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Deep embedded clustering 
generalisability and adaptation 
for integrating mixed datatypes: 
two critical care cohorts
Jip W. T. M. de Kok 1,2*, Frank van Rosmalen 1,2, Jacqueline Koeze 3, Frederik Keus 3, 
Sander M. J. van Kuijk 4, José Castela Forte 5,6, Ronny M. Schnabel 1, Rob G. H. Driessen 1,2,7, 
Thijs T. W. van Herpt 1,2, Jan‑Willem E. M. Sels 1,2,7, Dennis C. J. J. Bergmans 1,8, 
Chris P. H. Lexis 1, William P. T. M. van Doorn 2,9, Steven J. R. Meex 2,9, Minnan Xu 10, 
Xavier Borrat 11,12,13, Rachel Cavill 14, Iwan C. C. van der Horst 1,2 & Bas C. T. van Bussel 1,2,15

We validated a Deep Embedded Clustering (DEC) model and its adaptation for integrating mixed 
datatypes (in this study, numerical and categorical variables). Deep Embedded Clustering (DEC) is a 
promising technique capable of managing extensive sets of variables and non‑linear relationships. 
Nevertheless, DEC cannot adequately handle mixed datatypes. Therefore, we adapted DEC by 
replacing the autoencoder with an X‑shaped variational autoencoder (XVAE) and optimising 
hyperparameters for cluster stability. We call this model “X‑DEC”. We compared DEC and X‑DEC 
by reproducing a previous study that used DEC to identify clusters in a population of intensive care 
patients. We assessed internal validity based on cluster stability on the development dataset. Since 
generalisability of clustering models has insufficiently been validated on external populations, we 
assessed external validity by investigating cluster generalisability onto an external validation dataset. 
We concluded that both DEC and X‑DEC resulted in clinically recognisable and generalisable clusters, 
but X‑DEC produced much more stable clusters.

The Intensive Care Unit (ICU) accommodates the most heterogenous patient population with the highest mortal-
ity rate within the  hospital1. These patients are placed within the same area of the hospital because they require 
extensive and specialised care, which is effective, but also  expensive2. However, these patients should ideally be 
divided into more homogeneous subgroups with specific needs and care pathways. This could improve efficient 
usage of scarce resources and specialised care, as well as reduce alarm fatigue by separating patients that require 
more attention. Clustering of ICU patients is increasingly recognised for its potential to improve critical  care3–8 
as clustering analyses can identify more homogenous groups within a heterogeneous  population9. Furthermore, 
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such homogenous subgroups can also be useful for clinical research, as cluster-specific effects might be diluted 
by patient  heterogeneity10.

The many variables that can be collected using continuous multimodal monitoring, which is standard at the 
ICU, include patient characteristics, clinical variables, co-morbidities, medical history, and laboratory meas-
urements. ICU personnel cannot possibly assess this torrent of information continuously for every patient. 
Therefore, clinical decision support systems, including machine learning models to aid daily practice, are getting 
increasingly  common11. Clustering is one form of such machine learning tools that can stratify patients into 
more homogenous groups that can be targeted more precisely. Many different clustering techniques exist, but this 
study focuses on Deep Embedded Clustering (DEC), as employed by Castela Forte et al.3 to cluster ICU patients. 
DEC is a clustering technique that can cluster ICU patients based on large sets of variables. One benefit of DEC 
is that it can identify non-linear relationships between variables, potentially revealing clusters with clinically 
recognisable phenotypes that other linear approaches cannot  identify3.

DEC uses an autoencoder, which is a neural network that can summarise large numbers of variables into 
a reduced set of latent features. DEC uses those latent features to identify clusters. It uses K-means to identify 
initial cluster centroids, then optimises the encoder of the autoencoder and updates the cluster centroids to form 
the clusters. DEC was created by Xie et al.12 to cluster images and text. Consequently, DEC was not designed to 
handle mixed datatypes appropriately, meaning variables on different scales can disproportionately impact on the 
model. Therefore, we adapted DEC to integrate numerical and categorical variables, both abundant in the ICU, 
by incorporating an X-shaped variational autoencoder (XVAE) into its architecture. We call this adapted model 
“X-DEC”. XVAE has two primary differences compared to the original autoencoder. First, it uses a variational 
autoencoder, a generative model, which, rather than only learning how to compress the input data, also learns 
the parameters of the input data distribution through variational Bayesian inference. As the encoding distribu-
tion is regularised, it can generate new samples, and the chance of overfitting is  reduced13–16. Second, XVAE uses 
an X-shaped neural network, which integrates two separate sets of  variables13. Furthermore, we optimised the 
X-DEC hyperparameter values for cluster stability through a grid search.

A prerequisite for implementing cluster-driven care and research is proper investigation of cluster  validity17. 
Cluster generalisability is often ignored as a crucial aspect of cluster validity, which assesses whether cluster-
ing models can identify similar clusters in other comparable  populations3,10,18. The objective of this study is to 
evaluate the validity of ICU patient clusters identified by (X-)DEC through the evaluation of its cluster stability, 
clinical recognisability, and generalisability on an external dataset. Therefore, we chose to replicate the DEC 
model of Castela Forte et al.3 and created the adapted X-DEC model. Both models were trained on data from 
Castela Forte et al.3 and externally validated on data from another hospital. We hypothesise that X-DEC can 
identify more stable clusters compared to DEC in a well-defined prospective cohort of ICU patients and that 
these clusters are generalisable to real-world ICU data of another hospital. This study is intended for clinicians as 
well as data scientists, as we believe it is important for clinicians to be able to follow scientific advances in their 
field. To ensure readability for a wider audience, this study assumes no prior knowledge of the used methods 
and explains concepts plainly and visually with minimal jargon. More detailed descriptions of the methods can 
be found in the supplementary information.

Related work
This study expands on previous evidence that did not address the generalisability of clustering models. Cluster 
validation on a separate validation set, and the assessment of cluster generalisability in particular, is often lacking 
in clustering  research3,10,18. However, some have recognised its  importance4–6,28–31, although often focussing on 
reproducibility rather than  generalisability6,29, or without using external  data7,30. Furthermore, we built upon 
the growing body of research on deep  clustering3,12,23,32–34 by creating X-DEC.

Methodology
To investigate cluster generalisability, we recreated the DEC model published by Castela Forte et al.3 by training 
it on data from the original cohort and investigated the generalisability of this model by applying it directly to a 
retrospective ICU dataset from another hospital. We evaluated whether the DEC model could be improved, first, 
by replacing its multilayer perceptron (MLP) autoencoder with an X-shaped variational autoencoder (XVAE) 
that can handle a mixture of numerical and categorical variables more appropriately and second, by optimising 
its hyperparameters for cluster stability.

The data
The first cohort was used to create the development dataset, and the second for the external validation dataset. 
The development dataset originates from the Simple Intensive Care Studies (SICS) cohort, a prospective ICU 
cohort from the University Medical Centre Groningen (UMCG), Groningen, the Netherlands, described exten-
sively  elsewhere3,19–21. The external validation dataset is a retrospective ICU dataset from the Maastricht Univer-
sity Medical Centre+ (MUMC+), Maastricht, the Netherlands. We extracted the MUMC+ dataset from a real-
world clinical ICU database to reproduce the SICS cohort. Therefore, all unplanned patients admitted to the ICU 
between 9/7/2012 and 14/3/2020 (to exclude the COVID-19 pandemic patients) were selected (N = 6328). Patients 
without a registered heart rate (i.e., empty files or patients who died before admission), without known admission 
type, who underwent elective or planned surgery, aged below 18 years, and patients with a length of stay (LOS) 
shorter than 24 h (N = 1864) were excluded. Also, medium care patients (N = 523) were excluded (Sipplementary 
Fig. S1). Each patient sample in this study is a unique admission, meaning that one patient could occur more 
than once if admitted to the ICU multiple times. Patients in the SICS cohort gave informed consent, which was 
waived for the MUMC+ cohort by the institutional review board (Medisch-ethische Toetsingscommissie) of the 
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MUMC+. Investigation of the SICS and MUMC+ cohort was approved by the institutional review board of the 
UMCG (M15.168207) and of the MUMC+ (2021-279), respectively. All methods were performed in accordance 
with the relevant guidelines and regulations.

All 26 routinely collected laboratory measurements in the SICS cohort were considered for inclusion in the 
MUMC+ dataset. However, arterial point-of-care measurements were not available in the MUMC+ dataset and 
were therefore removed from the SICS dataset. Central Venous Pressure (CVP) measurements are invasive and 
only measured in a few patients. Therefore, CVP was converted into a categorical CVP identifier variable with 
CVP measurement present (one) or absent (zero). Since positive end-expiratory pressure (PEEP), by defini-
tion, is present in mechanically ventilated patients only, this was set to 5  cmH2O for non-ventilated patients to 
mimic low PEEP. The date and time of admission and discharge were used to calculate the LOS. To reduce the 
risk of data removal due to inaccurate admission times, information gathered within 12 h prior to ICU admis-
sion was included. Data after ICU discharge were excluded. Next, variables with more than 40% missing values 
in the MUMC+ dataset were excluded, removing amylase, mean corpuscular volume (MCV), and troponin T 
from both datasets (supplementary Fig. S2). Patients with more than 40% missing values for all their variables 
combined (N = 47) were also  excluded22. Finally, of the 26 considered laboratory variables, 23 were included 
(supplementary Table S1).

For all laboratory measurements, the mean and standard deviation of all available measurements during the 
full ICU stay were computed for each patient sample separately, resulting in 46 variables. Next, missing data 
were imputed based on Multiple Imputation by Chained Equations using the “miceForest” Python package (see 
supplementary Imputation section and Table S2). Finally, standard scaling to a z-distribution was applied to 
all numerical (continuous, discrete, and ordinal) variables from the SICS dataset by subtracting the mean and 
dividing it by the standard deviation per variable. The mean and standard deviation per variable of the SICS 
dataset were used to scale the MUMC+ dataset. In addition to 46 laboratory variables (23 means and 23 stand-
ard deviations), both datasets included 34 additional variables, resulting in 80 input variables for the cluster 
analyses (supplementary Table S1) compared to 120 in the original  paper3. All categorical variables were binary. 
Furthermore, admission diagnoses, vasoactive medication requirement (binary), LOS, and ICU mortality were 
outcome variables. The SICS dataset was used to train the clustering models and to assess cluster stability. The 
MUMC+ dataset was only used to investigate cluster generalisability by applying the clustering models (trained 
on SICS) to the MUMC+ dataset using all the available input and outcome data (see supplementary descriptive 
statistics).

The MUMC+ dataset contained 3,894 patient samples (from 3,577 unique patients), compared to 787 patient 
samples in SICS. Both age and sex did not differ significantly between the two datasets (p = 0.08 and p = 0.77 
respectively), with an average age of 63 years and 64% males in MUMC + compared to 62 years and 63% males in 
SICS. The percentage of patient samples that required vasoactive medication and LOS were significantly higher 
in MUMC+ (76% and 7.7 days) compared to SICS (49% and 5.9 days) (p < 0.001 and p = 0.006). ICU mortality 
was higher in the MUMC+ population (23%) compared to SICS (19%) (p = 0.01) (See supplementary descriptive 
statistics Table S3).

The recreated deep embedded clustering model
Because this study aimed to replicate and externally validate the work of Castela Forte et al.3, their implementa-
tion of the DEC model was followed as precisely as possible unless stated otherwise. First, we recreated the DEC 
model with six clusters, as Castela Forte et al.3 had concluded that this resulted in the most stable clusters, but 
now using the 80 input variables from the SICS datasets (i.e., “the recreated DEC model”). DEC uses an MLP 
autoencoder, which is an unsupervised artificial neural network that maps the original input variables into a 
reduced set of latent features (i.e., synthetic variables). The autoencoder consists of two parts, the encoder, which 
encodes the input variables into a reduced set of latent features, and the decoder, which reconstructs the input 
variables from the latent features, ensuring minimal information loss in the encoding (Fig. 1). The autoencoder 
is trained over 500 epochs. In each epoch, the autoencoder is trained iteratively on batches of 64 patient samples. 
Ultimately, the encoder of the autoencoder generates latent features that capture as much information from the 
input variables as possible. Then, DEC uses those latent features to identify clusters, meaning the decoder is only 
used to train the initial autoencoder.

The complete DEC model architecture can be summarised in six steps (Fig. 2). First, to reduce the number of 
variables, an autoencoder is trained to generate a non-linear mapping of the input variables into latent features 
(step 1). Second, K-means clustering is performed on the latent features, identifying the initial centroids (the 
centre points of the clusters) of the six clusters (step 2). Next, the autoencoder is optimised to improve cluster 
purity, essentially minimising the distance between patient samples within a cluster and maximising the distance 
between patient samples from different clusters. To this end, soft labels and a target distribution are calculated 
(step 3). Soft labels are probabilities of how likely a sample belongs to a certain cluster. Each sample has six soft 
labels, one for each cluster. A high soft label value indicates that a patient is likely to belong to a specific cluster, 
whereas a low value indicates that the sample is unlikely to belong to that cluster (supplementary Eq. 1). The soft 
labels are mapped to a target distribution by raising them to the second power, such that the difference between 
high and low soft labels gets larger, increasing the probability that samples with high soft labels belong to their 
closest  cluster12. To prevent larger clusters from distorting the latent features, the target distribution is first 
divided by the sum per cluster, and then divided by the sum per patient sample, to ensure the target soft labels 
always add up to one (supplementary Eq. 2). The resulting target distribution portrays a preferable scenario in 
which the model more confidently assigns cluster labels to patient samples. As this is a hypothetical projection 
only, the encoder of the autoencoder and the cluster centroids are optimised to produce soft labels more similar 
to the target distribution (step 4). This is achieved by optimising the encoder to minimise the Kullback–Leibler 
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(KL) divergence loss, which measures the difference between the soft label distribution and target distribution 
(supplementary Eq. 3). Thereby, forcing highly likely patient samples to move closer to their cluster centroid, 
while causing less likely patient samples to shift along with them. This optimisation process involves iteratively 
adjusting the encoder from the autoencoder initialised in step 1. In each iteration, the neuron weights (i.e., how 
much a neuron, which is a mathematical combination of the input variables, contributes to another neuron in 
the subsequent layer) are adjusted, resulting in slightly different latent features. Therefore, in every iteration, 
samples can change cluster membership, and the cluster centroids are recomputed. Then, the KL divergence loss 
is computed between the target distribution and the new soft labels resulting from the adjusted latent variables 
and clusters. If the KL divergence loss is getting smaller, the weights will be adjusted in a similar direction in 
the subsequent iteration; otherwise, different weight adjustments are tested. After each  140th iteration, if at least 
1% of all samples changed cluster membership, the cycle continues by recalculating the soft labels and target 
distribution (step 5). Alternatively, if less than 1% of all samples changed cluster membership, the cycle stops, 
and the final clusters are determined (step 6). We copied the DEC architecture directly from the original SICS 
 paper3, which used previously published code (https:// github. com/ piisw rong/ dec 12). All clusters from the recre-
ated DEC model were clinically interpreted and described by six ICU consultant physicians of the MUMC+. See 
supplementary recreated DEC model section for more details on the model.

The adaptation for mixed data types—the X‑DEC model
We created the X-DEC algorithm by replacing DEC’s autoencoder with an XVAE to allow the use of both 
numerical and categorical  variables13 (Fig. 3). Here, we separate two data types: the numerical variables (con-
taining continuous, discrete, and ordinal variables) and the binary categorical variables. Categorical variables 
with more than two categories (which were not present in this study) can also be included by converting them 
to multiple binary dummy variables. XVAE is regularised against overfitting as it enforces a Gaussian prior 
distribution on the latent features, generally resulting in a better organised latent feature space and potentially 
more meaningful clusters when used in a DEC framework compared to MLP  autoencoders23. The code is based 
on previously published  work13 (https:// github. com/ Cance rAI- CL/ Integ rativ eVAEs). Additionally, to circum-
vent DEC’s arbitrarily selected number of neurons (Fig. 1), hyperparameter tuning was performed to optimise 
X-DEC for cluster stability. To this end, the X-DEC model was trained using different numbers of neurons in 
the hidden and encoding layers. The setup with the highest cluster-wise stability was selected (please see the 
next section on Cluster stability). A full description of the X-DEC model is visualised in supplementary Fig. S3. 
X-DEC was trained on the SICS dataset, and all resulting clusters were clinically interpreted and described by 
six ICU consultant physicians of the MUMC+. See supplementary X-DEC model section for more information.
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Figure 1.  Diagram of the autoencoder used in the original DEC model. Each column of circles is a layer, and 
the circles are neurons, which essentially are some mathematical combinations of the neurons from the previous 
layers, except for the input layer, where they represent the original input variables. The solid lines indicate that 
all neurons can be used to compute all neurons in the subsequent layer. The dotted vertical lines indicate that 
some neurons are not displayed to simplify the illustration. The numbers represent the number of each neuron. 
The autoencoder consists of two parts, the encoder (green box), which maps the input data onto a smaller latent 
feature space used for clustering, and the decoder (red box), which reconstructs the input variables from the 
latent features. The encoder contains one hidden layer of 64 neurons, which are different combinations of the 
80 input variables. The encoder also contains an encoding layer, combining information from the previous 64 
neurons in eight neurons (i.e., the latent features). The decoder contains one hidden layer and an output layer 
that attempts to reconstruct the input variables. Initially, all the connections between the neurons are random. 
Therefore, the output variables will not resemble the input variables very well. However, the autoencoder is 
trained by adjusting the weights of the connections between all neurons (i.e., neuron weights) such that the 
output variables will be as similar as possible to the input variables, as quantified by the mean squared error. 
It should be noted that the number of layers and the number of neurons in each layer can result in different 
mappings and thus influence the clustering results.

https://github.com/piiswrong/dec
https://github.com/CancerAI-CL/IntegrativeVAEs
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Cluster stability
For computing cluster stability (i.e., “How often do patient samples end up in the same cluster if we train the 
clustering model again?”), we created 1000 subsets of the SICS dataset, each containing a random 90% of the 
patient samples. The clustering model, meaning the entire (X-)DEC pipeline (from step 1 until step 6), excluding 
hyperparameter optimisation, was trained separately on each of the 1000 subsets. To ensure that the cluster labels 
of all subsets refer to the same cluster, we ran the model on all patient samples once. We call this the complete 
model. Then, the cluster labels from each subset were mapped to cluster labels from the complete model based 
on the highest Jaccard similarity coefficient, a measure of the degree of overlap between two sets of patient sam-
ples. The Jaccard similarity coefficient ranges between zero and one, with a higher coefficient representing more 
similar clustering. The mapping was done iteratively and exclusively, meaning that the cluster with the highest 
maximum Jaccard similarity coefficient was mapped first and that two clusters from one subset cannot map to 
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K-means clustering
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Figure 2.  Architecture of the deep embedded clustering algorithm. Based on the input dataset, the autoencoder 
is initialised and maps the original variables into the latent features (step 1). K-means clustering is performed on 
the latent features (step 2). Then, six soft labels are computed for each patient sample, and the target distribution 
is calculated, maximising the separation of high and low soft labels (step 3). Subsequently, the encoder of the 
autoencoder is optimised to minimise the Kullback–Leibler divergence loss between the soft labels and target 
distribution over 140 iterations (step 4). If at least 1% of all patient samples change cluster membership, the soft 
labels and target distribution are recomputed, and the optimisation of the encoder of the autoencoder continues 
(step 5). Otherwise, clustering is finalised (step 6).
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the same cluster of the complete set. Finally, each patient sample was assigned a reference cluster label by picking 
the cluster label assigned most often over all 1000 subsets.

From the clustering results on the 1000 subsets, we computed two types of cluster stability measures. First, 
the cluster-wise stability was determined using the Jaccard similarity  coefficient24. The overall Jaccard similarity 
coefficient was computed by taking the mean of the cluster-wise Jaccard similarity coefficients that were cal-
culated per reference cluster per subset. Secondly, we quantified the sample-wise stability as the percentage of 
how often a sample ended up in its reference cluster across all 1000 subsets. Stability analyses were performed 
individually for the DEC and X-DEC models.

Cluster generalisability
The recreated DEC and X-DEC models, each trained on the SICS dataset, were directly applied to the 
MUMC+ dataset. The models were not retrained in any way on the MUMC+ dataset, and the weights learned 
on the SICS dataset were directly applied to the MUMC+ dataset. In other words, if the MUMC+ dataset would 
contain a patient sample with identical values to a patient sample from the SICS dataset, they would be clus-
tered identically. Then, we assessed the similarity between the MUMC+ and SICS clusters based on the input 
variables, outcome variables (min–max scaled LOS, average ICU mortality rate, and percentage of admission 
diagnoses per cluster, while excluding vasoactive medication requirement because it was systematically higher 
in the MUMC+ dataset), and latent features.

The Gower distance was used to calculate the inter-cluster difference between clusters from the SICS and 
MUMC+ datasets based on the original input variables. The Euclidean distance was used to calculate the inter-
cluster difference based on the outcome variables and latent features. Finally, all MUMC+ clusters were mapped 
to their most similar SICS cluster based separately on the three distance calculations (input variables, output 
variables, and latent features), resulting in three mappings per cluster. The mapping was done non-exclusively, 
meaning multiple clusters from the MUMC+ dataset could map to the same cluster from the SICS dataset. If the 
clustering model generalises well, the MUMC+ clusters should map to their respective SICS cluster; for example, 
MUMC+ cluster 1 should map to SICS cluster 1 as these are formed by the same criteria.
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Figure 3.  The X-shaped variational autoencoder architecture. Each column of nodes is a neural layer, and the 
circles it contains are neurons, which essentially are some non-linear mathematical combinations of the neurons 
from the previous layers. The solid lines show that all neurons can be used to compute all neurons in the next 
layer. The dotted vertical lines indicate that some neurons are not displayed to simplify the illustration. The 
numbers represent the number of each neuron. The X-shaped variational autoencoder (XVAE) consists of two 
main parts. First, the encoder (green box), which maps the input data into the smaller latent feature space, and 
the decoder (red box), which reconstructs the original variables from the latent features. The input data consists 
of two separate input sets, input S1 containing all numerical variables (blue box) and input S2 containing all 
categorical variables (orange box). Each input set is first fed into its own hidden layer. The resulting two hidden 
layers are then combined into another hidden layer that is fed into the encoding layer (green), which also 
generates the latent features on which the clustering is performed. The encoding layer uses stochastic inference 
to approximate the latent features as probability distributions, which in this case are Gaussian. Therefore, the 
encoding layer is separated into the mean and standard deviation of those distributions (not visualised). Next, 
the decoder starts where the encoding layer feeds into a hidden layer, which then splits into two separate hidden 
layers, each feeding into its own output layer to reconstruct the original variables. Finally, the reconstruction 
loss is determined by computing the mean squared error of the numerical variables and the cross-entropy of the 
categorical variables, which are both scaled by the number of variables of the input data.
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Results
A detailed comparison of the SICS and MUMC+ dataset can be found in supplementary Table S3.

The recreated DEC model
Clusters in the SICS dataset
Clusters from the recreated DEC model on the SICS dataset showed differences regarding admission diagnoses 
and clinical outcomes (Fig. 4). Cluster 1 was the largest and mainly showed cardiovascular and respiratory 
admission diagnoses. Cluster 2 was the smallest, with only 22 patients, and showed the highest mean LOS and 
mortality (55%). Cluster 3 had the shortest LOS, a relatively low mortality (15%), and mainly contained respira-
tory patients. Cluster 4 showed medium mortality (19%) and mainly cardiovascular patients. Cluster 5 had the 
lowest mortality (12%), containing mainly neurological, cardiovascular, and some trauma patients. Cluster 6 has 
the second highest LOS and mortality (32%), mainly containing cardiovascular, gastrointestinal, and respiratory 
patients. See supplementary descriptive statistics Table S4 for more details.

Cluster stability
The overall Jaccard similarity coefficient of the recreated DEC model was 0.487, with cluster-wise Jaccard simi-
larity coefficients between 0.387 and 0.633 (Fig. 5A). Overall sample-wise stability was 67.2%, and most patient 
samples had a stability between 40 and 100% (Fig. 5B).

Clusters in the MUMC+ dataset
The recreated DEC model applied to the MUMC+ dataset showed differences regarding admission diagnoses 
and clinical outcomes (Fig. 4). Compared to the SICS dataset, the required vasoactive medication was higher 
in all clusters, and LOS was longer in all clusters besides cluster 5. Cluster 1 had a medium mortality (22%) 
and mainly contained cardiovascular, neurological, and respiratory patients. Cluster 2 was the smallest cluster, 
with only 219 patients, and had the highest mean LOS and mortality (47%). Cluster 3 had the shortest LOS and 
lowest mortality (12%) and mainly contained respiratory and cardiovascular patients. Cluster 4 had a medium 
mortality (25%) and contained mainly cardiovascular patients. Cluster 5 had the second-lowest mortality (16%), 
containing mainly neurological and cardiovascular patients. Cluster 6 had the second-highest mean LOS and 
mortality (35%), mainly containing cardiovascular, gastrointestinal, and respiratory patients. See supplementary 
descriptive statistics Table S5 for more details.
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Figure 4.  Heatmap of the outcomes and admission diagnoses per cluster from the recreated DEC model. The 
colour scale, as depicted on the right-hand side of the figure, indicates what fraction of a given cluster belongs to 
the class specified on the y-axis. The in-cell numbers for ICU length of stay correspond to the mean per cluster 
in days. The values for ICU mortality and required vasoactive medication depict fraction of non-survivors. 
Values for diagnoses indicate total counts per cluster. The bar at the bottom shows the total number of patient 
samples per cluster. The bar at the right indicates the mean (for outcomes) and total number of patient samples 
(for admission diagnoses) per class across all clusters.
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Cluster generalisability
Based on the input variables, all MUMC+ clusters were most similar to SICS cluster 5, and the mapping on the 
outcome variables showed that clusters 1, 3, 4, 5 and 6 were mapped correctly. All clusters were mapped correctly 
based on the latent features (Fig. 6).

The X‑DEC model
Clusters in the SICS dataset
Clusters from the X-DEC model on the SICS dataset showed differences regarding admission diagnoses and clini-
cal outcomes (Fig. 7). Cluster 1 was the smallest cluster with 61 patients, had the highest mean LOS and mortality 
(38%), and mainly contained respiratory, cardiovascular, and gastrointestinal patients. Cluster 2 was the largest 
cluster, with 200 patients and had the second-highest mortality 26%), mainly containing cardiovascular, neuro-
logical, and trauma patients. Cluster 3 mainly contained cardiovascular, gastrointestinal, and respiratory patients. 

a b

Figure 5.  Stability plots of the recreated DEC model on the SICS data set. (A) A box-and-whisker plot of the 
Jaccard similarity coefficients per cluster. (B) A bar plot of the sample-wise stability, the y-axis indicates the 
number of samples in each bar, and the x-axis indicates the stability in terms of how often the samples were 
clustered into their reference cluster.
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number to the SICS cluster it was mapped to, as indicated by the legend on the right.
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Cluster 4 had the lowest mean LOS and mortality (5%), mainly containing respiratory, cardiovascular, and neu-
rological patients. Cluster 5 mainly contained respiratory, gastrointestinal, and cardiovascular patients. Cluster 
6 had the second-highest LOS, mainly containing cardiovascular, gastrointestinal, and respiratory patients. See 
supplementary descriptive statistics Table S6 for more details.

Stability
The overall Jaccard similarity coefficient of the X-DEC model was 0.762, with cluster-wise Jaccard similarity 
coefficients between 0.715 and 0.841 (Fig. 8A). Overall sample-wise stability was 85.0%, and most patient samples 
had a stability above 95% (Fig. 8B).

Clusters in the MUMC+ dataset
Clusters from the X-DEC model on the MUMC+ dataset showed differences regarding admission diagnoses 
and clinical outcomes (Fig. 7). Cluster 1 was the smallest cluster with 319 patients, had the second-highest 
mean LOS and mortality (27%), and mainly contained cardiovascular, respiratory, and gastrointestinal patients. 
Cluster 2 was the largest cluster, with 1,293 patients, mainly containing cardiovascular, neurological, and res-
piratory patients. Cluster 3 mainly contained cardiovascular, gastrointestinal, and respiratory patients. Cluster 
4 had the lowest mean LOS and mortality (9%), mainly containing respiratory, cardiovascular, and neurological 
patients. Cluster 5 had the second-lowest mean LOS and mortality (13%) and mainly contained respiratory, 
cardiovascular, and gastrointestinal patients. Cluster 6 had the highest mean LOS and mortality (37%), mainly 
containing cardiovascular, gastrointestinal, and respiratory patients. See supplementary descriptive statistics 
Table S7 for more details.

Cluster generalisability
Based on the input variables, cluster 2, 4 and 5 were mapped correctly, and the mapping on the outcome vari-
ables showed that clusters 2, 3, 4, 5 and 6 were mapped correctly. All clusters were mapped correctly based on 
the latent features (Fig. 9).

Discussion
This study introduces X-DEC, a novel adaptation of DEC that can integrate multiple datatypes. This is particularly 
useful when dealing with clinical data which often contains numeric and categorical variables. We investigated 
the generalisability and stability of clusters derived from the DEC and X-DEC models, presenting valuable 
insights into their applicability and advancements in data-driven healthcare, thereby, introducing novel digital 
health innovations with the potential to improve medical practice and patient care. More specifically, the clusters 
from both DEC and X-DEC are generalisable as they showed similar clinical phenotypes within clusters when 
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Figure 7.  Heatmap of the outcomes and admission diagnoses per cluster from the adjusted X-DEC model. The 
colour scale, as depicted on the right-hand side of the figure, indicates what fraction of a given cluster belongs to 
the class specified on the y-axis. The in-cell numbers for ICU length of stay correspond to the mean per cluster 
in days. The values for ICU mortality and required vasoactive medication depict fraction of non-survivors. 
Values for diagnoses indicate total counts per cluster. The bar at the bottom shows the total number of patient 
samples per cluster. The bar at the right indicates the mean (for outcomes) and the total number of patient 
samples (for admission diagnoses) per class across all clusters.
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compared between the SICS and MUMC+ datasets, as assessed clinically by physicians as well as data-driven 
based on the outcome variables. Furthermore, we found that the DEC model was unstable. However, the hyper-
parameter optimisation and replacement of the MLP autoencoder with an XVAE, which can handle a mixture 
of data types (numerical and categorical variables in this case) more appropriately, improved cluster stability 
in the X-DEC model. The generalisability of clustering models on a general ICU patient population shows that 
clusters could potentially be used for patient stratification in clinical research and, eventually, guide clinicians 
in designing patient-specific care pathways.

Clinical interpretation of the DEC clusters
The following DEC cluster phenotypes were identified in both the SICS and MUMC+ dataset. Cluster 1 primarily 
describes patients with chronic cardiovascular and respiratory conditions. The observed elevation in haematocrit 

a b

X1 X6X5X4X3X2

Figure 8.  Stability plots of the adjusted X-DEC model on the SICS data set. (A) A box-and-whisker plot of 
the Jaccard similarity coefficients per cluster. (B) A bar plot of the sample-wise stability, the y-axis indicates the 
number of samples in each bar, and the x-axis indicates the stability in terms of how often the samples were 
clustered into their reference cluster.

5

2

5

4

5

2

1

4

5

3

2

1 SICS Cluster X6

SICS Cluster X5

SICS Cluster X4

SICS Cluster X3

SICS Cluster X2

SICS Cluster X1MUMC+ Cluster X1

MUMC+ Cluster X2

MUMC+ Cluster X3

MUMC+ Cluster X4

MUMC+ Cluster X5

MUMC+ Cluster X6

2

5

4

6

3

1

Lat
ent fe

atu
res

Outco
me va

ria
bles

Input v
ari

ab
les

X-DEC cluster mappings

Figure 9.  Colour map of cluster mappings between MUMC+ and SICS clusters from the X-DEC model 
based on the input variables, outcomes variables, and the latent feature space. Each row corresponds to a 
MUMC+ cluster, each column to the variables used for mapping, and each cell colour and number to the SICS 
cluster it was mapped to, as indicated by the legend on the right.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1045  | https://doi.org/10.1038/s41598-024-51699-z

www.nature.com/scientificreports/

at admission suggests that these patients may have adapted to lower oxygen  levels35. Furthermore, the high blood 
pressure in combination with older age suggests a less compliant vascular  system36–38. High albumin concentra-
tions suggest no acute inflammation and possibly a state of contraction of blood volume affected by diuretics. 
Cluster 2 appears to include patients with gastrointestinal disease and multiple organ failure, given the high 
vasopressor support and high concentrations of bilirubin and alkaline phosphatase with varying creatinine and 
urea  concentrations39. Cluster 3 may represent patients with bleeding, as those patients had low haemoglobin 
and haematocrit concentrations and higher  urea40, although not reflected by higher fibrinogen. However, higher 
fibrinogen and CRP suggest inflammation, possibly labelling this cluster with  sepsis41. The latter could also 
explain why haemoglobin is low due to dilution by major fluid administration in  sepsis42 and inflammatory bone 
marrow suppression with subsequent reduction in erythrocyte production. Cluster 4 mostly contains cardio-
vascular patients with acute hemodynamic impairment, with lower mean and systolic arterial blood pressure, 
presence of central venous measurements, high vasopressor support and varying magnesium concentrations. 
This might be related to dysrhythmias and how they are  treated43. Varying haemoglobin and haematocrit con-
centrations may reflect optimising cardiac oxygen delivery (e.g., by transfusion). The absence of inflammation 
suggests no sepsis. Patients in cluster 5 appeared as mainly trauma, neurotrauma and neurological patients. Their 
admission EMV (Eye opening, best Motor response, best Verbal response) score was low. Many patients were on 
invasive respiratory support at admission and had low CRP, normal creatinine, and high albumin, suggesting 
an adequate nutrition status before admission and against intercurrent inflammation. Low potassium could be 
caused by transmembrane cellular shifts due to targeted mechanical ventilation of neurotrauma patients. The 
traits of cluster 6 suggest severe multi-organ failure, as those patients stayed relatively long in the ICU with high 
mortality, having high vasopressor support and low blood pressure, high bilirubin, low thrombocytes, and low 
albumin. The latter variables suggest multi-organ involvement, possibly caused by a variety of critical  diseases44.

Clinical interpretation of the X‑DEC clusters
The following X-DEC cluster phenotypes were identified in both the SICS and MUMC+ dataset. Cluster X1 
patients had higher urea and higher creatinine concentrations, suggesting kidney injury, paired with higher 
phosphate and fluctuating calcium concentrations, both suggesting chronic kidney injury. Cluster X2 mainly 
consists of trauma, neurotrauma and neurological patients with cardiovascular disease. The patients are charac-
terized by low EMV score, high need for mechanical ventilation at admission, and high albumin concentration, 
suggesting adequate nutrition status before admission and no pre-existing inflammation. Low potassium could 
be caused by transmembrane cellular shifts due to targeted mechanical ventilation or increased sympathetic 
drive in neurotrauma patients. Cluster X3 primarily contains patients who appear in shock due to cardiovascular 
conditions and bleeding as this cluster is mainly characterized by hemodynamic variables, including low systolic 
blood pressure, presence of central venous measurements, high vasopressor support and varying magnesium 
concentrations, possibly reflecting dysrhythmias and their treatments, varying haemoglobin and haematocrit 
concentrations optimising cardiac oxygen delivery (e.g., by transfusion). In addition, the varying fibrinogen, 
varying haemoglobin, low calcium, and low total protein possibly relate to coagulopathies and bleeding. The high 
EMV scores indicate that these patients are  conscious45. Patients in cluster X4 appear to include patients with 
chronic cardiovascular and respiratory conditions. The increased haematocrit at admission suggests prolonged 
exposure to lower oxygen  levels35. Furthermore, the high mean arterial pressure and high diastolic pressure 
suggest hypertension and an affected cardiovascular  system37. The high albumin and total protein concentra-
tions indicate no acute inflammation and possibly a state of contraction of blood volume, which is often seen in 
patients treated with diuretics for heart failure or other cardiovascular conditions. Cluster X5 includes patients 
who appear to have an infection. They have higher leucocytes and higher CRP concentrations, which fluctuate, 
suggesting an ongoing inflammatory  response46. The low diastolic blood pressure and vasopressor support sug-
gest sepsis, whereas high urine output in combination with low potassium, possibly due to urinary loss, may also 
suggest infection without sepsis. Hence, the relatively low ICU mortality. Cluster X6 includes relatively young 
patients with severe pre-admission disease, such as transplantation in SICS and haematological and metabolic 
diseases in MUMC+. Overall, this cluster is characterized by patients who stayed relatively long in the ICU with 
high vasopressor support and high mortality. They showed varying potassium, low and varying calcium and 
haematocrit concentrations, and low fibrinogen, total protein, and haemoglobin concentrations.

Strengths and limitations
The DEC model was unstable, as patients did not consistently end up in the same cluster when retraining 
DEC multiple times on random subsets of the SICS dataset (only 67.2% on average). However, stability mark-
edly improved in the X-DEC model. Since this study did not show whether X-DEC was more stable due to 
implementation of XVAE in general, the hyperparameter optimisation, or a combination of both, we ran an 
additional analysis, where we optimised the hyperparameters of DEC to see if this would improve stability (see 
supplementary table S9). Although this improved DEC’s stability with a Jaccard similarity coefficient of 0.547 
and sample-wise stability of 71.4% (supplementary Fig. S4), X-DEC still outperformed DEC, suggesting that the 
incorporation of XVAE also contributes favourably to its stability. Furthermore, many other hyperparameters 
of X-DEC could also be optimised, such as the number of epochs, batch size, number of optimisation iterations, 
and the number of starting points for K-means, among others. However, that is beyond the scope of the present 
study. Therefore, future research should more elaborately investigate how X-DEC compares to other clustering 
techniques.

We specifically chose to investigate generalisability by applying a trained clustering model directly to an 
external dataset rather than testing reproducibility by retraining the model on an external dataset. We expected 
reproducibility to be poor since the heterogenous population, described by many variables, can be clustered in 
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many ways, where one set of clusters is not more valid than another per se. Furthermore, since the population of 
the external dataset contains a different collection of patient types (supplementary descriptive statistics Table S3), 
this suggests that other clusters are likely to be identified. However, when clustering on a more specific dataset, 
for example, to identify disease subtypes, we also recommend assessing cluster reproducibility on external data-
sets. For this study, we argue that generalisability is an essential validation aspect that assesses whether cluster 
phenotypes can be confirmed in another patient population. If clusters are generalisable, this means that clusters, 
and analyses performed using them, can be directly compared between populations, for example, to compare 
patient cluster distributions across hospitals.

Clusters from both DEC and X-DEC generalised well onto the MUMC+ dataset, as five out of six 
MUMC+ clusters mapped to corresponding SICS clusters based on the outcome variables. This suggests that 
the clusters have comparable phenotypes in both datasets. Only cluster 2 mapped incorrectly to clusters 6, 
and X6 to X1, possibly because those clusters contain transplant patients, which were underrepresented in the 
MUMC+ dataset. The requirement of vasoactive medication was excluded from the outcome variables for this 
mapping because vasoactive medication use was systematically higher in MUMC+ compared to SICS across 
all clusters. This would lead to most MUMC+ clusters mapping to one SICS cluster with a high requirement of 
vasoactive medication. Mapping based on the input variables was poor, suggesting that simpler linear clustering 
techniques like K-means would not find similar clusters. However, the latent features resulted in a perfect map-
ping, as was hypothesised, since the clusters are based on the latent feature space. Also, the clinical interpretation 
of the clusters matched well between the two datasets for both models, indicating good generalisability. This 
validates the clinical recognisability of the clusters for both the DEC and X-DEC model.

This study also has some limitations. Only 80 out of the original 120 variables were available. Therefore, 
clusters cannot be directly compared to those identified in the paper of Castela Forte et al.3. Also, we used rela-
tively general admission diagnoses to represent cluster phenotypes; ideally, more specific discharge diagnoses 
should be used if available. This could also explain why all clusters contain cardiovascular patients, as more 
specific diagnoses are unknown. Furthermore, MUMC+ included patient samples in retrospect, whereas SICS 
was a prospective cohort. This could have caused differences between the populations and, therefore, differences 
between clusters in the two populations. Nevertheless, clusters were comparable between the two populations. 
Furthermore, since DEC is optimised to map the variables into a latent feature space, specifically to produce 
clusters, distance-based internal cluster validity metrics such as the Silhouette score lose their  relevance12. We 
have confirmed this with the poor mapping between SICS and MUMC+ clusters based on the input variables 
and perfect mapping on the latent features. We believe that stability, in combination with careful examination 
of the clinical cluster properties, is the most valid and suitable approach for evaluating clustering validity here. 
Additionally, optimising the XVAE hyperparameters for stability introduces a potential pitfall of oversimplifica-
tion of the clustering model because the simplest clusters (e.g., separated only by binary variables) can also be the 
most stable clusters. However, those might not be the most clinically meaningful. The clusters identified by the 
X-DEC model presented in this paper did not exhibit any simple separation, nor did smaller XVAE architectures 
systematically result in more stable results (see supplementary table S8). This emphasizes the importance of 
context-specific cluster evaluation and the necessity of an interdisciplinarity approach, combining data science 
and  medicine17. Furthermore, there are still some arbitrary aspects in the model with unknown impact on the 
results. For example, instead of raising the soft labels to the second power to arrive at the target distribution, a 
different power could be used, altering how much the soft labels are transformed in each iteration. However, this 
is out of scope for the present study. Additionally, XVAE was the only architecture we evaluated for integrating 
mixed data types. This approach was chosen because XVAE has been shown to be one of the best-performing 
and most time-efficient  architectures13. Other architectures and the inclusion of more data  types13,32,47,48 could 
be explored in the future. Since we only evaluated X-DEC and its performance in a specific context, we cannot 
make any statement on the general performance of X-DEC in other datasets. Future research should further 
optimise the X-DEC architecture and evaluate its performance in different contexts. It could also be tested if 
retraining the decoder in combination with the encoder in step 4 (Fig. 2) could improve results and reduce 
potential overfitting. We also included patient readmissions and, thus, dependent data. This may lead to different 
but similar samples, where the first admission always survives. However, the inclusion of a variable describing 
readmissions in the MUMC+ dataset resulted in clusters that were not significantly different when readmissions 
were excluded (results not shown).

Implications
The implications of finding overlapping stable clusters in two independent cohorts within an unselected ICU 
population are significant and might reach far. While the initial discovery of these clusters is promising, it is 
crucial to validate their existence and characteristics across various healthcare settings and patient populations. 
Still, identifying and understanding these clusters can provide valuable insights to critical care clinicians. By 
recognising patterns and subgroups within the ICU population, clinicians can gain a deeper understanding of the 
underlying pathophysiology and prognosis of their patients. This knowledge can inform their decision-making 
processes, enabling them to make more accurate diagnoses, choose appropriate treatment strategies, and antici-
pate potential complications. Finally, the discovery of distinct clusters based on pathophysiological characteristics 
creates opportunities for more personalised approaches to clinical trials and patient care.

Conclusion
We validated DEC and the X-DEC adaptation for integrating multiple datatypes on clustering ICU patients. 
We evaluated the internal- and external validity of a DEC and X-DEC model on ICU patient data. We assessed 
internal validity based on cluster stability on the development dataset and concluded that DEC was unstable, 
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while X-DEC produced much more stable clusters. External validity was investigated through clinical interpre-
tation and generalisability. The clinical interpretation was based on the development and validation datasets by 
inspecting input and outcome variables per cluster. We were able to clinically interpret all clusters. To assess 
cluster generalisability, we made a comparison of clinical cluster interpretations, as well as data-driven mapping of 
clusters between the two datasets based on the outcome variables. We conclude that cluster phenotypes matched 
well between the two datasets, suggesting at least some generalisability. Together with the fact that experienced 
clinicians independently identified overlap in clinical characteristics of the clusters across SICS and MUMC+, 
this indicates good model generalisability. We presented the data so clinicians who read the paper can redo the 
cluster phenotype matching between the two datasets by interpreting the results, including supplementary tables 
S4–S7. Although both the DEC and X-DEC frameworks could identify recognisable and generalisable clusters of 
ICU patients, we have demonstrated that the shortcomings of the DEC framework can be overcome by X-DEC, 
resulting in stable, meaningful, and generalisable clusters. This demonstrates the potential for future research 
into cluster-driven healthcare.

Software
We used Python version 3.9.725 with the Spyder integrated development environment. The random seed was set 
to 5192 such that random operations are reproducible. All our code is openly available on GitHub (https:// github. 
com/ DAM- IC/ Deep- Embed ded- Clust ering- gener alisa bility- and- adapt ation- for- mixed- data- types).

Compliance with recommendations for machine‑learning‑related research
We followed the Recommendations for Reporting Machine Learning Analyses in Clinical  Research26 to ensure 
complete and transparent reporting of our methodology, results, and interpretation. Since we were unaware of 
any reporting guideline checklists for clustering analyses, we followed the transparent reporting of a multivariable 
prediction model for individual prognosis or diagnosis (TRIPOD)27 checklist where applicable.

Data availability
The datasets analysed during the current study are not publicly available because they contain sensitive patient 
information, but access can be provided by the corresponding author on reasonable request and with permission 
of Maastricht University Medical Centre+ and University Medical Centre Groningen.

Code availability
The underlying code, documentation, trained models, and dummy data for this research are openly available 
via a GitHub repository (https:// github. com/ DAM- IC/ Deep- Embed ded- Clust ering- gener alisa bility- and- adapt 
ation- for- mixed- data- types).
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