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Quantum‑walk search in motion
Himanshu Sahu 1* & Kallol Sen 2,3

In quantum computing, the quantum walk search algorithm is designed for locating fixed marked 
nodes within a graph. However, when multiple marked nodes exist, the conventional search 
algorithm lacks the capacity to simultaneously amplify the marked nodes as well as identify the 
correct chronological ordering between the marked nodes, if any. To address this limitation, we 
explore a potential extension of the algorithm by introducing additional quantum states to label 
the marked nodes. The labels resolve the ambiguity of simultaneous amplification of the marked 
nodes. Additionally, by associating the label states with a chronological ordering, we can extend the 
algorithm to track a moving particle on a two-dimensional surface. Our algorithm efficiently searches 
for the trajectory of the particle and is supported by a proposed quantum circuit. This concept holds 
promise for a range of applications, from real-time object tracking to network management and 
routing.

Quantum computers are engineered with the purpose of surpassing the computational capabilities of conven-
tional computers through the execution of quantum algorithms1–3. These quantum algorithms have a wide range 
of practical applications from cryptography, search and optimization, and quantum system simulation to the 
resolution of extensive sets of linear equations4–15. Notably, Grover’s search algorithm stands out as a widely 
recognized quantum algorithm capable of searching unsorted databases with a quadratic speed advantage over 
its classical counterparts16. Grover’s algorithm, combined with quantum walk, has motivated the foundation and 
development of the commonly known research venture of “Quantum walk search algorithms” for searching and 
sorting unstructured spatial data5,17–19.

Unlike classical random walks, quantum walks20,21 represent the walker by a quantum state, thus allowing a 
probabilistic interpretation of the particle’s dynamics. Quantum walks are a successful framework for modeling 
controlled dynamics in quantum systems22–27, building quantum algorithms and shown to constitute a universal 
model of quantum computation21,28–30. Depending on the premise and specific applications being addressed, there 
are two classes of quantum walks viz. discrete-time quantum walks (DTQWs) and continuous-time quantum 
walks (CTQWs) that are broadly employed.

The Hilbert space of DTQWs comprises two components: coin space and position space. Coin space repre-
sents the internal state of the walker, while position space defines the lattice structure in which the walker moves. 
The evolution of a particle in a DQTWs is governed by a sequence of unitary operators, each composed of a 
coin operator and a shift operator. The coin operator manipulates the internal state of the walker, while the shift 
operator displaces the walker to an adjacent vertex on the lattice, conditioned by the walker’s internal state20,31. 
In contrast, CTQWs describes the state evolution as a continuous function of time by associating a Hamiltonian 
to the unitary operator U = exp(−iHt)20.

Quantum walk-based search algorithms (QWSA) have diverse applications across fields such as optimiza-
tion, machine learning, cryptography, and network analysis32. Quantum search algorithms have an asymptotic 
quadratic acceleration in terms of oracle calls unlike their classical cousins17,21.

Quantum-walk search with multiple points has been extensively studied in previous literature33–38. While 
the algorithm can locate multiple nodes within a graph, however not all the marked points are equally ampli-
fied. Further, a chronological ordering of the marked nodes, if there exists any, is completely ignored by the 
algorithm. These drawbacks make the algorithm unsuitable for sorting dynamical data. In the present work, we 
specifically address these issues regarding the QWSA. To resolve this, we associate a label to each of the marked 
nodes in the form of additional quantum bits. While this increases the dimension of the associated Hilbert space, 
we secure an extra handle that can be used to distinguish the ordering of marked nodes. We study the specific 
case of QSWA in finite two-dimension lattice with open and periodic boundary conditions, i.e. the open grid 
and the torus. In addition, we also consider the instances where the labels can be static or dynamic, as explained 
diagrammatically in Fig. 1.
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The distinction between static and dynamic labeling relies on whether there is a flow of probability between 
various sheets. Our refined algorithm can address a variety of applications, including real-time object tracking, 
trajectory prediction, financial market analysis, dynamic optimization problems, and network management 
and routing that includes dynamical components. The labeling concept is not new and has been applied to 
element distinctness problems in quantum algorithms. However, to our knowledge, we are not aware of the 
application of the labeling concept in the context of quantum search algorithms. As a concrete illustration of the 
scope of applicability of our algorithm, we consider a particle moving in two-dimensional lattice with time and 
show that the algorithm is capable of detecting the coordinates of the particle as it moves with time. Further, to 
properly connect with the idea of integrating our QWSA with state-of-the-art quantum hardware, we construct 
an equivalent quantum circuit that can implement the algorithm. The rest of the paper is organized as follows:

In “Quantum walk search algorithms”, we briefly introduce the quantum walk-based search algorithm. In 
particular, we give an explicit formulation for finite two-dimensional lattices with open and periodic boundary 
conditions. In “QWSA for ordered marked nodes”, we introduce a formulation to incorporate category to each 
marked point, which requires extra label states. We consider cases where there can be probability flow between 
layer states or categories. In “Quantum tracking problem”, we use our previous formulation to design an algorithm 
for particle tracking. In “Quantum circuit implementation”, we propose quantum circuit implementation of 
the quantum algorithm and study the complexity scaling of the algorithm. We conclude in “Discussion and 
conclusion” with conclusions and future directions.

Quantum walk search algorithm
Let G = (V ,E) be a finite d-regular graph, where V is a set of vertices (nodes), E is the set of edges connecting 
the nodes, and N = |V | is the number of vertices. The labels of the vertices are 0 to N − 1 , and the labels of the 
edges are 0 to d − 1 . A discrete-time quantum walk on the graph G generates a unitary evolution operator in the 
Hilbert space HU = Hpos ⊗Hcoin : the position space Hpos and the coin space Hcoin . Hpos is spanned by { |v� : 
0 ≤ v ≤ N − 1 }, while Hcoin is spanned by {|a� : 0 ≤ a ≤ d − 1} represents the internal states (often called “coin 
states”) associated with each node. At any time t, the state can be represented by

Each step of the DTQW is generated by a unitary operator consisting of coin operation C on the internal 
degrees of freedom followed by a conditional position shift operation S on the configuration space. Therefore, the 
state at time t and (t + τ) (where τ is the time required to implement one step of the walk) satisfies the relation,

(1)|�(t)� =
∑

a,v

φa,v(t)|a, v�.

(2)|�(t + τ)� = U |�(t)� = S(C ⊗ I)|�(t)�,

x

y

z

2d lattice

Label

Hopping

Figure 1.   Replication of the 2d lattice (xy- grid) on the z-direction which denotes the labels. The original 
search problem, including five marked nodes on a 2d lattice, reduces to the search problem, including five 2d 
sheets with one marked node each. We can allow for hopping between the sheets to enhance the probability 
distribution for the marked nodes at the cost of diminishing the probability for the unmarked ones.
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whereby imposing the operator form of the evolution operator U = S(C ⊗ I) . With this information, we are set 
to address the QWSA. Consider that the walker starts from an initial state, which is a uniform superposition of 
all states over internal and external degrees of freedom,

where |ψ(d)
c � is uniform superposition state in coin space. The idea behind the QWSA is starting with (3), can 

we define a unitary operator that localizes the state to a certain point (say |v0� ) on the grid. This operation is 
mathematically represented as

The mathematical equation above states simply that after t such operations of a unitary operator U ′ , the 
wave function localizes at the point |v0� where the time t is related to the size of the grid and the marked node 
configuration. The probability of success is the maximal probability for locating the node |v0� and is related to the 
number of times t, the U ′ operator has been applied on the initial state. For a single marked node, the operator 
U ′ is related to the unitary operator for the DTQW U = S · (C ⊗ I) by the relation,

where R is called “Search Oracle” and contains the information about the marked node(s). In essence, it is a phase 
shift operator that reverses the phase of all but one node (i.e. the marked node) by eiπ . For a single marked node, 
the Search Oracle has a simple functional form19,38

Without the coin state, this form coincides with the Grover Search Oracle39

The search oracle R can be easily generalized for multiple marked nodes,

where M is set of marked multiple marked node. To illustrate the concrete structure of the algorithm, we will 
consider a finite two-dimensional lattice with open and periodic boundary conditions.

Finite two‑dimensional lattice
Consider the quantum-walk search algorithm in the 

√
N ×

√
N  square lattice. We will consider both open and 

periodic boundary conditions. The quantum state spanned by {|i, j� ⊗ |x, y� : i, j ∈ [0, 1] & 0 ≤ x, y ≤
√
N − 1} 

where |i, j� represents coin state, and |x, y� represents position state. The shift operator S is the flip-flop shift 
operator given by

The flip-flop shift operator invert the coin state as it shift the position state. This inversion in the con state 
is important for speeding up search algorithms on the two-dimensional lattice19,38. In explicit notation, we can 
write coin state as

In this notation, the flip-flop ship operator for the periodic boundary condition given by

where superscript in S(2)c  is to emphasize that there are two directions of motion. In periodic boundary condi-
tion, the position state obey the cyclic property |x +

√
N� = |x� and |y +

√
N� = |y� . Therefore, the geometry 

of two-dimensional lattice with periodic boundary condition is equivalent to torus as shown in Fig. 2. For open 
boundary condition, the shift operator is defined as the sum of interior term (see Fig. 3)

(3)|�(0)� = |ψ(d)
c � ⊗

1

N

∑

|v�, where |ψ(d)
c � =

1
√
d

d−1
∑

a=0

|a�.

(4)|�(t)� =
(

U ′)t |�(0)�, Pv(t) = |�v|�(t)�|2max @ v=v0
.

(5)U ′ = U · R,

(6)R = I − 2|ψ(d)
c ��ψ(d)

c | ⊗ |v0��v0|.

(7)Uf = I − 2|v0��v0|.

(8)R = I − 2 |ψ(d)
c ��ψ(d)

c | ⊗
∑

v∈M
|v��v|

(9)S|i, j� ⊗ |x, y� = |1− i, 1− j� ⊗ |x + (−1)iδij , y + (−1)j(1− δij)�.

(10)| ↑� = |00� =







1
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0
0






, | ↓� = |11� =






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1
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
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
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(11)

S(2)c = | ↓��↑ | ⊗
∑

x,y

|x, y + 1��x, y| + | ↑��↓ | ⊗
∑

x,y

|x, y − 1��x, y|

+ | ←��→ | ⊗
∑

x,y

|x + 1, y��x, y| + | →��← | ⊗
∑

x,y

|x − 1, y��x, y|
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and boundary (exterior)

as S(2)o = S
(2)
int + S

(2)
ext . The explicity form of S(2)int and S(2)ext is chosen so that the shift operator S(2)o  is unitary i.e. 

S(2)o (S(2)o )† = (S(2)o )†S(2)o = I (see supplementary material). The coin operator in the quantum-walk search is 
chosen to be the Grover diffusion operator40,41

The state is initialized as an equal superposition in coin and position space, given by

(12)

S
(2)
int = | ↓��↑ | ⊗

∑

x,y<
√
N−1

|x, y + 1��x, y| + | ↑��↓ | ⊗
∑

x,y>0

|x, y − 1��x, y|

+ | ←��→ | ⊗
∑

x<
√
N−1,y

|x + 1, y��x, y| + | →��← | ⊗
∑

x>0,y

|x − 1, y��x, y|

(13)

S
(2)
ext = | ↑��↑ | ⊗

∑

x,y=
√
N−1

|x, y��x, y| + | ↓��↓ | ⊗
∑

x,y=0

|x, y��x, y|

+ | →��→ | ⊗
∑

x=
√
N−1,y

|x, y��x, y| + | ←��← | ⊗
∑

x=0,y

|x, y��x, y|

(14)G(2) = 2|ψ(2)
c ��ψ(2)

c | − I =
1

2







−1 1 1 1
1 − 1 1 1
1 1 − 1 1
1 1 1 − 1






.

Figure 2.   Two-dimensional lattice with double periodic boundary condition is topologically equivalent to a 
torus.

Figure 3.   The structure of the shift operator in the case of open boundary conditions is different in the interior 
and exterior of the grid. The figure shows the self-loop at the boundary point of the lattice which ensures the 
unitarity of the shift operator.
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The modified unitary operator in Eq. (5) is applied optimal time top times to initial state

which amplifies the probability amplitude of target states. For the two-dimensional lattice, the complexity 
of the algorithm is given by O(lnN) . The running time is top = O(

√
N lnN) and the success probability is 

psucc = O(1/ lnN)19.

Results
QWSA for ordered marked nodes
In previous literature33–38, quantum-walk search with multiple marked points has been extensively studied. In a 
general QWSA, multiple marked points can indeed exist on the graph, and there is no inherent (chronological) 
ordering associated with these marked points. The algorithm’s objective is to efficiently locate any one of these 
marked points without any preference for their order. In this section, we consider that there is an additional (and 
preferably a chronological) ordering associated with marked points, and devise a refined algorithm that addresses 
this ordering. More generally, our refined algorithm will address the case where we have multiple marked points 
belonging to different categories and we will be searching for the point along with its category.

For starters, consider a total of m different categories ηz where z = 0, 1, 2, . . . ,m− 1 . Further, we assume that 
a particular category ηz has a unique marked point. To represent this system, we introduce additional label states 
|ηz� with 0 ≤ z ≤ m− 1 , adding an extra dimension to the Hilbert space. We consider a finite two-dimensional 
lattice, although our method can be easily generalized to arbitrary graphs and dimensions. Figure 4 shows the 
schematic diagram of Hilbert space for the search algorithm, which shows replicated layers of the 2d lattice 
representing different categories ηz . Depending on whether the motion between different layers (categories) is 
allowed or not, we have two different scenarios: static labeling and dynamic labeling.

Static labelling
Consider the case where the walker is not allowed to move between the layers. The Hilbert space is spanned 
by basis {|i, j� ⊗ |x, y� ⊗ |ηz� : i, j ∈ [0, 1] & 0 ≤ x, y ≤ N − 1 & 0 ≤ z ≤ m− 1} . The oracle can be written as

where Mz is set of marked nodes in layer z, and X ≡ (x, y) to unclutter the notations. Since the walker does not 
move between the layers, the shift and coin operator are the same as the unordered marked case as described in 
“Quantum walk search algorithms”. Note that the Hilbert space for this case is reducible to a direct sum of Hilbert 
spaces associated with different layers. Therefore, the algorithm boils down to a set of independent reduced 
QWSA on each layer. Following the reducibility of the Hilbert space, we can write the evolution operator as a 
direct sum of evolution operators of individual layers

where Uz = Sz(Cz ⊗ I) and

The initial state is an equal superposition in coin, position, and label space, given by

(15)|�(0)� =
1

2

∑

i,j

|i, j� ⊗
1

N

∑

x,y

|x, y� = |χ� ⊗
1

N

∑

x,y

|x, y�

(16)|�(top)� = (U ′)top |�(0)�

(17)R = I − 2|ψ(2)
c ��ψ(2)

c | ⊗
∑

z

∑

X ∈Mz

|x, y��x, y| ⊗ |ηz��ηz |

(18)U ′ = U · R =
⊕

z

U ′
z =

⊕

z

(Uz · Rz),

(19)Rz = I − 2|ψ(2)
c ��ψ(2)

c | ⊗
∑

X ∈Mz

|x, y��x, y|.

Figure 4.   Schematic diagram of the structure of Hilbert space for quantum-walk search for ordered marked 
nodes.
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The modified operator U ′ is applied top times to the state, which amplifies the marked points and their asso-
ciated labels. To illustrate the algorithm, we perform a numerical simulation of the algorithm on 16× 16 grid 
under both open and periodic boundary conditions. The simulation includes four marked nodes at position 
{(6, 8), (8, 9), (12, 5), (15, 5)} , which necessitates four layers or label states.

Figure 5 shows the probability of finding a labeled marked node as a function of the number of steps taken 
by the algorithm. Figure 6 displays the probability distribution at the optimal time step. For the periodic bound-
ary condition, we observe that the probabilities of finding each marked node coincide. This results from the 
translational symmetry inherent in the toroidal geometry of the lattice. In contrast, under the open boundary 
condition, the probability of finding a marked node generally depends on its location due to boundary effects. 
Increasing the system size would lead us to anticipate the disappearance of boundary effects. Consequently, we 
expect the two probability distributions to converge as the number of nodes N approaches infinity.

As a consequence of separability of algorithm to independent QWSA on each layer, the optimal time top is 
the same as that for a conentional QWSA. Although, since the probability weight of wavefunction on each layer 
is scaled down by the factor of number of layers, as a result the success probability psucc is also scaled down by 
the number of the same factor. Therefore, the success probability associated with each layer is O(1/(m lnN)).

Dynamic labelling
For the dynamical labeling, where we allow for inter-layer transition, the coin space includes an additional direc-
tion to facilitate such motion (along the direction of the labels). The corresponding Hilbert space is spanned by a 
basis {|i, j, k� ⊗ |x, y� ⊗ |ηl� : i, j, k ∈ [0, 1] & 0 ≤ x, y ≤ N − 1 & 0 ≤ k ≤ m− 1} which has dimension 8mN2 . 

(20)|�(0)� =
1

2

∑

i,j

|i, j� ⊗
1

N
√
m

∑

x,y,z

|x, y� ⊗ |ηz�
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Figure 5.   Amplification of marked nodes with steps for static labelling in the case of (a) open grid and (b) 
torus. In case of open grid, the probability of marked nodes [6, 8] and [8, 9] coincides, while in case of torus, the 
probability of all marked nodes coincide with each other.
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The Grover diffusion operator G3 is elevated to a three-qubit operator. There can be further analogous extensions 
to open and periodic boundary conditions along the label direction, but we will stick to open boundary along 
the label direction. Similarly, the shift operator becomes,

The modified unitary evolution for the search given by

where the search oracle is given by

The initial state is a uniform superposition in Hilbert space. The modified operator U ′ is applied top times on 
this state, which amplifies the marked point along with labels.

We demonstrate the amplification due to dynamic labeling for the case of the open grid and torus with the 
same parameters as static case in Fig. 7, and probability distribution at optimal time-step in Fig. 8. Note that in 
this case, the torus (as in the case of static labeling) has a unique top . While the open grid performs much bet-
ter than the static labeling and possesses a close to unique top where all the marked nodes are simultaneously 
amplified.

Scaling
This section investigates how the success probability of our search algorithm scales with the lattice size. We 
illustrate this by considering the algorithm with two marked nodes, {[0, 0], [1, 1]} , on lattices of varying sizes. In 

(21)S|i, j, k� ⊗ |x, y, ηz� = |1− i, 1− j, 1− k� ⊗ |x + (−1)i(1− δij), y + (−1)iδij , ηz+(−1)k �

(22)U ′ = U · R = S(G3 ⊗ I) · R

(23)R = I − 2|ψ(3)
c ��ψ(3)

c | ⊗
∑

z

∑

X∈Mz

|x, y��x, y| ⊗ |ηz��ηz |.
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Figure 7.   Amplification of marked nodes with steps for dynamic labelling in the case of (a) open grid and (b) 
torus.
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Fig.  9 presents the success probability of individual marked points and the collective success probability (sum 
of all individual success probabilities) for both static and dynamical cases. We fit the curve a/ log(bN) , which 
indicating that the algorithm exhibits similar scaling behavior as the conventional QWSA in two-dimensional 
lattices19. Therefore, the collective sucess probability of our search algorithm scales as O(1/ ln(N)) , while the 
success probability of individual marked point scales as O(1/m ln(N)).

Quantum tracking problem
So far, we have examined our refined QWSA for searches on 2d surfaces using open and periodic boundary 
conditions. We have established that in most cases, the algorithm works better for simultaneous amplification of 
multiple marked nodes at a unique time top . In simple terms, this implies that there exists a unitary operator U 
such that Utop acting on a maximally superposed initial state can maximize the probability of the marked nodes. 
In this section we demonstrate a practical application of the algorithm introduced in *QWSA for ordered marked 
nodes” for tracking a particle moving in real-time.

We consider a particle moving on a 2d surface and the time taken by the particle to move one step is δt . Let 
us assume that position of particle at an instance of time tz = zδt with z = 0, 1, 2, . . . is Xz = (xz , yz) . Our aim 
is to find the trajectory of the particle i.e. Xz.

A two-dimensional lattice represents the particle’s configuration space and labels represent time steps. For 
example Xz = (xz , yz) represents the coordinates of the particle at time t = zδt . However, it would seem that 
associating labels with time has an obvious disadvantage in terms of resources, since the time variable continues 
to increase and so does the labels, hinting at a requirement of potentially infinite resource well. This in turn 
makes our labelling algorithm practically inapplicable owing to our limited resources. To overcome this problem, 
we will recycle our labels. Let’s understand this in more detail. Let us define layers l0, l1, l2, . . . representing the 
configuration space of a particle at time 0, δt, 2δt, . . . . Furthermore, we assume that the probability amplification 
takes computational time ( si ) such that s0, s1, s2, . . . ≪ O(T) . In general, the maximum time of amplification T 
is greater than the time step δt . Therefore, the information about the particle’s appearance must remain in the 
constructed oracle for at most time T. Let us define m as m = [T/δt] which is the number of steps that particles 
take in time T which is the least number of layers required. Therefore, we can write the oracle as

where f (x, y) = �(x)−�(y) , and �(x) is Heaviside step function. The shift-operator is used in accord with 
boundary conditions, and the coin-operator is the Grover diffusion operator G2 as we are considering single-
layer amplification. The time profile of probability distribution for different layers is provided in supplementary 
material.

Methods
Quantum circuit implementation
In this section, we will propose quantum circuit implementation for quantum walk search for ordered marked 
nodes as well as quantum tracking problems that have a similar structure. In Fig. 10, we show a schematic of a 
quantum circuit for quantum walk search. The qubits q0, q1, . . . , qD represents position space so that 2D = N , 
and c1, c2 represents coin space. The initial state which is a uniform superposition in position and coin space 
is constructed through the Hadamard operator. The modified unitary operator is then applied top times which 
gives probability amplitude amplification for marked points.

For our QWSA with labelled marked points, we introduce extra qubits for the layers. Figure 11 represents a 
schematic of a quantum circuit for static labelling with additional Q1,Q2, . . . ,QD′ qubits for 2D′ = m layers (or 
labels). The circuit for dynamic labelling is similar except we have three qubits for coin space. The equivalent 
circuit for quantum tracking is also similar to that for QWSA with static labelling. The specific structure of the 
oracle and other elements depends on configurations of marked points and turns out to be control unitary opera-
tions. We construct the coin, shift and the oracle operator, explicitly below.

Coin‑operator
The explicit implementation of coin and shift operator, and complexity in the discrete-time quantum walk has 
been previously done in42–45. In QWSA, the coin operator is a Grover diffusion operator in two qubits. The opti-
mal circuit construction for a qubit real unitary operator requires at most 2 CNOT and 12 one-qubit gates46. 
Although, the Grover diffusion operator can be implemented with 1 CNOT and 4 one-qubits gates (see Fig. 12).

Another way to implement the Grover diffusion operator is to write it in Hadmard basis, in which, it is given 
by47

(24)

R = I − 2|ψ(2)
c ��ψ(2)

c | ⊗
[

f (0,T)|x0, y0, η0��x0, y0, η0| + f (δt,T + δt)|x1, y1, η1��x1, y1, η1|
+ · · · + f (mδt,T +mδt)|xm, ym, ηm��xm, ym, ηm|
+f ((m+ 1)δt,T + (m+ 1)δt)|xm+1, ym+1, η0��xm+1, ym+1, η0| + · · ·

]

= I − 2|ψ(2)
c ��ψ(2)

c | ⊗
[

f (0,T)|x0, y0, η0��x0, y0, η0| + f (δt,T + δt)|x1, y1, η1��x1, y1, η1|
+ · · · + f (T , 2T)|xm, ym, ηm��xm, ym, ηm|
+f (T + δt, 2T + δt)|xm+1, ym+1, η0��xm+1, ym+1, η0| + · · ·

]

= I − 2|ψ(2)
c ��ψ(2)

c | ⊗
∑

n∈Z
f (nδt, nδt + T)|xn, yn, ηnmodm��xn, yn, ηnmodm|
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Implementing the operator A as a quantum circuit becomes straightforward by incorporating ancilla qubits. 
These ancilla qubits serve to verify whether the input comprises entirely of 0’s, allowing for the inversion of the 
phase if it does not.

Shift‑operator
The flip-flop shift operator is a conditional incrementor over position space qubits. To explicitly implement this, 
we start with mapping computational basis associated with position x = 0, 1, 2, . . . ,

√
N − 1 into qubit basis by 

representing state |x� into its binary representation (similar for y direction). As discussed in44, we can construct 
an incrementor circuit as shown in Fig. 13 using a series of multi-qubit CNOT gates. A n-qubit CNOT gate 
can be decompose into ≈ 16n Toffoli gates, achieving O(n) bound48. An analogous circuit of decrementor can 
also be constructed using a multi-qubit CNOT gate by changing the control qubits as shown in Fig. 13. We can, 
therefore, construct a flip-flop shift operator using a conditional operator over coin qubits as shown in Fig. 14.

In case of multiple layers, the translation operator couples with qubit representing layers depending on 
static or dynamic labelling. As we seen in “QWSA for ordered marked nodes”, the algorithm decouples for static 

(25)A =







1 0 0 0
0 − 1 0 0
0 0 − 1 0
0 0 0 − 1







q1

H R

S
q2

...
qD

c1
C

c2

Iterate top times

Figure 10.   Schematic of the quantum circuit for quantum-walk search.

q1

H R

S

q2

...
qD

Q1

Q2

...
QD′

c1
C

c2

Iterate top times

Figure 11.   Schematic of the quantum circuit for quantum-walk search for ordered marked points.

c1 U3(π/2, π/2,−π) U3(π/2, 0,−π/2)

c2 U3(π/4,−π/2, π/2) U3(3π/4,−π/2, π/2)

Figure 12.   Implementation of Grover’s diffusion operator for 2-qubits done using Qiskit.
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labelling, therefore the shift operator remains the same. In case of dynamic labelling, we add an extra coin-qubit 
to allow inter-layer flow, as shown in Fig. 14.

Oracle
Finally, consider the oracle R which we claim to be a controlled Grover diffusion operator (up to a phase), where 
control qubits are marked states. To prove this, consider the form of oracle in Eq. (8). This operator acts trivially 
(as identity) on the states which does not belong to set of marked nodes M, while it acts as I ⊗ (I − 2|ψ(d)

c ��ψ(d)
c |) 

if the state belongs to M. The operator I − 2|ψ(d)
c ��ψ(d)

c | = −G(d) is Grover diffusion operator up to a phase 
of eiπ . This is results follows for the case of multilayer search oracle except the control operation is over state 
|x, y, ηz� where (x, y) ∈ Mz.

To illustrate this result, consider a quantum-walk search on 2× 2 lattice with a marked point chosen to be 
(0, 0) without the loss of generality. We map the position states in qubit states as shown in Fig. 15. The oracle 
can be written as

The first term does not affect the state and the second term only contributes when the position state is a 
marked state |00� . More explicitly,

(26)R = I − 2|ψ(2)
c ��ψ(2)

c | ⊗ |00��00|

i1

i2

...
in

(a)

i1

i2

...
in

(b)

Figure 13.   Translation operator for qubits in position space. (a) n-qubit incrementor circuit. (b) n-qubit 
decrementor circuit.

c1

c2

c3

q1

T+ T−

q2

...
qD/2

qD/2+1

T+ T−

qD/2+2

...
qD

Q1

T+ T−
Q2

...
QD′

Figure 14.   Quantum circuit for flip-flop shift operator where T+ and T− represent translation operators 
(incrementor and decrementor respectively). The qubits q1, q2, . . . , qD/2 and qD/2+1, qD/2+2, . . . qD represents 
position space qubits associated x and y-direction respectively, c1, c2 are coin-space qubits, and Q1,Q2, . . . ,QD′ 
represent layer states. The dotted part represents the circuit needed for static labelling.
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Therefore, it’s a control operation over marked state |00� with controlled operation −G(2) . Figure 15 shows the 
quantum circuit implementation of this Oracle. Consider the case of ordered marked points with two categories, 
therefore, we require one additional qubit for two layers. Further, we assume that the two categories contain 
marked points |00� and |11� (see Fig. 16). The oracle operator R can be written as

where we assumed static labelling (but easily generalized to dynamic case). Following the similar argument as 
before, the oracle operator only acts non-trivially to marked labelled states which belong to set Mz , in this case, 
|000� and |111� . More explicitly,

where |x, y, ηz� = |000�, |111� . As before, this is controlled Grover diffusion operator over marked position states 
acting on coin state.

The complexity scaling
In this section, we analyze the complexity scaling (resource required) of the quantum algorithm both with 
system size. We will focus on quantum-walk search with ordered marked points from which the complexity of 
the quantum tracking problem can easily be derived.

As we previously seen the Hilbert space dimensions of single and multi-layer amplification algorithms are 
4mN and 8mN respectively, where N is the number of lattice points and m is the number of categories or layers. 

(27)
|0000� →

1

2
(|00� − |01� − |10� − |11�)|00�, |0100� →

1

2
(−|00� + |01� − |10� − |11�)|00�

|1000� →
1

2
(−|00� − |01� + |10� − |11�)|00�, |1100� →

1

2
(| − 00� − |01� − |10� + |11�)|00�.

(28)R = I − 2|ψ(2)
c ��ψ(2)

c | ⊗ [|00��00| ⊗ |0��0| + |11��11| ⊗ |1��1|]

(29)

|00�|x, y, ηz� →
1

2
(|00� − |01� − |10� − |11�)|x, y, ηz�

|01�|x, y, ηz� →
1

2
(−|00� + |01� − |10� − |11�)|x, y, ηz�

|10�|x, y, ηz� →
1

2
(−|00� − |01� + |10� − |11�)|x, y, ηz�

|11�|x, y, ηz� →
1

2
(| − 00� − |01� − |10� + |11�)|x, y, ηz�

|10〉 |11〉

|10〉|00〉

| ←〉 | →〉| ↓〉

| ↑〉

(a)

q1
q2

c1

−G(2)

c2

(b)

Figure 15.   (a) The qubit space for 2× 2 lattice along with coin basis. (b) Quantum circuit implementation 
of Oracle for 2× 2 lattice. The Pauli X operator is used to flip the bit to implement control operation over |00� 
position basis.

|100〉 |110〉

|100〉|000〉

| ←〉 | →〉| ↓〉

| ↑〉

|101〉 |111〉

|101〉|001〉

| ←〉 | →〉| ↓〉

| ↑〉

(a)

q1
q2
Q1

c1

−G(2) −G(2)

c2

(b)

Figure 16.   (a) The qubit space for 2× 2 lattice with two layers with coin basis. The marked nodes are shown 
with blue color. (b) Quantum circuit of oracle for 2× 2 lattice with two layers for marked nodes |000� and |111�.
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Therefore, the qubit requirement scale is O(log(mN)) with system size. The major cost of the operator in the 
algorithm comes from the flip-flop shift operator. We can find how many Toffoli gates required for the flip-flop 
shift operator for single-layer amplification

which is O(4D2) . For the multi-layer amplification case, this modifies to ≈ 4(D2 + D)+ 8D′(D′ + 1) due to 
the additional operator needed for hopping between layers. The n-qubit Toffoli gate requires at least 2n CNOT 
gates49, therefore, the number of CNOT gates required is approximately of order O(8D2) . The construction of the 
oracle requires control operation of Grover’s diffusion operator as many times as the number of marked points. 
For a large data set and a small number of marked points, we expect the cost due to shift operator to dominate, 
and therefore resource requirement is polynomial in the number of gates required for a single step. Therefore, 
the complete algorithm requires at least ≈ topO(D2) CNOT gates.

Discussion and conclusion
The conventional QWSA is aimed at finding a marked node in a graph but lacks the ability to characterize 
the nodes when more than one is present. We propose a modification that locates multiple marked nodes and 
characterizes them with respect to an existing (chronological) ordering. Clearly, our algorithm can also be 
extended to cases where the categorization of marked nodes is based on some attribute other than temporal. 
This involves the introduction of extra qubits associated with categories. We give an explicit form of oracle in 
two separate cases depending upon whether there’s an inter-flow of probability between categories. As a concrete 
application, we used our formulation for particle tracking in real-time. Finally, we also construct an equivalent 
quantum circuit for the algorithm, with the prospect of integration with the contemporary quantum hardware. 
However, this is a beginning step, where we have just scratched the tip of the iceberg, and a lot more needs to be 
amended in the algorithm before it gets market-ready. We will point out some immediate follow-up questions 
that we intend to resolve and extend the scope of the algorithm:

•	 More generic geometries: we have considered the algorithm on a simple two-dimensional lattice w/o 
boundary conditions. The immediate generalization would be to consider more generic and perhaps non-
trivial geometries with intricacies. For example, we would consider a percolation lattice in 2d with different 
weighted edges and on-site potentials. These geometries represent various scenarios in real-time systems. 
Another direction worth pursuing is the search on graphs themselves. A part of the problem is already 
addressed in “Quantum tracking problem” where we considered the simpler version of50 where the authors 
discuss searches on temporal (time-varying) graphs. We would like to see if our algorithm can be extended 
to address multiple temporal graphs with intersecting vertices. This would be helpful in elevating the 
predictability of the algorithm from a tracking to a tracking-intercepting algorithm.

•	 Localization and quantum state transfer: These two concepts are seemingly disconnected. Localization 
explains how particle propagation (plane waves) can be restricted (localized distribution) in the presence 
of disorder in the media51. In particular, it is demonstrated in the context of DTQW in various settings52–54. 
Quantum State transfer concerns the propagation of a specific quantum state from one node (origin) to 
another (target) through a complex network (e.g., a spin chain)55,56. These two ideas are not quite connected 
with each other and are more disconnected from the QWSA. The question, however, is whether we can 
establish a connection between the search algorithm and the localization aspect by thinking of the search 
oracle as a disorder in an otherwise non-chaotic media. Similarly, instead of taking a complete superposition 
for an initial state, can we single out the marked nodes with any biased (a specific) initial state? The real 
question in both scenarios is to interpret the “Search Oracle” R as a disorder operator from the physics point 
of view, which in turn can help understand the search oracle better and amend it for other purposes based 
on insights from physics.

Data availibility
The datasets generated and analysed during the current study are publicly available via q-search repository, 
https://​github.​com/​Kmax-​art/q-​search. The supplementary material contains a .gif movie for tracking problem.
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