
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1665  | https://doi.org/10.1038/s41598-024-51687-3

www.nature.com/scientificreports

Integrated image and sensor‑based 
food intake detection in free‑living
Tonmoy Ghosh 1*, Yue Han 2, Viprav Raju 1, Delwar Hossain 1, Megan A. McCrory 3, 
Janine Higgins 4, Carol Boushey 5, Edward J. Delp 2 & Edward Sazonov 1

The first step in any dietary monitoring system is the automatic detection of eating episodes. To 
detect eating episodes, either sensor data or images can be used, and either method can result in 
false‑positive detection. This study aims to reduce the number of false positives in the detection of 
eating episodes by a wearable sensor, Automatic Ingestion Monitor v2 (AIM‑2). Thirty participants 
wore the AIM‑2 for two days each (pseudo‑free‑living and free‑living). The eating episodes were 
detected by three methods: (1) recognition of solid foods and beverages in images captured by AIM‑2; 
(2) recognition of chewing from the AIM‑2 accelerometer sensor; and (3) hierarchical classification to 
combine confidence scores from image and accelerometer classifiers. The integration of image‑ and 
sensor‑based methods achieved 94.59% sensitivity, 70.47% precision, and 80.77% F1‑score in the 
free‑living environment, which is significantly better than either of the original methods (8% higher 
sensitivity). The proposed method successfully reduces the number of false positives in the detection 
of eating episodes.

Dietary monitoring is critical for understanding body weight dynamics in humans associated with underweight, 
overweight, and  obesity1. Underweight people are more likely to have malnutrition, heart irregularities, bone 
fractures, and even  death2. Being overweight increases health risks, for example, type-2 diabetes, cardiovascular 
diseases, and asthma caused 3.4 million deaths in  20163. Eating behaviors associated with being underweight, or 
overweight, can be understood by monitoring dietary patterns. Traditional methods for monitoring food intake 
are food records, 24 h recalls, and food frequency  questionnaires4. These methods are usually inaccurate and 
suffer from  misreporting5 as well as placing an extra burden on the user.

Numerous technology-driven dietary monitoring methods have been suggested. These include manual image 
capture and various types of wearable sensors. Image-based methods are classified into two types. (1) Active 
image capture, where the user captures images (e.g. on a smartphone), and (2) Passive image capture, where 
images are automatically captured without user participation (e.g., by a wearable camera). The advantage of using 
images is that they capture the foods being eaten. In studies  of6–8,  and9, a smartphone-based active image-cap-
turing method was proposed for dietary assessment. Active user involvement is required for smartphone-based 
approaches, thus placing the burden on the user and increasing the risk of missing images.  In10,11,  and12, wearable 
cameras were used for the dietary assessment was proposed. Other than putting on the device, the passive image 
capture does not require any human intervention. However, a wearable camera creates privacy concerns as the 
user is not in control of the image  capture13. In the study  of9, food, and drink images were recognized using a 
deep neural network, the authors called their network ‘NutriNet’, which is a modified version of the popular 
AlexNet  network14. This method classified food and drink images from non-food images, however, did not 
detect eating episodes. Similarly,  in15, a convolution neural network (CNN) was introduced to recognize food 
images. To identify food items, image segmentation, and object classification methods were proposed  in16. The 
authors also integrated contextual information (user’s diet) to correct potential misclassification. Another deep 
learning-based method was proposed  in12, the authors used a wearable camera to capture egocentric images and 
then classified food and non-food images in real-life scenarios. The food intake detection accuracy (86.4%) was 
satisfactory. However, this method results in a high number of false positives (13%). In free-living conditions, 
image-based dietary assessment suffers from false positive detection due to a wearable camera capturing food 
images that were not consumed by the user.

Sensor-based methods have their advantages and limitations. Various wearable sensors have been proposed 
to detect eating proxies such as chewing, swallowing, jaw movements, and hand-to-mouth gestures. Acoustic 
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sensors (e.g., microphone) have been used to detect chewing and swallowing  sounds17–23 and thus detect eat-
ing episodes. Another commonly used sensor is the strain sensor that can capture jaw  movement21,24, throat 
 movement25–27, temporal muscle  movement28,29, and hence detect food intake. Although the food (solid) intake 
detection accuracy is impressive, strain sensors need direct contact with the skin, which is inconvenient for 
users. Physiological sensors such as Electromyography (EMG)30,31, Respiratory Inductance Plethysmography 
(RIP)/breathing  sensor32,33, and glucose monitoring  sensor34–36 were used to detect eating episodes. The sensors 
have their advantages and limitations. Motion sensors such as an accelerometer, and gyroscope have also been 
proposed to detect food intake by hand-to-mouth  gesture37–40, and head  movement29,41,42. The main advantage of 
using motion sensors is that it is convenient to use (no direct contact is necessary), however, they also generate 
false detection (in the range of 9–30%).

Studies28,29 conducted by our research team revolve around the application of chewing sensors, including 
piezoelectric and flex sensors, to facilitate the detection of food intake. Notably, the identification of eating epi-
sodes can be derived from either sensor data or images, given the presence of both chewing and image sensors 
within the wearable device. Either method may produce false-positive detection. For example, gum chewing may 
register as an eating episode on chewing sensor data. Foods not being eaten may be recognized in the images 
from the egocentric camera. Therefore, integrating both sensor-based and image-based food detection methods 
is essential for attaining more precise and accurate insights into food intake. A separate  research43 inquiry applied 
Score-Level and Decision-Level Fusion of Inertial and Video Data for the detection of intake gestures. In this 
scenario, the inertial sensor is incorporated into wearable devices, while the video camera remains fixed in place. 
However, implementing such a setup in real-life scenarios, especially free-living situations, presents challenges. 
In this paper, we bridge this gap and propose a novel food intake detection method that integrates sensor- and 
image-based detection from wearable sensors.

We use methods from deep learning to recognize solid foods and beverages in images captured by AIM-2. 
We use sensor-based detection of eating and hierarchical classification to combine confidence scores from both 
image and sensor methods for accurate eating detection. The paper is organized as follows, first, the Material and 
Methods are presented in Section “Material and methods” followed by results are discussed in section “Results”. 
Sections “Discussion” and “Conclusion” are discussion, and conclusion, respectively.

Material and methods
Sensor system
The Automatic Ingestion Monitor v2, AIM-229 was used in this study. The sensor system was attached to the 
frame of a pair of glasses. Figure 1 depicts an AIM-2. We used images, captured by the AIM-2 camera and sensor 
data, collected by the 3D accelerometer (chewing sensor) in this paper. The camera continuously captured images 
at a rate of one image every 15 s from the user’s egocentric point of view. These images were used to develop 
image-based food and beverage object detection. The 3D accelerometer sensor recorded head movement as well 
as head angle and body leaning forward motion, which was used as eating proxies to detect eating episodes. The 
accelerometer data were sampled at 128 Hz. Data from accelerometer sensors and images were saved to an SD 
card and processed offline for algorithm development and validation.

Data collection and ground truth annotation
A study was carried out in order to develop classification methods and assess the accuracy of food intake 
detection. From August 2018 to February 2019, 30 participants (20 males and 10 females, mean SD age of 
23.5± 4.9 years, range 18− 39 years, and mean body mass index (BMI) 23.08± 3.11 kg/m2 ) were recruited. 
The University of Alabama’s Institutional Review Board (IRB) approved the study. The experiment included a 
pseudo-free-living day and a free-living day. During the pseudo-free-living day, participants consumed three 
meals in the lab while engaging in otherwise unrestricted daily activities. There were no restrictions on food 
intake or activities during the free-living day. A detailed description of the study protocol and how the sample 
size was determined were reported  in29. All methods were carried out in accordance with the approved IRB’s 
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Figure 1.  AIM-2 installed on eyeglasses with non-corrective lens.
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guidelines and regulations. All subjects have given their informed consent to the use of the recorded data (sensor 
and image) for presentations, publications, or other forms of dissemination.

During food consumption in the lab, participants used a foot pedal connected to a USB data logger to record 
food ingestion. They were instructed to press the pedal as soon as they placed the food in their mouth (a bite) 
and held it until the food was swallowed. Similarly, for liquid food, they were requested to press and hold the 
pedal from the moment the liquid was placed in their mouth until the last swallow. This foot pedal record was 
used as ground truth for the pseudo-free-living day to train a food intake detection model for chewing sensor 
data. The participants continued free living for 24 h after completing the first day (pseudo-free living). The device 
captured continuous images (one image every 15 s), which were then manually reviewed to extract the ground 
truth of food intake detection of a free-living day. The number of eating episodes, as well as the start and end 
times of eating, were annotated and used for validation during the free-living day. During pseudo-free-living 
days, 372 h of data were collected, capturing 90 meals and a total of 89,257 images (consisting of 3996 food images 
and 16.65 h of eating). Conversely, in free-living days, 380 h of data were collected, capturing 111 meals and a 
total of 91,313 images (consisting of 4933 food images and 20.55 h of eating)29,44,45. This study exclusively utilizes 
free-living data due to concerns about potential biases introduced in image-based detection when participants 
consume their food in a laboratory environment during pseudo-free-living days.

Images from free-living days were annotated by hand with the rectangle bounding box in order to train a 
classifier to detect food and beverage objects. Initially, all the images were divided into two groups:

(1) Positive samples (contained food/beverage objects) and (2) negative samples (did not contain food/bev-
erage objects). The negative sample images were not annotated and were used directly in the training dataset. 
Positive images of 30 participants, on the other hand, were annotated, and all food and beverage objects were 
labeled using MATLAB 2019 Image Labeler  application46. The annotator did not label food and beverage objects 
when the scene was food preparation and shopping. Furthermore, annotating during social eating was difficult 
because food and beverage objects could belong to a different person. As a result, the annotator did not label the 
food and beverage objects that were far from the subject, assuming that the subject did not consume them. We 
found a total of 190 food and beverage items.

We used two methods for reporting performance when training, validating, and testing the proposed method: 
leave one subject out validation and holdout validation. Classifiers were trained and tested using the leave-one-
subject-out (LOSO) cross-validation technique to assess performance. This means that data from one participant 
were kept for testing while data from the other participants were used to train the classifier. It ensured that the 
classifier never saw the testing data for a specific subject. The procedure was repeated 30 times, so each participant 
was only tested once. Furthermore, in order to compare the performance of different methods, the dataset was 
randomly divided into training (80%), validation (10%), and testing (10%) sets for holdout validation which 
may result same subject data on the training and testing set.

Image‑based food and beverage object detection
The proposed method is divided into three parts, (1) image-based detection, (2) sensor-based detection, and 
(3) Integration of image- and sensor-based prediction. The flow chart of the proposed method is presented in 
Fig. 2. Recently, CNN-based deep learning methods have shown very good performance in visual recognition. 
We used Faster R-CNN47 to detect food/beverage objects in images captured by AIM. Faster R-CNN is a two-
stage detection framework to generate bounding boxes and class labels simultaneously. In order to obtain better 
recognition results, we adopted transfer learning and used the model pre-trained on  ImageNet48 as our starting 
point for training.

The block diagram of Faster R-CNN we used is shown in Fig. 3 with example inputs with results.  ResNet48 is 
used to extract feature maps from the input image, which are then used by the region proposal network (RPN)47 
to identify areas of interest in the image from the multi-scale features, 1000 box proposals with confidence scores 
are obtained in this step. The region of interest (ROI) pooling layers crops and wraps the feature maps using 
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Figure 2.  Block diagram of proposed method. Left top block: image based detection, left bottom block sensor 
based detection and Random forest classifier for integrating both detections.
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the extracted and generated proposal boxes to obtain fine-tuned box locations and classify the food objects in 
the image.

In order to obtain better recognition results, we finetuned the Faster R-CNN by using the pre-trained weights 
of ResNet-50 on  ImageNet48 as our starting point for training. The Faster R-CNN was trained on training sets for 
150 epochs with a batch size of 64 and a learning rate of 2.5e−4. The prediction scores obtained from this method 
were used in the hierarchical classification step.

Sensor‑based food intake detection
The sensor-based food intake detection model was developed using a 3-axis accelerometer sensor signal. The 
accelerometer sensor recorded head movement, head direction, and temporalis muscle movement, which are 
used as a proxy for eating  detection41,42. A Convolutional Neural Network (CNN) replaced the hand-crafted fea-
tures reported  in41,42. The signal was first segmented using a 15-s fixed rectangular window (total 15*128 = 1920 
samples, where 128 Hz is the sampling frequency), which is called a segment. This window size was selected 
because it corresponds to the image capture interval. The continuous wavelet transformation (CWT) was then 
used for each segment. CWT represents the frequency spectrum of a signal as it changes over time. CWT was 
calculated considering a signal s(τ ) of length N and the mother wavelet ψ:

where a is the scale and b is the translational value. In this analysis, we choose the Morse mother  wavelet49 and 
the CWT implemented in MATLAB from MathWorks (e.g. the ‘cwtfilterbank’ function). The scalogram is the 
absolute magnitude of the CWT, which is calculated as follows:

The scalogram was first normalized from 0 to 1 (unit-based normalization). The values are then multiplied by 
255 and converted to 8-bit unsigned integer values using the below equation. The conversion process is needed 
to save the scalogram as an image format.

The size of the scalogram was 64× 1920 pixels (64: frequency components of 1− 64 Hz, maximum frequency 
captured by the accelerometer was 64 Hz due to 128 Hz sampling frequency; 1920: number of samples in a seg-
ment). The scalograms obtained from the accelerometer’s three axes were concatenated to produce a final scalo-
gram with a size of 192× 1920× 1 ( 64× 3 = 192 ). Eventually, we modified the shape to [192 192 1] by employing 
under-sampling techniques. Bilinear interpolation served as the method for down-sampling, where the resulting 
value is computed as a weighted average of data values within the closest 2-by-2 neighborhood. This adjustment 
resulted in a simplified network structure and a significant reduction in the number of learnable parameters. The 
transformed data was then saved in the form of an image and called a scalogram. An example of the scalogram 
of food and non-food intake segment is presented in Fig. 4. A 15-layer CNN architecture was proposed to clas-
sify food intake and non-food intake segments. The CNN has three convolutional layers, three ReLu (rectified 
linear units) layers, three max-pooling layers, two cross-channel normalization layers, one dropout layer, one 
fully connected layer, one Softmax layer, and finally one classification layer. A convolutional neural network 
(CNN) employing a 1-dimensional kernel is limited to capturing local dependencies, whereas a CNN utilizing 
a 2-dimensional kernel has the capability to capture both local and spatial  dependencies50,51. Since the proposed 
method used a 2-dimensional kernel, it is extracting features utilizing both the local and spatial dependencies 
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Figure 3.  Block diagram of Faster R-CNN based food and beverage object detection. ResNet is used as 
the feature extractor, RPN generates object proposals, and RoI pooling aligns the extracted feature map for 
classification and regression.
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of scalograms. This network is graphically represented in Fig. 5. The network was trained on training sets on 8 
epochs with a batch size of 32. The batch size of 32 has been selected primarily because of memory constraints 
on the trained computer and epoch number is obtained by monitoring the loss function to prevent overfitting.

Integration of image‑ and sensor‑based prediction
In order to combine the image and sensor methods, we adopted state-of-the-art approaches such as bagging and 
 boosting52. The inputs were the confidence scores of the image- and sensor-based detection. Bagging is a voting-
based method to combine multiple learners. In bagging, we investigated random  forest53, which is an ensemble 
decision tree classifier. Among boosting methods, we tried adaptive  boosting54, and random under-sampling 
boosting (RUSBoosted)55 classifiers. Linear discriminant, subspace discriminant, logistic regression, gaussian 
Naïve Bayes, and K-nearest neighbor classifier have also been tested and their performance in detecting eating 
episodes was evaluated. The best method was selected, which achieved the best performance.

Furthermore, temporal information was considered in order to improve performance even further. To predict 
food intake detection at the time t  , prior confidence scores t − n, (n = 1, 2, . . .) are also used as predictors. Let, 
the confidence scores of a food object, Sf  , beverage object, Sb (if multiple food/beverage objects were detected, the 
highest confidence score was counted), and sensor prediction, Ss , then the predictor vector at time t  is as follows:

In this analysis, we considered n = 0, 1, 2 . It is to be noted that the confidence scores were acquired on a 
segment basis, such as within a 15-s interval. Thus, when n = 0 , the system evaluated a 15-s signal alongside a 
single image. Subsequently, for n = 1 , it analyzed a 30-s signal ( 15 ∗ (n+ 1) ) along with two images, and this 
pattern continued for subsequent values of n. The optimal value of n was determined by analyzing the food 
intake performance in a grid search approach. The process of Grid search encompassed the range of values for 
n, starting from n = 0 and progressing to n = 4 , with an increment of 1.

Performance criteria
To validate the performance, four commonly used performance criteria were computed: sensitivity, specificity, 
F1-score, and  accuracy56. These are defined as:

[

Sf (t) . . . Sf (t − n) Sb(t) . . . Sb(t − n) Ss(t) . . . Ss(t − n)
]

(4)Sensitivity =
TP

TP + FN

(5)Precision =
TP

TP + FP

Figure 4.  Sample scalogram of food intake and non-food intake segment.

Figure 5.  Proposed Convolutional Neural Network Architecture for sensor-based food intake detection.
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where TP denotes a true positive, a ‘food intake’ event correctly detected as ‘food intake’; TN denotes a true 
negative, a ‘non-food intake’ event correctly detected as ‘non-food intake’; FN denotes a false negative, a ‘food 
intake’ event incorrectly detected as ‘non-food intake’; and FP denotes a false positive, a ‘non-food intake’ event. 
It should be noted that for this binary classification, all eating activities, including drinking beverages, are 
collectively categorized as ‘food intake’. Furthermore, we also reported performance results in terms of eating 
episode detection. During a standard eating episode, a bite is succeeded by a series of chews and swallows, and 
this cycle is reiterated until a portion of food is consumed to fulfill one’s  appetite29. Moreover, eating events from 
an individual with a < 15 min inter-event interval were combined into one eating  episode57.

We used mean Average Precision (mAP) as our evaluation metric for image-based food and beverage detec-
tion. The predicted detection is considered a true positive (TP) if the detected label equals the ground-truth 
label, and the overlap ratio of the IoU (Intersection over Union) between the detected bounding box and ground 
truth is not smaller than a predefined threshold. The Average Precision (AP) is calculated as the area under the 
Precision-Recall curve, which involves computing Precision and Recall at various confidence score thresholds 
ranging from 0 to 1 with an increment of 0.1. The mean Average Precision (mAP) is then obtained by averaging 
the AP scores over a set of IoU thresholds. We choose to use the mAP with a set of IoU thresholds from 0.5 to 
0.95 with a 0.05 increment, which is a generalized metric and serves as the main evaluation metric for the MS 
COCO object detection  challenge52. We denote this metric as mAP@[.5,.95], which serves as a strict criterion for 
evaluating object detection methods. For reference, the current Top-1 result in the MS COCO object detection 
challenge achieves an mAP@[.5,.95] of 58.8.

Furthermore, we used McNemar’s  test52 to determine if the performances of the two classification methods 
were statistically similar or different. Let, e01 : the number of eating episodes misclassified by Classifier-1 but 
not Classifier-2, and e10 : the number of eating episodes misclassified by Classifier-2 but not Classifier-1. The 
classification methods have the same error rate under the null hypothesis, we expect e01 = e10 and these equal 
to (e01 = e10)/2 . The chi-square statistic of one degree of freedom was calculated as follows.

McNemar’s test rejects the hypothesis that the error rates of the two classification methods are the same at 
the significance level of α if this value is greater than χ2

α,1 . For α = 0.01,χ2
0.01,1 = 6.635.

Results
Table 1 shows the results of image-based food and beverage detection. The overall detection performance 
achieved using the holdout validation technique is 51.97 mAP@[.5,.95] score, which is an excellent result con-
sidering the variety of foods and beverages (190 items). In LOSO cross-validation, the detection performance 
dropped to 20.10 mAP@[.5,.95]. Because the food items of each subject differed, the trained classifier was unable 
to detect food objects that it had not previously seen. Figure 6. shows examples of food and beverage detection. It 
demonstrates that the proposed algorithm successfully detected both food and beverage objects. It is important 
to note that all the results presented in this paper are derived solely from data collected during free-living days.

Performance results of sensor-based food intake detection on LOSO cross-validation are presented in Table 2. 
The performance results are reported in terms of the mean and standard deviation of each subject’s performance. 
77.55% F1-score was obtained using the proposed CNN architecture. The performance outcomes were based on 
15-s segment-based detection. It also produced a good number of false-positive detections.

Table 3 shows the performance of the integrated classifier. We used the holdout validation technique to find 
the best classifier, and the performance results are reported on a segment basis. The best precision and F1-score 
were obtained using the Random Forest classifier (parameters: Maximal number of decision splits (or branch 
nodes) per tree = 1000, Number of ensembles learning cycles = 30, Misclassification cost = [0 1; 2 0] two times for 
food intake segment). It provided the best performance because this problem is non-linear, and the ensemble 
approach assisted in overcoming critical cases. Thus, in this proposed method, we choose a random forest clas-
sifier to integrate image and sensor detection.

Moreover, classification performance using temporal confidence scores is presented in Table 4. In Table 4, the 
random forest classifier was used. It is observed that after adding the confidence scores from previous segments/

(6)Accuracy =
TP + TN

TP + FP + TN + FN

(7)F1score =
2TP

2TP + FN + FP

(8)
(|e01 − e10| − 1)2

e01 + e10
∼ χ2

1

Table 1.  Performance (mAP@[.5,.95]) of food and beverage object detection.

Object Holdout validation LOSO cross validation

Food 50.13 19.94

Beverage 53.81 20.25

Overall 51.97 20.10



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1665  | https://doi.org/10.1038/s41598-024-51687-3

www.nature.com/scientificreports/

images, the classification performance improved. For example, in the case of n = 1 , sensitivity and F1-score were 
improved by 1% and 2%, respectively. Likewise, increasing the value of n progressively enhances performance. 
A higher n value yields improved results in food intake detection; nevertheless, it necessitates reliance on larger 
sets of preceding confidence scores. Moreover, increasing n may lead to better performance in large meals but 
miss small eating episodes. The dataset is too small to explore this thoroughly.

Finally, the performance of the integrated classifier was compared using the LOSO cross-validation technique, 
as shown in Table 5. To enable a meaningful comparison with the state-of-the-art  method29, here, performance 
is measured in terms of eating episodes. In terms of sensitivity, the integrated classifier outperformed the sen-
sor- and image-based methods by 8% and 6%, respectively. In comparison, the integrated method improved the 
precision and F1-score by up to 20% and 17%, respectively, over the image-based method. The integrated clas-
sifier was chosen due to its capacity to improve sensitivity while preserving the f1 score at a minimal reduction 
of just 0.24% when compared to the sensor-based method.

Figure 6.  Example of food and beverage recognition (blue bounding box—solid food, red—beverages).

Table 2.  Food and non-food intake classification performance using only sensor-based classifier.

Sensitivity (%) Precision (%) Accuracy (%) F1-score (%)

Mean 73.21 84.48 86.93 77.55

Standard deviation 12.21 8.92 5.49 7.94

Table 3.  Performance comparison among integrated classifiers.

Method Sensitivity (%) Precision (%) Accuracy (%) F1 (%)

Adaptive boosting 77.68 90.54 98.66 83.62

Random forest 90.61 90.55 99.17 90.58

LDA 77.11 75.50 97.89 76.30

RUSBoosted 95.10 55.40 96.42 70.01

Subspace Discriminant 77.21 75.56 97.90 76.37

Logistic Regression 69.78 73.68 97.58 71.68

Gaussian Naïve Bayes 94.05 42.52 94.15 58.57%

KNN 86.58 93.23 99.13 89.78

Table 4.  Analysis of food intake detection performance using temporal confidence scores. n is the number of 
previous confidence scores added to the predictor vector.

n Sensitivity (%) Precision (%) Accuracy (%) F1-score (%)

0 90.61 90.55 99.17 90.58

1 91.58 93.84 99.37 92.70

2 93.06 95.33 99.49 94.18

3 93.81 96.25 99.57 95.01

4 94.49 96.79 99.62 95.63
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McNemar’s test was used to determine whether the performance of the Image, Sensor, and Integrated clas-
sification methods was statistically similar or different. The number of misclassified eating episode detection 
metrics was used in this test. We started by comparing the image-based classifier (C1) and the integrated classifier 
(C3). Due to a high number of false eating episodes detected by C1, the number of eating episodes misclassi-
fied by C1 but not C3 was 70 . And the number of eating episodes misclassified by C3 but not C1 was 6. Thus, 
the calculated chi-square was χ2

1 = 52.22 . McNemar’s test rejected the hypothesis at a significant level α = 1% , 
due to the χ2

1  is greater than 6.635. Similarly, in the same way, we also tested sensor-based classifier (C2) with 
integrated classifier (C3) and found χ2

1 = 7.09 . Thus, McNemar’s test also rejected the null hypothesis that the 
two classification methods have the same error rate at a significant rate = 1% . So, the integrated classification 
method is statistically different than image-based and sensor-based methods.

Discussion
The primary goal of this research was to develop and validate an accurate food intake detection method. Fol-
lowing the main goal, this work first demonstrated the method for detecting food and beverage objects from 
images, then food intake detection using sensor signals, and finally combining those detections to obtain final 
food intake detection. The overall AP score for food and beverage object detection is 51.97, which is a good 
object detection score. However, this object detection cannot tell whether the detected food was consumed by 
the user. For example, if a person is preparing food, cooking food, or socializing, the food object in front of that 
person can be detected, resulting in false-positive food intake detection. The accelerometer-based food intake 
detection algorithm, on the other hand, is 86.59% accurate for ingestion events.

The main disadvantage of the sensor-based method is that it cannot detect drinking episodes because there is 
no chewing involved. However, it may detect false positives in the case of chewing gum. The image-based method, 
on the other hand, detects false eating episodes because it cannot distinguish whether a food is consumed or 
not. In this paper, we combined image and sensor-based detection to address these shortcomings. Because it 
successfully removed false detection of individual sensors, we saw a significant improvement in food intake 
detection performance. The integrated technique finds more actual eating episodes (due to increased sensitivity). 
When compared to image-based food and beverage detection, it improves detection on all performance criteria, 
including sensitivity, precision, and f1-score.

Additionally, we compared the proposed method to a recently published  method29. When considering both 
solid foods and beverages, a significant performance improvement (37% more sensitive) was achieved. One of 
the most significant contributions of this paper is its ability to detect both solid and liquid dietary intake. This 
performance improvement was achieved because the proposed method successfully eliminated false-positive 
detection and can detect both solid food and beverage intake. Figure 7 shows a demonstration of food intake 
detection using an integrated two-stage classifier. Note that for this subject, false positives (eating detections that 
do not match eating episodes in the ground truth data) have been eliminated.

We observed a decrease in performance on food and beverage object detection using the LOSO cross-vali-
dation technique. In order to improve object detection performance, we will train the classifier with more image 
data that includes a wider range of background scenes and food items in the future. Furthermore, we investigate 
sensor-based detection failure cases. We discovered that it failed in the case of short-eating events or snacks, such 
as a bite of chips, a few bites of semi-solid yogurt, and a small chocolate. Those eating episodes are extremely 
difficult for any sensor to detect (chewing sensor or image). The integrated method fails to detect those as well. 
An additional constraint of this proposed method is the relatively small image dataset, consisting of only 190 
types of foods and beverages. To cultivate a resilient food and beverage detection algorithm, a more substantial 
volume of data is requisite for training. Moreover, most people (in free-living) eat their meals socially, thus it is 
very difficult to label food/beverage items of that social eating.

Conclusion
Automatic food intake detection in a free-living environment is a difficult task. This study showed that integrating 
image and chewing sensor (accelerometer) based prediction provides accurate and precise performance. In terms 
of eating episode detection, the proposed method achieved 94.59% sensitivity, 70.47% precision, and 80.77% 
f1-scores. It can detect both solid and liquid dietary consumption. Accurate detection of eating episodes in free-
living may benefit from incorporating multiple sources into the decision-making process. In future developments, 
the proposed approach holds potential for deployment on a cloud-based server, enabling the provision of remote 
monitoring data. Moreover, there is scope to extend the method to encompass other food intake monitoring 
metrics, such as chewing/eating rate, dining environment analysis, and estimation of total caloric intake.

Table 5.  Performance matrices for free-living experiments. *Only solid food (not including beverage).

Method Sensitivity Precision (%) F1 (%)

Image 88.29% 50.00 63.64

Sensor 86.49% 76.19 81.01

Integrated (image and sensor) 94.59% 70.47 80.77

Doulah et al.29 57.83% (*72.73%) – –
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Data availability
The data used in this paper are protected under the University of Alabama IRB. The dataset may be made avail-
able upon request contingent on establishing an inter-institutional data sharing agreement.
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