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Incorporating longitudinal history 
of risk factors into atherosclerotic 
cardiovascular disease risk 
prediction using deep learning
Jingzhi Yu , Xiaoyun Yang , Yu Deng , Amy E. Krefman , Lindsay R. Pool , Lihui Zhao , Xinlei Mi , 
Hongyan Ning , John Wilkins , Donald M. Lloyd‑Jones , Lucia C. Petito  & Norrina B. Allen *

It is increasingly clear that longitudinal risk factor levels and trajectories are related to risk for 
atherosclerotic cardiovascular disease (ASCVD) above and beyond single measures. Currently used in 
clinical care, the Pooled Cohort Equations (PCE) are based on regression methods that predict ASCVD 
risk based on cross‑sectional risk factor levels. Deep learning (DL) models have been developed to 
incorporate longitudinal data for risk prediction but its benefit for ASCVD risk prediction relative to the 
traditional Pooled Cohort Equations (PCE) remain unknown. Our study included 15,565 participants 
from four cardiovascular disease cohorts free of baseline ASCVD who were followed for adjudicated 
ASCVD. Ten‑year ASCVD risk was calculated in the training set using our benchmark, the PCE, and 
a longitudinal DL model, Dynamic-DeepHit. Predictors included those incorporated in the PCE: sex, 
race, age, total cholesterol, high density lipid cholesterol, systolic and diastolic blood pressure, 
diabetes, hypertension treatment and smoking. The discrimination and calibration performance of 
the two models were evaluated in an overall hold‑out testing dataset. Of the 15,565 participants in 
our dataset, 2170 (13.9%) developed ASCVD. The performance of the longitudinal DL model that 
incorporated 8 years of longitudinal risk factor data improved upon that of the PCE [AUROC: 0.815 (CI 
0.782–0.844) vs 0.792 (CI 0.760–0.825)] and the net reclassification index was 0.385. The brier score for 
the DL model was 0.0514 compared with 0.0542 in the PCE. Incorporating longitudinal risk factors in 
ASCVD risk prediction using DL can improve model discrimination and calibration.

The Pooled Cohort Equations (PCE) were developed by the American College of Cardiology (ACC) and Ameri-
can Heart Association (AHA) in 2013 and updated in 2018 using data from 9 longitudinal cohort studies as a 
tool for clinicians to predict 10-year risk of atherosclerotic cardiovascular disease (ASCVD)1,2. The PCE are a set 
of race- and sex-specific Cox proportional hazards models, that include widely-accepted clinical and behavioral 
risk factors for ASCVD, including age, sex, race, systolic (SBP) and diastolic blood pressure (DBP), total choles-
terol, high density lipid-protein (HDL) cholesterol, smoking status, and type 2 diabetes. In clinical practice, risk 
predictions from the PCE are a key criterion to determine eligibility for moderate to high intensity statins and 
hypertension  treatments1,3. However, numerous studies have found the performance of the PCE varies across 
demographic  groups4–6; c-statistics from these studies ranged from 0.55 to 0.77 (average: 0.70) in men and 0.61 to 
0.82 (average: 0.74) in  women7,8. Additionally, current clinical guidelines provide more ambivalent and complex 
treatment recommendations for those who fall in the borderline (5% to 7.5%) and intermediate risk groups (7.5% 
to 20%)9. A more accurate and robust risk prediction algorithm can help physicians better assess an individual’s 
risk, allowing them to make more appropriate treatment decisions.

A growing number of studies have demonstrated that long-term risk factor levels are associated with an 
individual’s risk for the development of ASCVD. For instance, incident CVD risk was shown to be dependent on 
cumulative exposure to LDL-C10. In a separate study, incident CVD and survival were also found to be associated 
with 10-year cumulative  SBP11. Hence, long-term risk factor patterns may be predictive of ASCVD risk above 
and beyond cross-sectional  levels12. In a prior study, after including 5-year and 10-year cumulative blood pres-
sure measurements in the PCE, researchers found a moderate improvement in the net reclassification  index13. 
Additionally, full integration of multiple longitudinal trajectories of clinical factors into ASCVD prediction is 
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now feasible in clinical practice given advances in computing and electronic medical record (EMR) systems that 
allow clinicians to access longitudinal risk factor data for their patients.

In recent years, deep learning methods have been applied to many clinical predictive and classification 
problems to much  success14–16. Compared with traditional statistical methods, deep learning methods are often 
superior at processing and creating representations of complex data, such as radiology images and unstructured 
physician  notes17,18, without the need of prior feature engineering or  selection15,19. Hence, deep learning can more 
thoroughly extract and leverage the rich features stored in longitudinal data such as longitudinal blood pressure 
measurements recorded in the electronic health records (EHR) for predictive tasks.

In this study, we incorporated cross-sectional and longitudinal clinical and behavioral risk factor levels into a 
state-of-the-art deep learning architecture to create a new prediction model for 10-year risk of incident ASCVD 
in a pooled cohort of 4 US-based, diverse longitudinal cohorts. We evaluated our model’s predictive performance 
in comparison to that of the PCE in the overall population and in key population subgroups to better understand 
the importance of longitudinal data for ASCVD risk prediction. Moreover, we determined the importance of 
each clinical variable used in the prediction model. Lastly, we performed additional evaluations of the model 
performance in the borderline and intermediate risk groups to better understand our model’s potential impact 
on clinical decision making.

Methods
Study population
The four longitudinal cohorts used in this study contributed data to the Cardiovascular Lifetime Risk Pooling 
Project (LRPP): the Framingham Heart Study, Framingham Offspring Study, Coronary Artery Risk Development 
in Young Adults (CARDIA) Study, and Atherosclerosis Risk in Communities (ARIC)  Study20. These cohorts were 
selected for their number of participants, duration of follow-up, number of participant visits, and consistency 
of measurement of CVH risk factors.

As the examination schedules differed across cohorts, the number of exams within timeframes varied. To 
include the largest number of exams across the different studies while balancing the size of the timeframe for 
the study, we used 8 years of longitudinal data as the timeframe for CVD risk factor ascertainment (observation 
period). For consistency with the PCEs, outcomes were then measured over a 10-year follow-up period. Thus, to 
maximize the number of exams included in our study, we included data beginning at the following index exams 
(i.e. the exam at which risk factor follow-up began) for the included studies (Fig. 1): year 15 for the Framingham 
Heart Study, year 10 for the Framingham Offspring Study, year 18 for the CARDIA study, and year 1 for the ARIC 
study. The exact start and end years of each cohort as well as their mean and interquartile range of the number 
of exams in each cohort are shown in Table 1.

Eligible participants were over 40 and under the age of 75 years at the point of prediction (i.e. the end of 
the 8 year observation period), had no record of self-report or diagnosed ASCVD at the index exam or dur-
ing the 8 year observation period, and had at least one measurement of SBP, DBP, total cholesterol and HDL 
cholesterol. The LRPP is approved by the Northwestern IRB and this study utilized de-identified data from each 
of the included cohorts in LRPP. Written informed consent was obtained for all participants and analysis were 
performed in accordance with relevant guidelines.

Figure 1.  Timeframe of the study. The longitudinal history of clinical and behavior risk factors within the 
8 years prior to the index year were included in our prediction model. Our prediction model predicts the 
outcome within 10 years after the index year.

Table 1.  The official start year, start year of the observation period (after adjustment), end year of the 8 year 
follow-up period, average number of exams within the 8 year follow-up period as well as the interquartile 
range of the number of exams by each cohort.

Cohort Official start year
Start year of observation 
period

End year of observation 
period End of follow-up

Average number of 
exams

Interquartile 
range

ARIC 1987 1987 1995 2005 3 3–3

CARDIA 1985 2003 2011 2021 2 2–2

FHS 1948 1963 1971 1981 2 1–3

FOF 1971 1981 1989 1999 2 2–2
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Outcome: ASCVD incidence
The outcome in our study was ASCVD incidence, defined as the incidence of coronary heart disease, 
ischemic stroke, or CVD-related death, over a 10-year period that began at the end of the observation period 
(Fig. 1)11,20. Coronary heart disease and ischemic stroke were adjudicated by review of medical records by study 
 investigators20. Participants without any recorded event at the end of the study, or who died of other causes dur-
ing the follow-up period were considered right censored.

Features: CVD risk factors
CVD risk factors included in the original PCE include systolic BP, diastolic BP, total cholesterol, and HDL cho-
lesterol, and were measured 1–4 times during the 8-year observation period. Blood pressure was measured using 
standard methods by clinic staff in the various  cohorts20,21. Fasting HDL-C, total cholesterol measurements and 
blood glucose were collected via blood  serum20,21. Diagnosis of diabetes and treatment for hypertension, predic-
tors also included in the PCE, were self-reported at the index  visit20,21. Age, sex, race, ethnicity, smoking status 
(current/former smoker vs. never smoker), and alcohol consumption were self-reported at the index  visit20,21.

Statistical analysis
The deep learning model used in this study is Dynamic-DeepHit, which enabled the incorporation of longitudinal 
risk factor data in a dynamic fashion to estimate 10-year risk of incident  ASCVD22. The Dynamic-DeepHit model 
has been demonstrated to have substantial improvements over traditional predictive methods, including the Cox 
Proportional Hazards Model, in predicting cystic fibrosis  outcomes22.

The Dynamic-DeepHit model consists of two neural networks: (1) a recurrent neural network (RNN) that 
processes the longitudinal measurements and predicts future measurements of time-varying covariates, and (2) 
a fully connected neural network that estimates the probability of the specific event at a given time. RNNs are 
commonly used for machine learning problems involving temporal or sequential data and can capture long-
term dependencies in the data. The Dynamic-DeepHit model also utilizes an attention mechanism that identifies 
important longitudinal measurements when making risk predictions, which improves predictive performance. 
The second neural network takes as input the learned representations that are output from the first neural net-
work along with the last recorded set of behavioral and clinical covariates (e.g. the most recent CVD risk factor 
measurements at the end of the 8-year observation period). The output layer of the second neural network 
converts the learned relationships between the risk factors and outcome into the 10-year risk of incident CVD.

To explore the reasons for any improvements in the predictive power we also implemented a cross-sectional 
DeepHit model. This allowed us to disentangle whether the improvements were due to the incorporation of the 
longitudinal data or simply to the complexity of the neural network modeling methods. The DeepHit model was 
fitted on only the last set of measurements for each participant within the 8-year observation period. We also fit 
the traditional PCE model, to understand its performance in this sample.

Data pre-processing included randomly splitting the dataset into 3 parts, called training, tuning, and testing, 
at a 3:1:1 ratio. The Dynamic-DeepHit and cross-sectional DeepHit models were trained in the training dataset 
and corresponding hyperparameters were tuned in the tuning dataset. The training data for the PCE included 
both the training and tuning datasets. The testing dataset, not used in model development, was used for valida-
tion. The participants were the same in each of the respective datasets for each model.

We assessed model discrimination and calibration of all 3 models. We calculated and compared the Area 
Under the Receiver Operator Curve (AUROC) for all models to evaluate model discrimination, the ability of the 
model to discriminate those who have a higher risk of having an event from those at lower risk. Brier scores were 
used to evaluate the calibration of the model; lower scores indicate better calibration, the extent of the estimated 
risk correspond to observed event  rates23.

The trained Dynamic-DeepHit model was evaluated in the following population groups: Black males, Black 
females, other (White, Hispanic, Asian) males, other females, under 60 years old and 60 or over years old. These 
demographic groups were chosen to mirror the same classifications used for the sex- and race-specific PCE. As 
in the overall analysis, the AUROCs were compared between corresponding population subgroups.

To understand the importance of each predictor in the Dynamic-DeepHit model, we took a leave-one-out 
approach. We removed one predictor at a time from the Dynamic-DeepHit model and retrained and retested 
the model. The change in the testing dataset AUROC was calculated for each feature removed: the greater the 
change in AUROC, the greater the importance of the predictor. To also understand the role of longitudinal clini-
cal risk factors better in the Dynamic-DeepHit model, we examined the average trajectories of SBP, DBP, total 
cholesterol and HDL for the individuals whose predicted risk increased and those whose risk decreased in the 
Dynamic-DeepHit model. Trajectories were created via generalized estimating equations (GEE) to account for 
correlation between repeated measurements for individuals. The trajectories were visualized across exam times 
with the 95% confidence bands.

Current blood pressure and cholesterol control guidelines use risk thresholds based on the PCE to inform 
clinical care. Physicians are advised to prescribe medium intensity statins if an individual’s ASCVD risk is over 
7.5%. However, differentiation of individuals between the borderline and intermediate PCE risk groups could be 
improved. We calculated the net reclassification index (NRI) between the PCE and the Dynamic-DeepHit model, 
to understand how the Dynamic-DeepHit model changed individuals’ risk classification. We then conducted 
additional analysis to better understand the performance of the Dynamic-DeepHit model in borderline and 
intermediate groups, and how clinical behavior would be affected if the risk derived from the Dynamic-DeepHit 
model was used instead of risk from the PCE.

All statistical analysis was performed using Python version 3.8 and R 4.0.2. A 5% type-I error rate was used 
when calculating all confidence intervals.
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Results
Baseline characteristics
Baseline demographics and measurements of CVD risk factors included in the PCE are described in Table 2. 
Pooled cohort participants included in this study were 55% female, 27% non-Hispanic Black and 50 years old 
on average. We found participants who developed ASCVD in prediction period had significantly higher levels of 
ASCVD risk factors compared with the participants who did not develop ASCVD. Baseline demographics and 
clinical characteristics of the participants by cohort is presented in Supplemental Table S1.

Performance of models
Table 3 shows the discrimination of the three models in the training and testing datasets. The AUCs for the 
PCE and the longitudinal Dynamic-DeepHit model were 0.792 (CI 0.760–0.825) and 0.815 (CI 0.782–0.844), 
respectively. The Dynamic-DeepHit model shows slight improvement in discrimination upon the PCE model. 
The cross-sectional deep learning model achieved an AUC of 0.807 (CI 0.778–0.838) (Supplemental Table S3). 
The continuous net reclassification index (NRI) for the Dynamic-DeepHit model compared with the PCE was 
0.385. The Brier Score for the PCE model was 0.054, 0.052 for the cross-sectional deep learning model and 0.051 
for the longitudinal deep learning model, showing meaningful improvement in model calibration.

The predicted risks derived from the Dynamic-DeepHit model were found to be generally lower than the 
risks derived from the PCE (Fig. 2). In Fig. 3, the calibration of the Dynamic-DeepHit model is compared with 
the calibration of the PCE by comparing the predicted risk and observed risk within each decile of predicted 
risk. The PCE is shown to over-predict 10-year ASCVD risk, especially within the top 40% of predicted risk, 
which corresponds to the 7.5% risk threshold used in clinical guidelines. Comparatively, the calibration of the 
Dynamic-DeepHit model is consistently better along the entire spectrum of risk.

Table 2.  Baseline demographics of LRPP analytic dataset. Risk factors in the ASCVD group were significantly 
higher than those in the Non-ASCVD group.

Variables

Overall Non-ASCVD ASCVD

(N = 15,565) (N = 13,395) (N = 2170)

Age (Mean, SD) 50.2 (7.2) 49.6 (7.0) 53.7 (6.9)

Sex

 Male 7028 (45.2%) 5798 (43.3%) 1230 (56.7%)

 Female 8537 (54.8%) 7597 (56.7%) 940 (43.3%)

Race

 Other 11,366 (73.0%) 9750 (72.8%) 1616 (74.5%)

 Black 4199 (27.0%) 3645 (27.2%) 554 (25.5%)

Systolic blood pressure, mmHg 121 (18.7) 120 (17.6) 131 (21.9)

Diastolic blood pressure, mmHg 74.8 (11.6) 74.1 (11.2) 78.9 (12.9)

Total cholesterol, mg/dL 207 (42.9) 205 (41.6) 223 (47.3)

High density lipid, mg/dL 51.6 (16.5) 52.4 (16.5) 46.9 (15.6)

Smoker (vs. never smoker) 4623 (29.7%) 3752 (28.0%) 871 (40.1%)

Diabetes 1410 (9.1%) 966 (7.2%) 444 (20.5%)

Treated for hypertension 3726 (23.9%) 2946 (22.0%) 780 (35.9%)

Table 3.  Discrimination performance of models and in population subgroups.

Categories PCE training AUROC Dynamic-DeepHit training AUROC PCE testing AUROC
Dynamic-DeepHit testing 
AUROC

Full model 0.801 (0.786–0.816) 0.817 (0.791–0.843) 0.792 (0.760–0.825) 0.815 (0.782–0.844)

Race and sex

 Other males N/A N/A 0.779 (0.732–0.826) 0.801 (0.753–0.848)

 Other females N/A N/A 0.780 (0.712–0.848) 0.801 (0.737–0.864)

 Black males N/A N/A 0.826 (0.756–0.897) 0.820 (0.751–0.888)

 Black females N/A N/A 0.801 (0.726–0.877) 0.821 (0.751–0.890)

Age

 < 60 years N/A N/A 0.781 (0.721–0.842) 0.803 (0.747–0.858)

 ≥ 60 years N/A N/A 0.667 (0.615–0.719) 0.698 (0.646–0.749)

PCE risk categories

 Borderline and intermediate N/A N/A 0.652 (0.594–0.709) 0.688 (0.634–0.742)
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Figure 2.  Predicted risk (actual value) comparison between two models. Risk category derived from PCE risk 
category thresholds. horizontal dashed lines show the numeric thresholds for the risk categories used by the 
PCE mapped on to the risk predicted by the Dynamic-DeepHit model.

Figure 3.  Observed events compared with average predicted risk within each predicted risk decile. Confidence 
intervals are also shown via error bars. (a) Predicted vs observed risk in PCE. (b) Predicted vs observed risk in 
Dynamic-DeepHit. 
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Model performance in population subgroups
The discriminative performance of the Dynamic-DeepHit and PCE models within different population groups 
is shown in Table 3. The Dynamic-DeepHit model performed relatively better than the PCE in the other-males 
group (0.801, CI 0.753–0.848 vs 0.779, CI 0.732–0.826), other-females group (0.801, CI 0.737–0.764 vs 0.780, CI 
0.712–0.848), and the Black-females group (0.821, CI 0.751–0.890 vs 0.801, CI 0.726–0.877). However, it under-
performed in the Black-males group (0.820, CI 0.751–0.888 vs 0.826, CI 0.756–0.897). In the under-60-years-old 
group, the Dynamic-DeepHit model had an AUROC of 0.803 (CI 0.747–0.858) compared with the PCE’s AUROC 
of 0.781 (CI 0.721–0.842) and in the over-60-years-old group, the Dynamic-DeepHit model had an AUROC of 
0.698 (CI 0.646–0.749) compared with the PCE’s AUROC of 0.667 (0.615–0.719). The Dynamic-DeepHit model 
outperforms the PCE in three of the four demographic groups outlined by the PCE.

Feature importance
The results of the leave-one-out feature importance analysis are shown in Fig. 4. After removing age from the 
model, the greatest decrease in AUROC was observed (0.769, CI 0.735–0.803); thus, age is considered the most 
important variable in the model. Following age, longitudinal SBP was the second most important predictor, with 
the AUROC reduced to 0.777 (CI 0.744–0.809). Diabetes diagnosis and hypertension treatment were the most 
important categorical predictors, with AUROCs reduced to 0.779 (CI 0.747–0.812) and 0.780 (CI 0.748–0.813) 
when these predictors were removed respectively.

Figure 5 shows the longitudinal trajectories of clinical risk factors, including SBP, DBP, total cholesterol and 
HDL among the individuals whose risk increased and those whose risk decreased after switching to the Dynamic-
DeepHit model for ASCVD risk prediction. Between the two groups, the average terminal measurements of SBP 
and total cholesterol were similar, the historical measurements of those risk factors were higher among those 
whose predicted risk increased in Dynamic-DeepHit model.

Borderline risk stratification
Among the individuals in the borderline and intermediate risk groups determined by the risk derived from the 
PCE, the AUC from the Dynamic-DeepHit model was higher than that from the PCE: 0.688 (CI 0.634–0.742) 
versus 0.652 (CI 0.594–0.709). The NRI for the Dynamic-DeepHit model between the borderline and intermediate 
group was 0.322. The Brier score was 0.069 for the PCE compared with 0.067 for the Dynamic-DeepHit model, 
again showing some improvement in the model calibration.

Given the 7.5% risk threshold for moderate-intensity statin prescription, we examined the individuals whose 
risk crossed the threshold in both directions to understand the Dynamic-DeepHit model’s potential impact on 

Figure 4.  Feature Importance. AUROC was calculated via retraining and retesting the model while removing 
predictors individually. Red dashed line indicates the AUROC of the full Dynamic-DeepHit model.
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clinical decision making. In our testing dataset, among those who would be prescribed statins under the PCE 
risk (N = 1213), 33% (N = 405) would not be prescribed statins under the new risk provided by the Dynamic-
DeepHit model, and 95% (N = 386) of those individuals would not develop ASCVD. Among those who were not 
prescribed statins using the PCE (N = 1900), 2% (N = 34) would be recommended to prescribe statins under the 
Dynamic-DeepHit model. However, of those individuals, only 3% (N = 1) developed ASCVD within 10 years.

Discussion
Principal findings
In this study, we have demonstrated that by incorporating longitudinal data of the same clinical and behavioral 
predictors as in the PCE using a state-of-the-art and validated deep learning model we can improve the cali-
bration of predicting 10-year ASCVD risk. We leveraged data from 4 diverse cohorts for model training and 
testing and found that the longitudinal deep learning model outperformed the PCE both in the overall cohort 
and in specific subpopulations. We have demonstrated that the longitudinal deep learning model has clinical 
value through improved discrimination and greater calibration for those with borderline risk of ASCVD, thus 
providing physicians more reliable estimates of risk for clinical decision making.

Deep learning in ASCVD risk prediction
Longitudinal trends of clinical factors such as blood pressure and cholesterol have long been established to be 
of clinical  importance13. While this is not the first study to incorporate longitudinal data for predicting ASCVD, 
to our knowledge, it is the first study that uses a deep learning approach. Prior studies used methods such as 
including aggregate summary statistics of the longitudinal clinical data in the PCE or landmark models that 
could update data at fixed time  intervals13,24,25. This foundational work led to minor improvements in model 
discrimination; however, we were able to achieve better performance because we utilized a deep learning method. 
A key advantage of deep learning models is their ability to recognize complex patterns by utilizing multiple 
layers of artificial neural networks, which are composed of inter-connected nodes. This advantage manifests in 
two ways in the Dynamic-DeepHit model. First, the improvement in the discrimination of the cross-sectional 
DeepHit model over the PCE demonstrates that given the same cross-sectional data, neural networks can make 
better predictions of ASCVD than the PCE. Second, the RNN can create robust representations of longitudinal 
clinical data, preserving critical information for ASCVD risk prediction.

Figure 5.  Longitudinal histories of clinical risk factors compared between individuals whose risk increased and 
decreased in the Dynamic-DeepHit model from the PCE. Generalized linear models were used to smooth the 
longitudinal clinical risk factor trajectories. Color bands show the 95% confidence interval.
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Clinical implications
Through evaluating the Dynamic-DeepHit model in various population demographic groups, we found that the 
model improves risk prediction in Black females compared with the  PCE26–31. This indicates that incorporating 
longitudinal data may allow physicians to make more accurate treatment decisions and reducing health outcome 
disparities in these high-risk groups.

Among the individuals categorized as borderline- and intermediate-risk by the PCE, the Dynamic-DeepHit 
model improved discrimination and was better calibrated. One-third of the individuals in the intermediate PCE 
risk groups had overestimated 10-year ASCVD risk, which indicates the potential for over-prescribing. In these 
individuals, the Dynamic-DeepHit model slightly under-estimates risk, that it is better at ruling out people who 
will not have ASCVD events, while not as good as identifying those who will get ASCVD. As current clinical 
guidance requires further risk analysis for the individuals in these risk groups, guideline-concordant treatment 
is less optimal. By providing a better calibrated risk assessment, clinicians may be less concerned with over-
prescribing and feel more confident in prescribing guideline-concordant treatment given the predicted risks 
from the Dynamic-DeepHit model.

The feature importance analysis shows that longitudinal measurements of clinical variables have meaningful 
influence on the performance on the Dynamic-DeepHit model. In the Dynamic-DeepHit model, longitudinal 
SBP was the most important modifiable predictor, while total cholesterol was found to be relatively important 
as well. Similar to prior  research21, age was found to be an important predictor in the Dynamic-DeepHit model. 
In addition, diabetic status, sex, and smoking status were also found to influence the AUROC of the model. 
In the observed 8-year trajectories of SBP, DBP, and total cholesterol, for the individuals whose risk changed 
(Fig. 5), at the population level, the aggregate terminal measurements were similar. If prediction occurred only 
using those terminal measurements, a similar risk profile between those with increased risk and decreased risk 
would be assumed. However, the Dynamic-DeepHit model picked up separation in the historical values of those 
clinical factors, which contributed to the model identifying the differences in risk profiles of the two groups of 
individuals. Combined with the results of the feature importance analysis, this evidence further supports that 
longitudinal histories of clinical predictors can provide additional insight in evaluating ASCVD risk profiles.

With the proliferation of EHRs, longitudinal data is readily accessible. In addition, with the advent of cloud 
and edge computing, it is possible to deliver intensive computing capabilities to the EHR for supporting sophis-
ticated machine learning or deep learning models for clinical risk prediction. This study shows, with further vali-
dation, deep learning models can be a powerful tool to aid clinicians to leverage the silos of currently untapped 
historical patient data in the EHR to improve patient cardiovascular outcomes. New methods of interpreting 
these models will also add confidence in adoption among physicians.

Limitations
There are several limitations in our study. First, the cohorts used in this study may not reflect the clinical condi-
tions of present-day patients, who are more likely to be on CVD treatments, such as statins. Therefore, given the 
limited information we had on statin usage, we did not exclude any participants who may have been on statin 
treatment. Second, data was recorded more sparsely in the cohort studies, whereas clinical measurements are 
often more frequent in clinical  practice32. The quality of the data stored in the EHR could be also compromising, 
due to varying clinical contexts of when the data was collected. While these data problems exist, deep learning 
methods are still one of the best tools to overcome such  issues33,34. On the other hand, EHRs often do not con-
tain up to 8 years of longitudinal data on patients. As this study is a proof of concept, further work is needed to 
explore efficacy and utility of incorporating longitudinal risk factors into ASCVD risk prediction within EHRs.

Data availability
Data used in this manuscript is not publicly available due to prior legal agreements. However, readers may reach 
out to the corresponding author to receive access to the pooled data source.
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