C consists of the first 100,000 clusters from the data set of20, and measures the running time
of their reconstruction. The ITR algorithm was able to achieve a success rate of 0.99788 and an error rate
of 0.0000282 in 93, 927 seconds, while the algorithm from33 (with parameter w = 3 ) reconstructed the
clusters in 79 seconds, while presenting success rate of 0.9979 and total edit error rate of 0.000047, which is
approximately 1.6 times more errors compared to the ITR algorithm. Since for this data set, the divider BMA
presented lower error rate compare to33, we decided to evaluate its performance on this data set. The divider
BMA algorithm reconstructed the data set in 64 seconds and error rate of 0.000044.

It can be seen that, the run times of the ITR algorithm is remarkably longer. However, they can significantly
improve both the success rate and the error rate of the algorithm from33. Their advantage is even larger for small
clusters as in experiment A, and when the error rates are relatively high as in experiments A and in39. Hence, it
is also possible to consider hybrid algorithm that invokes the ITR algorithm or the the algorithm33 based on the
given cluster sizes. Since in data from previous DNA storage experiments the variance in the cluster size and
in the error rates can be really high29, we added an additional condition to the hybrid algorithm, so it invokes
the algorithm from33 if the cluster is of size 20 or larger, or if the absolute distance of the difference between
the average length of the traces in the cluster and the design length is larger than 10% of the design length. The
hybrid algorithm reconstructed the first 100,000 clusters of20 (experiment C) in 58 seconds and presented error
rate of 0.000333 are the largest success rate among all tested algorithm of 0.998. The results of the performance
experiments are also depicted in Table 1.

We also study the running time of our algorithms on simulated data designed to resemble the near-future
synthesis technologies in Experiment D. In this test, we assess 10,000 clusters, generated from random DNA
sequences of length n = 300 . In this scenario, the simulated error probabilities are set to be pd = ps = pi = 0.05 .
Since we also wanted to compare our results on these clusters with the results of the Trellis BMA algorithm39,
we had to restrict the cluster size to be t = 10 (to ensure acceptable running time), meaning each cluster in this
simulation includes 10 traces. Given this cluster size, the hybrid algorithm cannot significantly enhance the

Figure 6.   Edit error rate and success rate by the error probabilities for cluster size of t = 20 . The length of the
original sequence was n = 300 and the error probabilities ranges between 0.029701 and 0.271.

Table 1.   Performance evaluation of the ITR Algorithm, Gopalan et al. algorithm33, and the Hybrid Algorithm.
The number presented the running time in seconds and the error rates of each of the algorithms for each of the
experiments.

ITR algorithm Gopalan et al.33 Hybrid algorithm

Experiment A - time (sec.) 683 0.6 155

Experiment A - error rate 0.000566 0.02111 0.0121414

Experiment A - success rate 0.982 0.531 0.695

Experiment B39- time (sec.) 11,486 12 401

Experiment B39- error rate 0.00211 0.006 0.005

Experiment B39- success rate 0.875714 0.779948 0.8002

Experiment C20- time (sec.) 93,927 78 58

Experiment C20- error rate 0.0000282 0.000047 0.000033

Experiment C20- success rate 0.9979 0.9979 0.998

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

running time of the ITR algorithm. Therefore, in this evaluation, we compare the ITR algorithm, the Trellis
BMA algorithm39, and the BMA Lookahead algorithm33. We observe that the ITR shows the higher success rate
and the lower error rate compared to the tested algorithms. Additionally, the second best algorithm in terms of
accuracy is the Trellis BMA39 that shows running time which is more than ten times higher compared to the ITR
algorithm. It should be noted that during the listed running time of 864,000 seconds, the Trellis BMA39 was not
able to reconstruct the entire set of 10,000 clusters, but only a fraction of the first 1,000 clusters. Thus, the actual
running time of this algorithm is much higher than listed in the table. The success rate of the BMA Lookahead
algorithm33 is the lowest among the tested algorithm, and thus we believe it might not be applicable to the near-
future technologies. The results of this experiment are summarized in Table 2.

Conclusions and discussion
We presented in this paper several new algorithms for the DNA reconstruction problem. While most of the
previously published algorithms either use a symbol-wise majority approaches or have a prior-knowledge of
the error rates, our algorithms look globally on the entire sequence of the traces, and use the LCS or SCS of
a given set of traces. Our algorithms are designed to specifically support DNA storage systems and to reduce
the edit error rate of the reconstructed sequences. According to our tests on simulated data and on data from
DNA storage experiments, we found out that our algorithms significantly improved the accuracy compared to
the previously published algorithms. While the ITR algorithm’s running time is longer than that of previously
published algorithms12,33, it still stands as a significantly more efficient choice than the Trellis BMA algorithm39.
Furthermore, the ITR algorithm demonstrates substantial accuracy improvements, especially in datasets featuring
high error rates, smaller clusters, and longer sequences. Nevertheless, for the broader application of DNA storage
systems, future research should focus on reducing latency in synthesis, sequencing, clustering, and reconstruction
processes. Additionally, this future research should also consider optimizing the ITR algorithm’s running time
through parallelization of its steps.

Data availability
The datasets generated during the current study are available in the google drive repository, as in the following
https://​drive.​google.​com/​drive/​folde​rs/​1c3ko​pMcUsW_​tYnjf​gjPLu​MaLv-​cDBV8O?​usp=​shari​ng.

Code availability
Implementation of the algorithms and instructions on how to use them can be found in the GitHub repository
in the following https://​github.​com/​omers​abary/​Recon​struc​tion. For commercial use please contact the authors.

Received: 24 June 2023; Accepted: 9 January 2024

References
	 1.	 Barrett, M. T. et al. Comparative genomic hybridization using oligonucleotide microarrays and total genomic DNA. Proc. Natl.

Acad. Sci. 101(51), 17765–17770 (2004).
	 2.	 Chen, Z. et al. Highly accurate fluorogenic DNA sequencing with information theory-based error correction. Nat. Biotechnol.

35(12), 1170 (2017).
	 3.	 Kosuri, S. & Church, G. M. Large-scale de novo DNA synthesis: Technologies and applications. Nat. Methods 11(5), 499 (2014).
	 4.	 Lee, H. H., Kalhor, R., Goela, N., Bolot, J. & Church, G. M. Terminator-free template-independent enzymatic DNA synthesis for

digital information storage. Nat. Commun. 10(1), 1–12 (2019).
	 5.	 LeProust, E. M. et al. Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled

process. Nucleic Acids Res. 38(8), 2522–2540 (2010).
	 6.	 Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36(7), 645 (2018).
	 7.	 Snir, S., Yeger-Lotem, E., Chor, B. & Yakhini, Z. Using restriction enzymes to improve sequencing by hybridization. Technical

report, Computer Science Department, Technion (2002).
	 8.	 Beaucage, S. L. & Iyer, R. P. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48(12),

2223–2311 (1992).
	 9.	 Heckel, R., Mikutis, G. & Grass, R. N. A characterization of the DNA data storage channel. Sci. Rep. 9, 9663 (2019).
	10.	 Levenshtein, V. I. Efficient reconstruction of sequences. IEEE Trans. Inf. Theory 47(1), 2–22 (2001).
	11.	 Levenshtein, V. I. Efficient reconstruction of sequences from their subsequences or supersequences. J. Comb. Theory Ser. A 93(2),

310–332 (2001).
	12.	 Batu, T., Kannan, S., Khanna, S. & McGregor, A. Reconstructing strings from random traces. In Proceedings of the Fifteenth Annual

ACM-SIAM Symposium on Discrete Algorithms, 910–918 (Society for Industrial and Applied Mathematics, 2004).
	13.	 De, A., O’Donnell, R., & Servedio, R. A. Optimal mean-based algorithms for trace reconstruction. In Proceedings of the 49th Annual

ACM SIGACT Symposium on Theory of Computing, 1047–1056 (ACM, 2017).

Table 2.   Performance evaluation of the ITR Algorithm, Gopalan et al. algorithm33, and the Trellis BMA
Algorithm39. The number presented the running time in seconds and the error rates of each of the algorithms
for each of the experiments.

ITR Algorithm Gopalan et al.33 Trellis BMA39

Experiment D - time (sec.) 80,301 59.7 864,000

Experiment D - error rate 0.00057 0.0324 0.0044

Experiment D - success rate 0.8955 0.037 0.5496

https://drive.google.com/drive/folders/1c3kopMcUsW_tYnjfgjPLuMaLv-cDBV8O?usp=sharing
https://github.com/omersabary/Reconstruction

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

	14.	 Holden, N., Pemantle, R., Peres, Y & Zhai A. Subpolynomial trace reconstruction for random strings and arbitrary deletion prob-
ability. Mathemat. Statist. Learni. 2(3), 275–309 (2020).

	15.	 Holenstein, T., Mitzenmacher, M., Panigrahy, R., & Wieder, U. Trace reconstruction with constant deletion probability and related
results. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 389–398 (Society for Industrial
and Applied Mathematics, 2008).

	16.	 Peres, Y. & Zhai, A. Average-case reconstruction for the deletion channel: Subpolynomially many traces suffice. In 2017 IEEE 58th
Annual Symposium on Foundations of Computer Science (FOCS), 228–239 (2017).

	17.	 Shinkar, T., Yaakobi, E., Lenz, A. & Wachter-Zeh, A. Clustering-correcting codes. In IEEE International Symposium on Information
Theory (ISIT), 81–85 (2019).

	18.	 Erlich, Y. & Zielinski, D. DNA fountain enables a robust and efficient storage architecture. Science 355(6328), 950–954 (2017).
	19.	 Grass, R. N., Heckel, R., Puddu, M., Paunescu, D. & Stark, W. J. Robust chemical preservation of digital information on DNA in

silica with error-correcting codes. Angew. Chem. Int. Ed. 54(8), 2552–2555 (2015).
	20.	 Organick, L. et al. Random access in large-scale DNA data storage. Nat. Biotechnol. 36, 242 EP- (2018).
	21.	 Anavy, L., Vaknin, I., Atar, O., Amit, R. & Yakhini, Z. Data storage in DNA with fewer synthesis cycles using composite. DNA Lett.

Nat. Biotechnol. 37(10), 1229–1236 (2019).
	22.	 Takahashi, C. N., Nguyen, B. H., Strauss, K. & Ceze, L. Demonstration of end-to-end automation of DNA data storage. Sci. Rep.

9(1), 1–5 (2019).
	23.	 Yazdi, S. H. T., Gabrys, R. & Milenkovic, O. Portable and error-free DNA-based data storage. Sci. Rep. 7(1), 5011 (2017).
	24.	 Pan, W. et al. DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14(1), 10 (2014).
	25.	 Ruijter, J. et al. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 37(6),

45 (2009).
	26.	 Chandak, S., et al. Improved read/write cost tradeoff in DNA-based data storage using LDPC codes. In 2019 57th Annual Allerton

Conference on Communication, Control, and Computing (Allerton), 147–156 (2019).
	27.	 Lopez, R. et al. DNA assembly for nanopore data storage readout. Nat. Commun. 10(1), 1–9 (2019).
	28.	 Antkowiak, P. L. et al. Low cost DNA data storage using photolithographic synthesis and advanced information reconstruction

and error correction. Nat. Commun. 11, 5345 (2020).
	29.	 Sabary, O., et al. SOLQC: Synthetic oligo library quality control tool. Bioinformatics 37(5), 720–722 (2019).
	30.	 Lietard, J. et al. Chemical and photochemical error rates in light-directed synthesis of complex DNA libraries. Nucleic Acids Res.

49(12), 6687–6701 (2021).
	31.	 Nazarov, F. & Peres, Y. Trace reconstruction with exp (o (n 1/3)) samples. In Proceedings of the 49th Annual ACM SIGACT Sym-

posium on Theory of Computing, 1042–1046 (2017).
	32.	 Viswanathan, K., & Swaminathan, R. Improved string reconstruction over insertion-deletion channels. In Proceedings of the

Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 399–408 (2008).
	33.	 Gopalan, P. S., et al. Trace reconstruction from noisy polynucleotide sequencer reads, (July 26 2018). US Patent App. 15/536,115.
	34.	 Duda, J., Szpankowski, W. & Grama, A. Fundamental bounds and approaches to sequence reconstruction from nanopore sequenc-

ers. arXiv preprint arXiv:​1601.​02420 (2016).
	35.	 Edgar, R. C. Muscle: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32(5), 1792–1797

(2004).
	36.	 MATLAB. Multialign function. https://​www.​mathw​orks.​com/​help/​bioin​fo/​ref/​multi​align.​html (2016).
	37.	 Song, L. et al. Robust data storage in DNA by de Bruijn graph-based de novo strand assembly. Nat. Commun. 13, 5361 (2022).
	38.	 Bar-Lev, D., Orr, I., Sabary, O., Etzion, T. & Yaakobi, E. Deep DNA storage: scalable and robust DNA storage via coding theory

and deep learning. arXiv preprint arXiv:​2109.​00031 (2021).
	39.	 Srinivasavaradhan, S. R., Gopi, S., Pfister, H. D. & Yekhanin, S. Trellis BMA: Coded trace reconstruction on IDS channels for DNA

storage. In IEEE International Symposium on Information Theory (ISIT), 2453–2458 (2021).
	40.	 Sabary, O., Yaakobi, E. & Yucovich, A. The error probability of maximum-likelihood decoding over two deletion channels. In IEEE

International Symposium on Information Theory (ISIT), 763–768 (2020).
	41.	 Srinivasavaradhan, S. R., Du, M., Diggavi, S. & Fragouli, C. On maximum likelihood reconstruction over multiple deletion chan-

nels. In IEEE International Symposium on Information Theory (ISIT), 436–440 (2018).
	42.	 Atashpendar, A., Beunardeau, M., Connolly, A., Géraud, R., Mestel, D., Roscoe, A. W. & Ryan, P. Y. A. From clustering superse-

quences to entropy minimizing subsequences for single and double deletions. arXiv preprint arXiv:​1802.​00703 (2019).
	43.	 Elzinga, C., Rahmann, S. & Wang, H. Algorithms for subsequence combinatorics. Theoret. Comput. Sci. 409(3), 394–404 (2008).

Acknowledgements
The research was funded in part by the European Union (ERC, DNAStorage, 865630). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them. This work was also partially supported by the Israel Innovation Authority grant 75855.
The authors of this paper thank Prof. Roee Amit, Dr. Sarah Goldberg and Dr. Nanami Kikuchi for their help with
the PCR process of the published libraries, and for the fruitful discussion and lab equipment. The authors also
wish to thank the Technion Genome Center, specifically Dr. Liat Linde and Dr. Nitsan Fourier, for their help
with the sequencing process of the libraries. The authors thank Matika Lidgi for her help with the divider BMA
algorithm and Rotem Samuel for his help with the implementation and simulations of the algorithms in the paper.
They also thank Dr. Cyrus Rashtchian for helpful discussions and Prof. Gala Yadgar for her invaluable help with
the simulation infrastructure and they also thank Daniella Bar-Lev for helpful and inspiring discussions along
the way. Finally, the authors thank the reviewers and the editor of Scientific Reports for their valuable comments
and suggestions that improved this paper significantly.

Author contributions
O.S., A.Y., and E.Y. initiated the study and designed the algorithmic approach. O.S. and A.Y. developed the soft-
ware. O.S. performed an analysis of data from previous experiments. G.S. developed algorithms for the deletion
channel with large clusters. O.S. performed the sequencing and data analysis of the data. O.S. and E.Y. wrote the
manuscript. E.Y. supervised the study.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​024-​51730-3.

http://arxiv.org/abs/1601.02420
https://www.mathworks.com/help/bioinfo/ref/multialign.html
http://arxiv.org/abs/2109.00031
http://arxiv.org/abs/1802.00703
https://doi.org/10.1038/s41598-024-51730-3
https://doi.org/10.1038/s41598-024-51730-3

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:1951 | https://doi.org/10.1038/s41598-024-51730-3

www.nature.com/scientificreports/

Correspondence and requests for materials should be addressed to O.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Reconstruction algorithms for DNA-storage systems
	DNA Storage and DNA Errors
	This work
	Preliminaries and problem definition
	Related work
	Methods
	Definitions and notations
	The iterative reconstruction algorithm
	The pattern path algorithm (PP Algorithm)
	The divider BMA algorithm

	Results
	Performance evaluation

	Conclusions and discussion
	References
	Acknowledgements

