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AI improves accuracy, agreement 
and efficiency of pathologists 
for Ki67 assessments in breast 
cancer
Amanda Dy 1*, Ngoc‑Nhu Jennifer Nguyen 2, Julien Meyer 3, Melanie Dawe 4, Wei Shi 4, 
Dimitri Androutsos 1, Anthony Fyles 4, Fei‑Fei Liu 4, Susan Done 4 & April Khademi 1,5,6,7,8

The Ki‑67 proliferation index (PI) guides treatment decisions in breast cancer but suffers from poor 
inter‑rater reproducibility. Although AI tools have been designed for Ki‑67 assessment, their impact 
on pathologists’ work remains understudied. 90 international pathologists were recruited to assess 
the Ki‑67 PI of ten breast cancer tissue microarrays with and without AI. Accuracy, agreement, and 
turnaround time with and without AI were compared. Pathologists’ perspectives on AI were collected. 
Using AI led to a significant decrease in PI error (2.1% with AI vs. 5.9% without AI, p < 0.001), better 
inter‑rater agreement (ICC: 0.70 vs. 0.92; Krippendorff’s α: 0.63 vs. 0.89; Fleiss’ Kappa: 0.40 vs. 
0.86), and an 11.9% overall median reduction in turnaround time. Most pathologists (84%) found 
the AI reliable. For Ki‑67 assessments, 76% of respondents believed AI enhances accuracy, 82% said 
it improves consistency, and 83% trust it will improve efficiency. This study highlights AI’s potential 
to standardize Ki‑67 scoring, especially between 5 and 30% PI—a range with low PI agreement. This 
could pave the way for a universally accepted PI score to guide treatment decisions, emphasizing the 
promising role of AI integration into pathologist workflows.

Ki-67 immunohistochemistry (IHC) serves as a reliable marker of cell proliferation and is widely used to evalu-
ate the aggressiveness and prognosis of human tumors. Notably, Ki-67 has been adopted for prognostication 
in breast cancer, with elevated Ki-67 expression correlating with poorer  prognosis1,2. The Ki-67 proliferation 
index (PI) in breast cancer is a measure of the percentage of tumor cells with nuclear immunoreactivity relative 
to the total number of malignant cells  assessed3. A meta-analysis of 64,196 patients revealed that higher Ki-67 
PI values are associated with worse overall survival in breast cancer, with 25% being a cutoff of strong outcome 
 prognostication4.

The monarchE committee reported that among patients with early-stage HR+, HER2− breast cancer, and 
nodal involvement, the addition of abemaciclib to hormone therapy significantly improves cancer-specific 
free survival and decreases the risk of disease  recurrence5–7. For tumor stage 1 to 2, nodal stage 0 to 1, ER+/
HER2− breast cancer, the International Ki-67 in Breast Cancer Working Group’s (IKWG) consensus in 2021 
recommended using Ki-67 to aid in the decision-making of adjuvant chemotherapy only for cases with a very 
low (< 5%) or very high (> 30%) PI due to substantial inter-rater variability within this  range8,9. The panelists 
of the St. Gallen International Consensus Conference in 2021 generally support this  recommendation10. The 
monarchE phase III clinical trial studied the impact of a high Ki-67 PI on disease recurrence in a cohort of 
patients with HR+/HER2− node-positive breast cancer with high-risk clinicopathological features (at least 4 posi-
tive lymph nodes, or 1 to 3 positive lymph nodes with either tumor size ≥ 5 cm or histological grade 3 disease). 
Their analyses demonstrated that a Ki-67 PI ≥ 20% in patients treated with endocrine therapy alone was associ-
ated with a significantly increased risk of recurrence within three years compared to patients with lower Ki-67 
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 expression6,11. Following this, the American Food and Drug Administration and Health Canada approved the 
use of abemaciclib (CDK4/6 inhibitor) for patients with HR+/HER2− high-risk early breast cancer and a Ki-67 
PI of ≥ 20%12. In a recently published landmark  study13 based on 500 patients, it was demonstrated that a PI score 
threshold of < 13.25% derived from Ki-67 slides effectively identified women with luminal A breast cancer who 
could be safely treated without local breast radiation therapy. This underscores the clinical significance of Ki-67 
as a marker with significant promise in guiding management decisions for breast cancer patients.

The current gold standard for quantifying Ki-67 PI is to manually evaluate at least 500 malignant cells based 
on IKWG  recommendations8,9. However, this method is labor-intensive, time-consuming, and prone to poor 
inter-rater reproducibility and  errors14,15. As a result, it is hard to standardize and use Ki-67 for clinical assess-
ments. As shown in the recommendations from the  IKWG8,9, the assessment by the pathologist is most reliable 
for PI values below 5% and above 30% (the 5 to 30% range is subject to the most interpretation variability). The 
Canadian Association of Pathologists recommends that a second pathologist assess PIs in this range, or use a 
computer assessment tool to improve  robustness12. Considering this range is critical for treatment decisions, its 
reliability must be improved. The recent emergence of digital pathology and high-performance AI algorithms 
offers the possibility that automated PI scoring can overcome these challenges by accurately and efficiently meas-
uring cell count. There have been several AI-based Ki-67 assessment tools  developed16–21, and the advantages 
are becoming increasingly evident.

Several comparative studies have reported the role of AI-assisted assessments of Ki-67 PI in breast 
 cancer19,22,32. These studies demonstrated that AI-aided assessment of Ki-67 could achieve a lower mean  error23 
and a lower standard error  deviation19, however, the impact on inter-rater agreement is less clear. Additionally, 
while these studies have encompassed broad PI ranges from 0 to 100%, the effect of AI assistance in the clinically 
crucial 5 to 30% PI interval has not yet been studied.

Herein, we conducted a large-scale, international study that analyzed the effects of AI assistance on key aspects 
of pathologists’ work, including accuracy, inter-rater agreement, and turnaround time (TAT) in the context of 
Ki-67 scoring for breast cancer. Our focus was on assessing these metrics within the 5 to 30% PI range to better 
understand the implications and usability of AI-assisted Ki-67 evaluations. Additionally, we gathered insights 
into pathologists’ perspectives, trust levels, and readiness to adopt AI technologies, highlighting the importance 
of user acceptance. This study provides a strong foundation for understanding the future impact and potential 
of AI tools for Ki-67 scoring in the daily routine of pathologists.

Materials and methods
Ethics approval for the study was obtained from Toronto Metropolitan University (REB: 2022-154). All experi-
ments were performed in accordance with the Tri-Council policy statement 2 for the ethical conduct of research 
involving humans.

Case selection, TMA preparation, and image acquisition
A subset of ten TMAs from the Toronto-British Columbia trial was used for this  study24, which was composed of 
node-negative patients above the age of 50 years with invasive breast  cancer25. Tissue microarrays (TMAs) were 
constructed using a 0.6 mm tumor core procured from formalin-fixed, paraffin-embedded specimens. TMA sec-
tions, with a thickness of 0.5 μm, were stained using a 1:500 dilution of SP6 (ThermoFisher Scientific, Waltham, 
MA, USA)—a Ki-67 antibody—and counterstained with hematoxylin. The study incorporated ten TMAs with 
high tumor cellularity, averaging 2093 neoplastic cells per TMA and a PI range of 7 to 28%16. This range, which 
poses a challenge for pathologists, encompasses the clinically relevant PI cutoffs identified in prior  studies6,11,13.

AI tool
A deep learning-based AI tool for IHC quantification, UV-Net, developed by Toronto Metropolitan University, 
was used in the  study18. This tool detects neoplastic cells in IHC-stained tissue and differentiates Ki-67 positive 
from Ki-67 negative tumor cells. Its underlying architecture, a modified U-Net, includes additional connections 
for densely packed nuclei and replaces the standard 3 × 3 convolutional layers with ’V-Blocks’. These V-Block 
connections maintain high-resolution nuclear features for precise differentiation between nuclei; each V-Block 
inputs n channels and outputs 2n channels, forming a ’V’ shape across four successive stages.

The AI tool was trained using 256 × 256 RGB patches of WSIs from St. Michael’s Hospital, and an open-
source dataset "Deepslides"26 from × 20 Aperio AT Turbo and × 40 Aperio ScanScope scanners respectively. 
Images were annotated with single-pixel centroid markers distinguishing Ki-67 positive and Ki-67 negative 
tumor nuclei  cells20, defining positive nuclei as any brown color above the background, following the IKWG’s 
 recommendations8,9. Single-pixel markers were extended into circular areas using a Gaussian function, this allo-
cated the highest value to the center of the nuclei, incorporated more contextual information, and improved the 
efficiency of the training process. A Huber loss function was used to regress and predict the centroid of nuclei.

For a given image, the AI tool generates an automated Ki-67 positive and Ki-67 negative overlay (Fig. 1), 
providing an accessible visual interpretation along with the automated PI calculation.

The generalizability of UV-Net was previously validated on multi-institutional datasets from 5  institutions18, 
including WSIs and TMAs from breast cancer images. UV-Net consistently outperformed other architectures 
across all image variations, registering an average F1-score of 0.83 on expertly annotated data. In comparison, 
alternative architectures achieved scores between 0.74 and 0.79.

The images on which UV-Net was trained differed from those used in this study, originating from datasets 
with different scanners and institutions. None of the pathologists involved in this study participated in annotat-
ing the training or validation datasets.
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Study design
A cross-sectional study was performed using an anonymous, self-administered, and structured online survey 
developed using Qualtrics™, which included hyperlinks for viewing digitized TMAs on the cloud through Path-
coreFlow™, a browser-based commercial image management solution and viewer for digital  pathology27. The 
AI tool for Ki-67 scoring was integrated into PathcoreFlow™ using an Application Programming Interface. The 
tool provided an overlay of the Ki-67 positive and negative nuclei and calculated PI scores (Fig. 1). Participants 
were presented with a digital invasive breast cancer TMA stained for Ki-67 for each question and were asked to 
assign a Ki-67 score by entering a percentage value into Qualtrics™. Examples of questions with and without AI 
assistance are shown in Supplementary Figs. 1 and 2. Each Ki-67 TMA was reviewed by respondents twice—once 
without AI assistance and once with AI assistance—resulting in a total of 20 assessment questions. Participants 
were not explicitly told to use the AI, but rather to observe the AI results and estimate their PI score. They were 
instructed to compute the Ki-67 PI by counting individual cells with a denomination of 500 cells and to regard 
any brown staining beyond the background as positive, in line with current  guidelines8,9. They were also guided 
to spend approximately the same time they would during standard procedures with no limit on the time for 
assessments. Each pathologist used a distinct viewer from a separate workstation. To minimize bias, the order of 
cases was randomized, ensuring that TMAs with AI assistance were not shown immediately before or after the 
same TMA without assistance. Additionally, the AI-assisted images were altered in orientation to look different 
from the unaided images. At the end of the study, participants were requested to provide their demographic 
information and respond to inquiries regarding their perspectives on AI.

Study population
Participants were recruited through the professional networks of the authors between September and Novem-
ber 2022. Contact channels included pathology associations, local pathology residency programs, pathologist 
colleagues, and social media platforms (LinkedIn, Twitter). Eligible participants were trained pathologists with 
experience in Ki-67 PI scoring. The study included all participants who provided consent and identified them-
selves as pathology specialists. There were no limitations based on gender, age, or employment status, and only 
those who finished the study were considered, in total there were 116 completed responses. Spurious responses 
defined as outliers with large PI errors (more than 20% on a single response) were excluded from the analysis 
(N = 26 participants). Consequently, the main analysis included 90 respondents, all experienced in using digital 
pathology. Demographic characteristics are described in Supplemental Table 1. The participants’ median age 
ranged from 40 to 49 years; however, the most common age group was 30 to 39 years, accounting for 34.4% of the 
respondents. While the median work experience falls within the 10 to 19 years range, the most prevalent work 
experience category is 0 to 9 years, representing 26.7% of the total. The majority of respondents are male, with 
many being retired clinical pathologists from North America. Among those currently working, most practice 
in academic health sciences centers.

Ground truth scores
The ground truth Ki-67 PI scores for the 10 TMAs were determined using the gold standard manual count-
ing method, where any brown staining above the background level was deemed positive, following current 
 guidelines8,9. Each TMA was divided into five rows and five columns, creating 400 × 400 pixel tiles, and annota-
tions were made in each region. Nuclei were annotated at the center of each cell, with tumor cells marked as 
Ki-67 positive if any discernible brown staining above the background was observed and the cell border was 
visible; otherwise, they were marked as Ki-67 negative. In cases of overlapping tumor cells, each cell was marked 
individually if its borders were discernible. An anatomical pathology resident (N.N.J.N.) performed the manual 

Figure 1.  Examples of TMA with no AI aid (left) and TMA with AI tool overlay and calculated proliferation 
index (PI) (right). The TMA shown is case 7.
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annotations, which were verified by a breast pathologist (S.D.). Ground truth PI scores were calculated from 
these manual annotations. The ground truth PI scores of the ten cases ranged from 7 to 28%.

Statistical analysis
Statistical analyses were performed to assess the PI scoring error, inter-rater agreement, and TAT among patholo-
gists when using the AI tool, compared to a standard clinical workflow (i.e., without AI). The experiment involved 
two groups: a control group where pathologists evaluated Ki-67 PI using standard clinical methods, and an 
experimental group where the same pathologists used the AI tool to assist with Ki-67 PI assessment on the 
same TMAs. For each participant, two PI estimations and TATs were obtained per TMA, resulting in 900 paired 
assessments (90 pathologists × 10 cases). For every assessment, several metrics were recorded, including the 
clinician-estimated raw PI score, the PI error (the absolute difference between the estimated and ground truth 
PI), and TAT, which denotes the time taken to score the TMA. The paired Wilcoxon signed-rank  test28 was used 
to compare the differences between the two groups, with significance determined based on the median values of 
the paired differences. This test was chosen due to the non-normal distribution of the data, as indicated by the 
Shapiro–Wilk test. All statistical analyses were two-sided, with significance set at p < 0.05.

PI scores and PI errors were assessed with and without AI assistance, using continuous and binary values. PI 
scores and PI errors were first treated as continuous values and summarized by the mean and standard devia-
tion. Box and bar plots were used to visually depict case-based and sub-demographic PI errors, respectively. PI 
scores and errors were additionally binarized and assessed using low-risk Ki-67 PI < 20%, and high-risk ≥ 20% 
 stratification12.

The consistency of scoring among pathologists, with and without AI assistance, was examined using both 
continuous and binary metrics. For the continuous analysis, the Two-Way Random-Effects Model for single-
rater consistency agreement was chosen to assess the inter-rater agreement using the Intraclass Correlation 
Coefficient (ICC)29,30. This model was selected since all cases were evaluated by all raters. The choice of the 
single-rater model stemmed from the clinical reliance on a singular clinician’s decision for Ki-67 scores, rather 
than averaging scores from multiple  clinicians29. The ICC between the pathologists’ PI scores and the ground 
truth PI was assessed twice: once with and once without AI assistance. Complementary to ICC, Krippendorff ’s 
α was calculated to measure inter-rater agreement and chosen for its adaptability in handling continuous  data31. 
Bland–Altman and linear regression plots of the PI scores were incorporated to supplement the measure of 
inter-rater agreement, with parameters such as Pearson’s correlation coefficient, slope, offset, mean, and limits 
of agreement being considered. Using binarized PI scores (with scores ≥ 20% assigned a 1, and scores < 20% a 0), 
the percent agreement and Fleiss’  Kappa32 were calculated for both groups.

The TAT among pathologists was considered the time in seconds to perform the PI score estimation, start-
ing from the moment they began examining the case to the point when the PI score was saved. TATs were 
summarized by the mean and standard deviation. Box and bar plots were used to visually depict case-based 
and sub-demographic TATs, respectively. Additionally, the percentage of time reduction computed by the time 
savings was determined by the formula: (total time saved/total time spent on conventional assessment) X 100%. 
Statistical analyses were performed using SPSS Version 28 (Armonk, NY, USA).

Ethics approval
This research study has been reviewed by the Toronto Metropolitan University Research Ethics Board (REB 
2022-154). Participants voluntarily consented to participate and to share contact information if they wanted to.

Results
Scoring accuracy
The respondents’ PI scores and PI errors per case and within ranges are shown in Table 1. Responses includ-
ing outliers are shown in Supplementary Table 2. The overall mean PI error was found to be 2.1 (2.2) using the 
AI tool, and 5.9 (4.0) without the AI (difference of − 3.8%, 95% CI: −4.10% to −3.51%, p < 0.001). The AI tool 
significantly improved the accuracy of PI scoring. The PI error was plotted per case (Fig. 2A) and for each PI 
interval (Supplementary Fig. 3). Cases 2 through 10 had significantly less error (p < 0.001), and both the < 20% 
and ≥ 20% PI ranges had statistically significant decreases in error with AI (p < 0.001). Furthermore, Fig. 2B, 
C, which display the PI error across various demographics, revealed that AI-aided scoring was superior across 
all pathologist age ranges and experience levels—indicating that despite variable background and training, AI 
improved PI accuracy for all groups of pathologists. Supplementary Fig. 4 shows that AI-aided scoring was 
statistically superior (p < 0.001) across all pathologist subdisciplines.

The AI tool demonstrated high accuracy in the study, with a mean PI error rate of 0.6%, which ranged from 
0.0 to 6.1%, as shown in Table 1.

To quantify the increase of PI estimation accuracy when pathologists used the AI tool, Supplementary Fig. 5 
shows the difference in PI error for each case. This difference is calculated as the PI error for the estimated PI 
score with AI assistance minus the error without AI assistance, highlighting the extent to which the AI tool 
reduces error rates. Most pathologists experienced increased accuracy with the AI tool, as indicated by positive 
differences seen in Supplementary Fig. 5.

Inter‑rater agreement
AI assistance led to a significant improvement in inter-observer reproducibility (with AI assistance: ICC = 0.92 
[95% CI 0.85–0.98], Krippendorff ’s α = 0.89 [95% CI 0.71–0.92], without AI assistance: ICC = 0.70 [95% CI 
0.52–0.89], Krippendorff ’s α = 0.65 [95% CI 0.41–0.72]). These statistics are visually depicted in Supplementary 
Fig. 6. Bland–Altman analyses (Fig. 3B, D) revealed that pathologists with AI assistance exhibited less bias 
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Table 1.  PI scores, PI error and ground truth are shown as mean (SD) per case and within PI ranges.  *The p 
values were computed for paired comparisons between pathologists and pathologists with AI with the paired 
Wilcoxon signed-rank test. Significant values are in bold.

Case Ground truth AI tool AI tool error

PI scores PI error

No aid With aid p value* No aid With aid p value*

1 7.3 8.2 0.9 8.0 (4.4) 8.6 (1.3)  < 0.001 2.1 (3.9) 1.5 (1.1) 0.133

2 11.1 10.5 0.6 10.6 (4.3) 10.8 (1.4)  < 0.001 3.0 (3.1) 1.0 (1.0)  < 0.001

3 12.1 13.3 1.2 8.6 (3.9) 13.8 (1.9)  < 0.001 4.9 (1.8) 2.0 (1.6)  < 0.001

4 14.4 14.8 0.4 12.6 (3.5) 15.0 (2.3)  < 0.001 3.5 (1.8) 1.1 (2.1)  < 0.001

5 16.2 16.2 0.0 14.3 (3.6) 16.6 (1.9)  < 0.001 3.4 (2.9) 1.1 (1.5)  < 0.001

6 16.9 16.3 0.6 11.1 (4.0) 16.8 (1.5)  < 0.001 6.5 (2.5) 1.0 (1.2)  < 0.001

7 19.8 17.8 2.0 28.6 (6.0) 18.0 (3.6)  < 0.001 9.9 (3.9) 3.0 (2.6)  < 0.001

8 23.7 22.0 1.7 17.3 (5.5) 22.0 (2.2)  < 0.001 7.9 (2.9) 2.0 (1.9)  < 0.001

9 28.2 29.7 1.5 19.8 (4.7) 30.3 (2.7)  < 0.001 9.2 (2.9) 2.5 (2.3)  < 0.001

10 27.8 33.9 6.1 19.6 (4.1) 32.3 (3.8)  < 0.001 8.5 (3.4) 5.6 (1.8)  < 0.001

All 17.7 18.3 0.6 15.0 (7.5) 18.4 (7.7)  < 0.001 5.9 (4.0) 2.1 (2.2)  < 0.001

 < 20% 14.0 13.7 0.3 19.6 (4.1) 14.2 (3.8)  < 0.001 4.8 (3.8) 1.5 (1.8)  < 0.001

 ≥ 20% 26.6 28.5 1.9 18.9 (4.9) 28.2 (5.4)  < 0.001 8.5 (3.1) 3.4 (2.6)  < 0.001

Figure 2.  Graphs of absolute PI error. (A) Illustrates the absolute PI error vs. each case. (B) Displays the mean 
absolute PI error vs. years of experience. (C) Depicts the mean absolute PI error vs. career stages. Asterisk: 
statistical significance was found between pathologists and pathologists with AI using the paired Wilcoxon 
signed-rank test.
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(mean of 0.7 vs. − 2.7) and tighter limits of agreement (6.5 to − 5.1 vs. 10.2 to − 15.6) compared to the ground 
truth scores. Linear regression models (Fig. 3A, C) further support the notion that AI assistance improves inter-
rater agreement (with AI assistance: y = 1.06x − 0.46, r = 0.92, SSE = 7792; without AI assistance: y = 0.64x + 3.62, 
r = 0.58, SSE = 33,992).

After binarizing the pathologists’ responses, with scores ≥ 20% assigned as 1 and scores < 20% as 0, the Fleiss’ 
Kappa values showed better agreement with AI assistance (with AI assistance: 0.86 [95% CI 0.85–0.86]; without 
AI assistance: 0.40 [95% CI 0.40–0.41]). Table 2 shows that agreement levels are increased for every case when 
using AI, with some cases achieving 100% agreement.

Turnaround time
A visual depiction of TATs for each case is provided in Fig. 4A. Table 3 displays the mean response time, standard 
deviation, and time saved for each TMA case for PI scoring with and without the AI aid.

Without AI assistance, pathologists required an average of 23.3 s to assess each TMA, with a median time 
of 7.5 s and an interquartile range (IQR) of 5.5 to 16.2 s. AI assistance led to a statistically significant increase 
(p < 0.001) in efficiency where the average TAT per TMA reduced to 18.6 s, a median time of 6.4 s and a narrower 
IQR from 4.6 to 12.1 s.

Figure 4B illustrates the TAT for each question, showing the progression of TAT across cases as they were 
presented to the pathologists. Due to initially high response times, likely caused by participants acclimating to the 
software and study setup, question 1 (Case 2 without aid and Case 7 with aid) was excluded from further analyses.

For evaluations without AI, pathologists averaged 18.3 s per TMA, with a median time of 7.2 s and an IQR 
of 5.5 to 14.0 s. With AI support, the average TAT per TMA decreased to 16.8 s, the median time was 6.4 s, and 
the IQR narrowed to 4.7 to 11.6 s. The reduction in TAT was statistically significant among pathologists with 
experience ranging from 10 to 39 years (Fig. 4C) (p < 0.001), and for pathology fellows, practicing and retired 
pathologists (Fig. 4D) (p < 0.001). Supplemental Fig. 7shows the mean TAT with and without aid for various 
disciplines, where roles such as clinical and forensic pathologists were statistically faster (p < 0.001).

Figure 3.  (A) Linear Regression of pathologists’ scores with AI assistance. (B) Bland–Altman of pathologists’ 
scores with AI assistance. (C) Linear regression of pathologists’ scores without AI assistance. (D) Bland–Altman 
of pathologists’ scores without AI assistance.
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AI assistance resulted in an average reduction of 1.5 s per TMA [95% CI, −2.4 to −0.6 s, p < 0.001]. Supple-
mentary Fig. 8 displays a histogram of the distribution of the total percentage of time saved, calculated using the 
formula: (total time saved/total time spent on conventional assessment) × 100%. The mean percentage saving 
was 9.4%, with a median of 11.9%.

Pathologists’ opinions
Pathologists’ opinions on the use of AI for Ki-67 assessment in breast cancer are summarized in Fig. 5. The 
majority of respondents considered the AI tool’s suggestion, found it to be appropriate and agreed that this AI 

Table 2.  Average percent agreement for each of the 10 cases and cases above and below a 20% PI threshold.  
The * highlights situations where the consensus misaligns with the established ground truth—meaning 
pathologists agree on a PI score that’s > 20%, but the actual score was < 20%. For example, in case 7, most raters 
agreed that the TMA had a PI above 20%, but the ground truth indicates it’s below 20% PI.

Average percent agreement

Case Ground truth (PI) Tool (PI) No aid (%) With aid (%)

1 7.3 8.2 95.6 100.0

2 11.1 10.5 94.4 100.0

3 12.1 13.3 96.7 98.9

4 14.4 14.8 92.2 95.6

5 16.2 16.2 91.1 96.7

6 16.9 16.3 95.6 94.4

7 19.8 17.8 88.9* 86.7

8 23.7 22.0 76.7* 96.7

9 28.2 29.7 67.8* 100.0

10 27.8 33.9 56.7 97.8

1–7  < 20% 82.4 96.0

8–10  ≥ 20% 73.2* 98.1

Figure 4.  Graphs of TATs displayed in seconds. (A) Illustrates the absolute TAT vs. each case, the average of all 
cases (All), and the average of all cases excluding Question 1 (All-Q1). (B) Represents the TAT vs. the sequential 
question pairs in the study. (C) Displays the mean TAT vs. years of experience. (D) Depicts the mean TAT vs. 
career stages. Asterisk: Statistical significance was found between pathologists and pathologists with AI using 
the paired Wilcoxon signed-rank test.
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tool could improve accuracy, inter-rater agreement and TAT for Ki-67 assessments (Fig. 5A). Many respondents 
also agreed that they would personally implement and agree with the routine implementation of AI aid for Ki-67 
assessments within the next decade (Fig. 5B, C).

Table 3.  TAT expressed in seconds as mean (SD).  *The p values were computed for paired comparisons 
between pathologists and pathologists with AI with the paired Wilcoxon signed-rank test. Significant values 
are in bold.

Case No aid (s) With aid (s) With aid—no aid (s) p value*

1 15.5 (34.3) 12.8 (28.6) −2.7 0.02

2 71.7 (146.3) 15.3 (30.1) −56.4  < 0.001

3 16.6 (25.6) 17.6 (31.2)  + 1.0 0.08

4 22.2 (37.0) 18.6 (49.5) −3.6 0.003

5 13.5 (23.1) 14.2 (23.4)  + 0.7 0.35

6 19.2 (44.4) 25.0 (99.8)  + 5.8 0.004

7 14.9 (23.4) 36.4 (70.8)  + 21.5 0.58

8 12.0 (18.8) 17.0 (34.6)  + 5.0 0.81

9 27.4 (57.1) 12.7 (19.6) −14.7  < 0.001

10 20.1 (38.4) 16.2 (50.8) −3.9 0.006

All 23.3 (59.4) 18.6 (50.1) −4.6  < 0.001

All—Q1 18.3 (48.6) 16.8 (36.9) −1.5  < 0.001

Figure 5.  (A) Pathologists’ opinions on AI for Ki-67 assessments. (B) Pathologists’ opinions on their personal 
implementation timeline of AI into Ki-67 assessments. (C) Pathologists’ opinions on the routine implementation 
timeline of AI into Ki-67 assessments.
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Discussion
Ki-67 serves as a crucial indicator for predicting cancer recurrence and survival among early-stage high-risk 
breast cancer  patients1,2. It informs decisions regarding adjuvant  chemotherapy12 and radiation therapy opt-
out for Luminal A breast cancer  patients13. These clinical decisions often rely on PI scores between 5 and 30%; 
however, this range exhibits significant scoring variability among experts, making standardization and clinical 
application  challenging8,9,12. This inconsistency, combined with long assessment times using the current Ki-67 
scoring system, has limited the broader clinical application of Ki-67 and resultantly, has not yet been integrated 
into all clinical  workflows16. AI technologies are being proposed to improve Ki-67 scoring accuracy, inter-rater 
agreement, and TAT. This study explores the influence of AI in these three areas by recruiting 90 pathologists to 
examine ten breast cancer TMAs with PIs in the range of 7 to 28%.

Two previous studies aimed to quantify PI accuracy with and without  AI19,23. One study demonstrated that 
AI-enhanced microscopes improved invasive breast cancer assessment  accuracy23. They had 30 pathologists 
use an AI microscope to evaluate 100 invasive ductal carcinoma IHC-stained whole slide images (WSIs), which 
provided tumor delineations, and cell annotations. AI use resulted in a mean PI error reduction from 9.60 to 
4.53. A similar study was  conducted19, where eight pathologists assessed 200 regions of interest using an AI tool. 
Pathologists identified hotspots on WSIs, after which the AI tool provided cell annotations for the clinician’s 
review. The study found that this method significantly improved the accuracy of Ki-67 PI compared to traditional 
scoring (14.9 error without AI vs. 6.9 error with AI).

Similarly, this study found that using AI assistance for PI scoring significantly (p < 0.001) improved patholo-
gists’ accuracy, reducing both the PI error and its standard deviation across various demographics, including 
years of experience and specialties. This indicates that AI assistance leads to higher PI accuracy across all levels 
of pathologists’ training, enabling professionals at every career stage to deliver more precise PI scores in the 
range critical for clinical decision-making. This improvement may help bridge experience gaps and is critical 
for PI scoring standardization. An underestimation trend, previously reported  by33, was also noted in this study, 
as shown by the PI correlation and Bland–Altman analysis (Fig. 3). However, scoring with the support of AI 
improved PI accuracy for all cases and corrected this underestimation bias. This is exemplified by the scoring near 
the 20% cutoff, which simulates a clinical decision threshold. In conventional assessments, many pathologists 
select the incorrect range (≥ 20% or < 20%), particularly for TMAs 7, 8, and 9, with ground truths of 19.8, 23.7, 
and 28.2, respectively. For instance, TMA 8 had 76.7% of respondents incorrectly estimated the score as < 20%. 
Errors like these would result in incorrect therapy decisions and poor patient outcomes. Fortunately, with AI 
assistance, the percentage of pathologists agreeing with the ground truth greatly improved, providing a strong 
incentive for the clinical use of AI tools in Ki-67 scoring. All cases showed a statistically significant PI error 
decrease with AI assistance, except for Case 1, with a ground truth PI score of 7.3% (p = 0.133). This exception 
could be attributed to fewer Ki-67 positive cells requiring counting, which likely simplified the scoring process.

In addition to accuracy, PI scoring agreement is critical to ensure that patients with similar disease pheno-
types are delivered the proper therapeutic regimes. However, significant variability in Ki-67 scoring is widely 
recognized, even in established laboratories. A study led  by34, found reproducibility among eight labs was only 
moderately reliable with contributing factors such as subjective judgements related to PI scoring and tumor 
region selection. Standardizing scoring methods becomes imperative, as transferring Ki-67 PIs and cutoffs 
between laboratories would compromise analytical validity. In another study  by35, the variability in breast can-
cer biomarker assessments, including Ki-67, among pathology departments in Sweden was investigated. While 
positivity rates for HR and HER2 had low variability, there was substantial variation in Ki-67 scoring, where 66% 
of labs showed significant intra-laboratory variability. This variability could potentially affect the distribution of 
endocrine and HER2-targeted treatments, emphasizing the need for improved scoring methods to ensure consist-
ent and dependable clinical decision-making. The study  by23, aimed to improve Ki67 scoring concordance with 
their AI-empowered microscope. They found a higher ICC of 0.930 (95% CI: 0.91–0.95) with AI, compared to 
0.827 (95% CI: 0.79–0.87) without AI.  Similarly22, aimed to quantify the inter-rater agreement for WSIs with AI 
assistance across various clinical settings. The AI tool evaluated 72 Ki-67 breast cancer slides by annotating Ki-67 
cells and providing PI scores. Ten pathologists from eight institutes reviewed the tool and input their potentially 
differing PI scores. When the scores were categorized using a PI cutoff of 20%, there was an 87.6% agreement 
between traditional and AI-assisted methods. Results also revealed a Krippendorff ’s α of 0.69 in conventional 
eyeballing quantification and 0.72 with AI assistance indicative of increased inter-rater agreement, however, 
these findings were not significant.

In this study, we evaluated the scoring agreement with and without AI across 90 pathologists, represent-
ing one of the largest cohorts analyzed for this task. It was found that over the critical PI range of 7 to 28%, AI 
improved the inter-rater agreement, with superior ICC, Krippendorff ’s α and Fleiss’ Kappa values compared to 
conventional assessments and higher correlation of PI estimates with the ground truth PI score. Additionally, 
there was a decrease in offset and variability, as shown in Fig. 3. These agreement metrics align with findings from 
earlier  studies22,23 and signify that AI tools can standardize Ki-67 scoring, enhance reproducibility and reduce the 
subjective differences seen with conventional assessments. Therefore, using an AI tool for Ki-67 scoring could 
lead to more robust assessments and consistent therapeutic decisions.

AI applications have predominantly focused on automating the laborious tasks for pathologists, thereby 
freeing up time for high-level, critical decision-making, especially those related to more complex disease 
 presentations16–20,36. Some research into AI support tools in this field has demonstrated a notable decrease in 
TAT for pathologists. For instance, a study led  by37, which involved 20 pathologists analyzing 240 prostate biop-
sies, reported that an AI-based assistive tool significantly reduced TAT, with 13.5% less time spent on assisted 
reviews than on unassisted ones. Similarly, the study  by38, demonstrated a statistical improvement (p < 0.05) 
in TATs when 24 raters counted breast mitotic figures in 140 high-power fields, with and without AI support, 
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ultimately achieving a time saving of 27.8%. However, the study  by23, reported a longer TAT using an AI-
empowered microscope in their study, which involved 100 invasive ductal carcinoma WSIs and 30 pathologists 
(11.6 s without AI vs. 23.8 s with AI).

Our study found that AI support resulted in faster TATs (18.3 s without AI vs. 16.8 s with AI, p < 0.001), 
equating to a median time saving of 11.9%. Currently, our team only performs Ki-67 testing upon oncologists’ 
requests, as routine Ki-67 assessment is not yet standard practice. This is partly due to the difficulties in stand-
ardizing Ki-67, compounded by pathologists’ increasing workloads and concerns over  burnout39,40. Pathologists’ 
caseloads have grown in the past decade, from 109 to 116 annually in Canada and 92 to 132 in the U.S.41. With the 
Canadian Cancer Society expecting 29,400 breast cancer cases in  202342, routine Ki-67 assessments would sig-
nificantly increase workloads. Therefore, the implementation of AI tools in this context could alleviate workload 
pressures by offering substantial time savings and supporting the clinical application of this important biomarker.

The gold standard for assessing Ki-67 PI is manual  counting8,9; however, due to the labor-intensive nature of 
this method, many pathologists often resort to rough visual  estimations43,44. As indicated in Table 3 and Fig. 4, 
the shorter TATs suggest that respondents may have relied on visual estimations for Ki-67 scoring. Despite this, 
the TATs significantly improved (p < 0.001) when using AI. This improvement was evident among experienced 
pathologists; however, some encountered longer TATs after integrating AI, possibly due to unfamiliarity with 
the AI tool or digital pathology viewing software. Although participants received a brief orientation and two 
initial examples, the novelty of the tool might have posed a learning curve. Addressing this challenge involves 
integrating the tool into regular practice and providing comprehensive training before its use.

The perspectives of pathologists highlight a growing enthusiasm towards AI integration for Ki-67 evaluations 
for breast cancer. A significant 84% of participants agreed the AI’s recommendations were suitable for the task 
at hand. They recognized AI’s ability to improve pathologists’ accuracy (76%), enhance inter-rater consistency 
(82%), and reduce the TAT for Ki-67 evaluations (83%). Additionally, 49% expressed their intent to incorpo-
rate AI into their workflow, and 47% anticipated the routine implementation of AI within the next decade. An 
important observation is that many respondents who were hesitant about personally or routinely implementing 
AI in clinical practice were retired pathologists. In total, 83% of retired pathologists reported they would not 
currently implement AI personally or routinely, which is a stark contrast to only 15% of practicing pathologists 
who expressed the same reluctance. This positive outlook in the pathologist community supports the insights 
of this study and signals an increasing momentum for the widespread adoption of AI into digital pathology.

The strength of this research is highlighted by the extensive and diverse participation of 90 pathologists, 
which contributes to the study’s generalizability in real-world clinical contexts. Adding to the study’s credibility 
is the focus on Ki-67 values around the critical 20% threshold, which is used for adjuvant therapy decisions. 
Moreover, the AI nuclei overlay addresses the transparency concerns often associated with AI-generated scores, 
thus improving clarity and comprehensibility for users. The ongoing discussion around ’explainable AI’ high-
lights the importance of transparency in AI tools’ outputs, a crucial factor for their acceptance and  adoption45. 
The outcomes of the study emphasize the positive outlook and readiness of pathologists to embrace AI in their 
workflow and serve to reinforce the growing need for the integration of AI into regular medical practice.

The study has its limitations, one of which includes the potential unintentional inclusion of non-pathologists. 
The survey required respondents to confirm their status as pathologists through agreement before beginning; 
however, due to confidentiality limitations, no further verification was possible. In some instances, pathologists’ 
scores deviated from the ground truth by more than 20%, with PI errors reaching up to 50%. Such large errors 
would render any PI score diagnostically irrelevant, as the variance exceeds the clinical threshold of 20%. These 
errors might be attributed to input errors or a lack of experience in Ki-67 assessments. Consequently, we used this 
threshold to filter out potentially erroneous responses. In total, 26 participants who logged responses exceeding 
the 20% error threshold were subsequently excluded from the study. For completeness, Supplementary Table 2 
discloses the PI scores and PI errors of all respondents, including outliers, where the data trends appear similar. 
The demographics of the study’s participants reveal there was limited participation from currently practicing 
pathologists, representing 14.4% of respondents. This may be attributed to the time constraints faced by practic-
ing pathologists. In future research, efforts will be made to include more practicing pathologists and to evaluate 
intra-observer variability. Additionally, while the survey provided specific guidelines for calculating the PI and 
applying Ki-67 positivity criteria, the accuracy and thoroughness of each pathologist’s evaluations could not 
be verified. Lastly, the study deviated from standard practice by using TMAs instead of WSIs for Ki-67 clinical 
assessments. The rationale behind this choice was the expectation of more precise scoring with TMAs, as this 
eliminates the need to select high-power fields (a subjective process) and involves a lower number of cells to 
evaluate, leading to better consistency in visual estimations. Future research should focus on evaluating the 
accuracy achieved with AI assistance in identifying regions of interest and analyzing WSIs. This should also 
incorporate a broader range of cases and a wider PI range. Prospective studies involving solely practicing breast 
pathologists could also yield valuable insights into the real-world application of the AI tool and its impact on 
clinical decision-making.

In conclusion, this study provides early insights into the potential of an AI tool in improving the accuracy, 
inter-rater agreement, and workflow efficiency of Ki-67 assessment in breast cancer. As AI tools become more 
widely adopted, ongoing evaluation and refinement will be essential to fully realize its potential and optimize 
patient care. Such tools are critical for robustly analyzing large datasets and effectively determining PI thresholds 
for treatment decisions.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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