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Neurological intervention 
transition model for dynamic 
prediction of good outcome 
in spontaneous subarachnoid 
haemorrhage
Yiming Luo 1* & Stephen John Payne 2

Deterioration of neurovascular conditions can be rapid in patients with spontaneous subarachnoid 
haemorrhage (SAH) and often lead to poor clinical outcomes. Therefore, it is crucial to promptly 
assess and continually track the progression of the disease. This study incorporated baseline 
clinical conditions, repeatedly measured neurological grades and haematological biomarkers for 
dynamic outcome prediction in patients with spontaneous SAH. Neurological intervention, mainly 
aneurysm clipping and endovascular embolisation, was also incorporated as an intermediate event 
in developing a neurological intervention transition (NIT) joint model. A retrospective cohort study 
was performed on 701 patients in spontaneous SAH with a study period of 14 days from the MIMIC-IV 
dataset. A dynamic prognostic model predicting outcome of patients was developed based on 
combination of Cox model and piecewise linear mixed-effect models to incorporate different types of 
prognostic information. Clinical baseline covariates, including cerebral oedema, cerebral infarction, 
respiratory failure, hydrocephalus and vasospasm, as well as repeated measured Glasgow Coma 
Scale (GCS), glucose and white blood cell (WBC) levels were covariates contributing to the optimal 
model. Incorporation of neurological intervention as an intermediate event increases the prediction 
performance compared with baseline joint modelling approach. The average AUC of the optimal model 
proposed in this study is 0.7783 across different starting points of prediction and prediction intervals. 
The model proposed in this study can provide dynamic prognosis for spontaneous SAH patients and 
significant potential benefits in critical care management.

Spontaneous SAH is characterised by sudden bleeding into the subarachnoid space due to non-traumatic causes, 
mostly arising from a ruptured cerebral aneurysm. It is considered as a medical emergency due to various asso-
ciated complications and its life-threatening nature, such that the 28-day mortality rate is reported as high as 
41.7%1. Close monitoring of disease progression and prediction of adverse clinical outcomes in the critical care 
are thus required to identify risks of deterioration and track changes in neurological status, which can evolve 
rapidly. This allows for timely neurological intervention, adjustments in treatment strategies, and proactive 
preventive measures to optimise critical care management and improve patient outcomes.

The prognostication of spontaneous SAH is intricate and multi-factorial. In clinical practice, the prognosis is 
commonly made through patients’ medical conditions and various assessments. These medical conditions include 
underlying conditions, e.g., hypertension, and diabetes, as well as complications, e.g., re-bleeding, vasospasm, 
hydrocephalus, and cerebral oedema. Clinical assessments used for prognostication of spontaneous SAH include 
clinical examinations, e.g., GCS to assess the level of consciousness, radiological investigations on brain imaging, 
haematological biomarkers, e.g., white blood cell (WBC) count, and vital signs, e.g., blood pressure and oxygen 
saturation, that provide information about a patient’s physiological status.

Clinical tools for prognosis of spontaneous SAH have been mostly developed based on baseline medical 
conditions and clinical assessments. The Hunt and Hess scale and the World Federation of Neurological Surgeons 
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(WFNS) scale are the two most widely used prognostic scoring systems for SAH, focusing on the patient’s level 
of consciousness and neurological deficits2,3. Another scoring system, the Fisher grade or modified Fisher grade 
uses findings of the amount of blood and intraventricular haemorrhage (IVH) on brain computed tomography 
(CT) scans to assess the severity of SAH4,5. A multidimensional tool, the FRESH score was also proposed for 
prognostication of outcomes after spontaneous SAH, incorporating Hunt and Hess and APACHE-II physiologic 
scores on admission, age and rebleeding within 48 h6.

The prognostication of spontaneous SAH can be potentially improved in several aspects. Firstly, these prog-
nostic scoring systems focus on a specific aspect of medical conditions, particularly patient’s consciousness level 
and neurological deficits. Although this could be the most critical aspect of prognosis and is valuable in clinical 
practice for risk identification, other prognostic factors can provide additional prognostic information and should 
be included in multi-factorial prognostic models for more comprehensive and customised prognostication.

Secondly, vital signs and neurological status, usually measured by GCS score, are repeatedly measured and 
recorded routinely to monitor disease progression and assess treatment response. They provide up-to-date 
dynamic prognostic information on patients’ evolving conditions. Incorporation of up-to-date dynamic prog-
nostic information in prognostic modelling enables clinicians to determine and adjust treatment plans effectively 
and provide realistic expectations on patients’ clinical outcomes.

Finally, intermediate events, e.g., neurological interventions and occurrences of complications, can signifi-
cantly impact the progression and clinical outcomes. Incorporating these intermediate events in prognostica-
tion of spontaneous SAH can help improve the prediction accuracy of prognostic models, allowing for a more 
comprehensive and dynamic approach to prognostication to enhance the management and prognosis of patients 
suffering spontaneous SAH.

This study aims to develop a dynamic prognostic model for spontaneous SAH to improve prognostication 
as well as explore the prognostic values of neurological interventions when jointly analysed with baseline and 
dynamic covariates. For the multi-factorial nature of prognostication, various clinical conditions on admission, 
e.g., demographics and underlying medical conditions, will be incorporated as baseline covariates, which are 
unaltered during the study period, for prognostic modelling.

Dynamic prognostic information, provided by repeated measured vital signs, haematological biomarkers 
and neurological assessments, as well as a neurological intervention, is then simultaneously analysed and mod-
elled with baseline covariates for monitoring the disease progression of each patient. The proposed prognostic 
model takes various clinical conditions on admission, multiple dynamic factors providing up-to-date prognostic 
information, and the effect of neurological interventions into account for prognostication. These advantages 
make it an novel customised clinical tool for risk assessment, customised treatment optimisation, and disease 
progression monitoring.

Methods
Data collection and visualisation
Patient recruited in this study were selected from MIMIC-IV, a publicly available database sourced from the 
electronic health record (EHR) of the Beth Israel Deaconess Medical Center between 2008 and 20197. 766 patients 
with spontaneous SAH as the primary diagnosis were initially included in the study, identified by ICD-9-CM 
code 430 or ICD-10-CM code I60 and their specifiers. 65 patients were excluded due to too short hospital stay 
(< 24 h) or having no identified records in vital signs and neurological assessments.

A final total of 701 patients were included in this study, all patients aged 18 and over. Among them, 409 
(58.35%) patients were females, and the median age was 59 (IQR: 50–70). Essential hypertension is the most 
common clinical condition (340, 48.50%), followed by hydrocephalus (221, 31.53%), respiratory failure (149, 
21.56%), and cerebral oedema (131, 18.69%). Clinical outcomes were measured by discharge destinations at 
the end of study period. Good outcome (343, 48.93%) was defined by returning home or rehabilitation, while 
poor outcome (358, 51.07%) includes mortality, long-term acute care, and hospice care. The clinical character-
istics of the dataset are shown in Table 1. Demographics, e.g., age and female, are recorded in patients’ clinical 

Table 1.   Clinical characteristics of included dataset.

Covariate All (n = 701) Good outcome (n = 343) Poor outcome (n = 358)

Demographics
Age Median: 59 (IQR: 50—70) Median: 49.25 (IQR: 56—68) Median: 61 (IQR: 51—73)

Female 409 (58.35%) 192 (55.98%) 217 (60.61%)

Underlying conditions

Alcohol 23 (3.28%) 9 (2.62%) 14 (60.61%)

Tobacco 132 (18.83%) 68 (19.83%) 64 (3.91%)

Diabetes 76 (10.84%) 32 (9.33%) 44 (12.29%)

Essential hypertension 340 (48.50%) 154 (44.90%) 186 (51.96%)

Complications

Cerebral oedema 131 (18.69%) 24 (7.00%) 107 (29.89%)

Cerebral infarction 69 (9.84%) 15 (4.37%) 54 (15.08%)

Respiratory failure 149 (21.56%) 11 (3.21%) 138 (38.55%)

Hydrocephalus 221 (31.53%) 34 (3.21%) 187 (52.23%)

Vasospasm 55 (7.85%) 15 (4.37%) 40 (11.17%)
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information in the database, while underlying conditions and complications are identified with ICD-9-CM and 
ICD-10-CM codes.

Six indices were included as dynamic covariates to be selected for prognostic modelling, including one neu-
rological grade, i.e., GCS score, three haematological biomarkers, i.e., creatinine, WBC, glucose, and two vital 
signs, i.e., systolic blood pressure (SBP) and oxygen saturation (SpO2), which had been included and shown to 
be valuable in SAH prognosis research8–13. Table 2 presents the average values and standard deviations of these 
dynamic covariates, calculated among all observations of patients for both good and poor outcome groups to 
provide a general statistical overview of each dynamic covariate. As the frequency of each index measure can 
vary depending on severity of patients’ clinical conditions, different phases of the disease and the judgement of 
healthcare providers, we have incorporated daily average values of dynamic covariates into prognostic modelling 
to normalise the frequency of measurements across patients, thereby reducing potential biases due to variations 
in measurement frequencies.

Figure 1 visualises the trajectories and corresponding 95% confidence interval of these dynamic covariates 
during the study period with locally estimated scatter-plot smoothing (LOESS) method. The LOESS method was 
separately applied to each group, estimating a smoothed curve that best represents the trend of each dynamic 
covariate for each group.

According to the trajectory visualisation in Fig. 1 and statistics shown in Table 2, GCS score is a discrimina-
tively powerful dynamic covariate between two groups, while the trajectories of WBC and glucose also exhibit 
good discrimination between good outcome and poor outcome. The other three covariates, however, do not 
exhibit discriminative power. Visualisation of the trajectories of dynamic prognostic covariates allow to observe 
their patterns and trends for each group and provide an initial insight into the dynamic nature of these covari-
ates. The significance of prognostic values of these dynamic covariates needs to be jointly analysed with baseline 
covariates and intermediate events, which will be presented later.

Prognostic modelling
The prognostic modelling process starts with examining the effects of baseline covariates on clinical out-
comes, which can be modelled using a Cox proportional hazard model. The Cox model is the most widely 
used method in survival analysis and can be used to investigate the effects of baseline covariates on clinical 
outcomes, given by14:

Table 2.   Statistics of all observations of six dynamic covariates.

Covariate All Good outcome Poor outcome

Neurological Score GCS Score 11.89± 3.72 14.57± 3.72 10.58± 3.84

Haematological Biomarkers

Creatinine (mg/dL) 0.75± 0.72 0.84± 1.06 0.70± 0.37

WBC (109/L) 11.57± 5.19 9.68± 4.04 12.68± 5.46

Glucose (mg/dL) 129.29± 37.74 117.69± 32.49 136.30± 38.95

Vital Signs
SBP (mmHg) 141.99± 20.76 134.66± 17.03 144.03± 21.24

SpO2 (%) 97.08± 3.54 96.72± 4.67 97.26± 2.82

Figure 1.   Trajectories of six dynamic prognostic covariates with LOESS method.
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where hi(t) denotes the instantaneous rate of experiencing a good clinical outcome for patient i at time t, while 
ωji is the value of the jth baseline covariate for patient i with corresponding coefficient γj . A positive coefficient 
indicates increasing chance of a good outcome, whereas a negative coefficient implies higher risk of poor out-
comes. The effect of jth baseline covariate on outcome is measured by hazard ratio (HR), computed as exp(γj).

Estimated HRs of all analysed baseline covariates are less than 1, indicating lower changes of good outcomes, 
as shown in Table 3. Results in univariate analysis revealed effects of single covariates on clinical outcome, while 
multivariate analysis considered the simultaneous effects of multiple covariates, estimating the effect of each 
covariate while accounting for other covariates. Among these baseline covariates, cerebral oedema, cerebral 
infarction, respiratory failure, hydrocephalus and vasospasm are significant in univariate survival analysis and 
remain significant in multivariate survival analysis. It is noted that HRs of significant baseline covariates increase 
towards 1 in multivariate analysis compared to univariate analysis, indicating that their effects on clinical out-
comes are less pronounced when other variables are accounted for. With multiple baseline covariates obtained, 
the prognostic model doesn’t need to rely on a single baseline covariate to predict outcomes that the effect of 
that covariate may be overestimated. Instead, we can have a more comprehensive understanding of the patient’s 
condition emerges to make more comprehensive and accurate predictions on prognosis.

As dynamic prognostic covariates can be measured with errors and influenced by caregivers, e.g., human 
biases on neurological assessments, linear mixed-effect models (LMM) are adopted to model the longitudinal 
properties of these dynamic covariates to handle unobserved heterogeneity. Moreover, since each patient corre-
sponds to repeated measurements of dynamic covariates, the measurements within the same patient are likely to 
be correlated. An LMM can account for this within-subject correlation by including random effects. Fixed-effect 
and random-effect terms in an LMM for a dynamic covariate respectively describe its population-level mean 
trajectory and individual-specific deviations.

The longitudinal pattern of the jth dynamic covariate for the ith patient at time t is thus given by:

where yji (t) denotes the observed value of jth dynamic covariate, measured with error, while mji (t) is the cor-
responding unobserved true value, composed of fixed-effect term βjxTji (t) representing the overall trend for 
all patients, and random-effect term bji zTji (t) for explaining patient-specific deviations from the overall trend.

These dynamic covariates are then simultaneously modelled with baseline covariates to incorporate up-to-date 
dynamic prognostic information into prognostication with joint modelling approach15. A survival sub-model 
incorporating multiple dynamic and baseline covariates is given by:

In comparison with Eqs. (1, 3) simultaneously analyses the effects of baseline and dynamic covariates on 
clinical outcomes by incorporating longitudinal sub-models for these dynamic covariates as described in Eq. (2).

Next, there is a further source of prognostic information that can be incorporated in prognostic modelling, 
which are intermediate events, specifically neurological interventions in this study. For the prognostication of 
spontaneous SAH, neurological interventions can have a direct impact on disease progression and clinical out-
comes, and can be incorporated into modelling framework for more comprehensive prognostication.

To account for the effect of neurological interventions on disease progression, the longitudinal sub-model of 
prognostic modelling, denoted by Eq. (2), can be reformulated as:

(1)hi(t) = h0(t) exp



�

j

γjωji




(2)yji (t) = mji (t)+ εji (t) = βjx
T
ji
(t)+ bji z

T
ji
(t)+ εji (t)

(3)hi(t) = h0(t) exp(γ
Tωi +

∑

j

αjmji (t))

Table 3.   Results of univariate and multivariate survival analysis of baseline covariates. Values presented in 
bold indicate statistical significance.

Covariate

Univariate analysis Multivariate analysis

HR 95%CI P value HR 95%CI P value

Age 0.9944 0.9870− 1.0019 0.144 − − −

Female 0.8856 0.7155− 1.0961 0.264 − − −

Alcohol 0.6952 0.3586− 1.3480 0.282 − − −

Tobacco 0.9890 0.7584− 1.2898 0.935 − − −

Diabetes 0.7400 0.5142− 1.0649 0.105 − − −

Essential hypertension 0.8566 0.6924− 1.0598 0.154 − − −

Cerebral oedema 0.2661 0.1757 − 0.4031 < 0.001 0.5626 0.3680− 0.8600 0.008

Cerebral infarction 0.2913 0.1736− 0.4889 < 0.001 0.3644 0.2169− 0.6124 < 0.001

Respiratory failure 0.0767 0.0420− 0.1400 < 0.001 0.1345 0.0727 − 0.2488 < 0.001

Hydrocephalus 0.1280 0.0897 − 0.1828 < 0.001 0.1821 0.1271− 0.2609 < 0.001

Vasospasm 0.3316 0.1975− 0.5566 < 0.001 0.4092 0.2430− 0.6891 < 0.001
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where t̃i is the time of the neurological intervention of the ith patient, while t+  denotes the time relative to 
neurological intervention. For the ith patient, t+ = max(0, t − t̃i) . The effects of neurological interventions are 
modelled as additive terms on both overall population-level trend and individual-specific terms of dynamic 
covariates after the time point of a neurological intervention.

Corresponding, Eq. (3) can be extended as:

Equation 5 describes the prognosis of spontaneous SAH into two states, obtained from the combination 
of Eqs. (3 and 4). Patients having not received neurological interventions are regarded in the first state, while 
patients already treated with neurological interventions are in the second state. t̃i is the time point of state transi-
tion. Thus, this model is termed as neurological intervention transition (NIT) joint model, and its performance 
as a prognostic model will be compared with baseline joint models that do not include neurological interventions 
in prognostic modelling.

Parameters included in this model are estimated using the Bayesian approach, wherein the inference relies 
on a joint posterior distribution as the product of the observed data’s joint likelihood and prior distribution. 
In this study, prior beliefs on the parameters in joint modelling framework are from the values of parameters 
separately estimated in survival and longitudinal sub-models. The Bayesian approach is implemented via Markov 
chain Monte Carlo (MCMC) methods, with Gibbs and Metropolis–Hastings algorithms for sampling from 
distributions.

Results
Simultaneous analysis on longitudinal and survival data
The prognostic value of each dynamic covariate was measured by its HR, calculated by the exponential of αj , 
when jointly analysed and adjusted for the five significant baseline covariates in Table 3. Table 4 presents the HRs 
of included dynamic covariates with both baseline and proposed NIT joint modelling approach.

According to the results in Table 4, GCS score is a strong independent dynamic prognostic factor for clinical 
outcomes. It is calculated that one unit increase in GCS score is associated with 173.79% higher chance of a good 
outcome when solely jointly modelled with baseline covariates. Presence of WBC abnormality and hyperglycae-
mia are found to be negatively associated with good outcome at 14 days.

The associations are not significant when these two haematological biomarkers are solely modelled as dynamic 
covariates but become significant when jointly analysed with GCS score. Moreover, when jointly modelled 
with haematological biomarkers, the prognostic power of GCS score decreases. These suggest that these two 
haematological biomarkers can act as confounding variables that affect the associations between GCS score and 
outcomes. The inclusion of these two haematological biomarkers helps to control for this confounding effect 
and provide a more accurate estimate of the HR of GCS score.

Vital signs, however, are found not associated with clinical outcomes, with HR values around 1. This may 
be explained by their dynamic nature, that vital signs can fluctuate and change rapidly in response to various 
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Table 4.   Results of dynamic covariates in baseline and NIT joint modelling approach. Values presented in 
bold indicate statistical significance.

Covariate

Baseline joint model NIT jointmodel

HR 95% CI P value HR 95% CI P value

Univariate

GCS score 2.7379 2.0044− 3.7398 < 0.001 3.2802 2.2559− 4.7696 < 0.001

Creatinine abnormality 1.1085 0.7548− 1.6280 0.584 1.1087 0.7780− 1.5799 0.580

WBC abnormality 0.7847 0.5515− 1.1167 0.170 0.7954 0.5695− 1.1110 0.197

Hyperglycemia (Glucose ≥ 126 mg/dL) 0.7474 0.4967− 1.1247 0.151 0.7703 0.5031− 1.1793 0.213

SBP 0.9971 0.9862− 1.0081 0.594 0.9971 0.9868− 1.0075 0.584

Low oxygen saturation (SpO2 < 95%) 1.4249 0.7476− 2.7159 0.288 1.1910 0.6214− 2.2826 0.600

GCS score+WBC
GCS score 2.5713 1.8692− 3.5370 < 0.001 3.2651 2.2583− 4.7208 < 0.001

WBC abnormality 0.3681 0.2077 − 0.6524 < 0.001 0.3882 0.2180− 0.6912 0.003

GCS score+ Glucose
GCS score 2.5767 1.9580− 3.3909 < 0.001 3.0162 2.0178− 4.5086 < 0.001

Hyperglycemia (Glucose ≥ 126 mg/dL) 0.2790 0.1237 − 0.6294 0.001 0.2097 0.0853− 0.5155 < 0.001

GCS score+WBC+ Glucose

GCS score 2.4322 1.7716− 3.3392 < 0.001 2.8445 2.1522− 3.7596 < 0.001

WBC abnormality 0.4544 0.2489− 0.8296 0.003 0.5261 0.2899− 0.9549 0.038

Hyperglycemia (Glucose ≥ 126 mg/dL) 0.3722 0.1478− 0.9370 0.018 0.2681 0.0961− 0.7480 0.010
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physiological and environmental factors. While abnormal vital signs may indicate physiological instability, they 
may not necessarily correlate with clinical outcomes. Close monitoring and management of vital signs is impor-
tant for patients with SAH, but the prognostic value of vital signs for clinical outcomes may be limited compared 
to neurological scores.

Table 5 gives the prediction performance of different models, where Ts denotes the starting point of predic-
tion, and dt is the prediction interval. AUC represents the overall discriminative ability of the prognostic model 
in distinguishing patients with good and poor outcomes. Composition of patients varies with different Ts and 
dt , which can lead to variations in performance across prediction intervals. Thus we use mean AUC, calculated 
by averaging the predictive performance over all Ts and dt , to measure the overall prediction performance. Vari-
abilities across starting points of prediction and prediction intervals for each model were also calculated, where 
low variability indicated the model was robust over time and could consistently provide reliable predictions on 
clinical outcomes.

In both baseline and NIT joint models, jointly analysing these three dynamic covariates increases the overall 
prediction performance compared to solely relying on the GCS score, since WBC and glucose levels can provide 
additional prognostic information on inflammatory or infectious process, and cardiovascular incidences, to the 
GCS score, which mainly represents a patient’s level of consciousness and neurological function. Incorporation 
of multiple dynamic covariates can thus provide a multifaceted view on the evolution of a patient’s clinical status.

Comparing the predictive performance across different prediction intervals, we can find that the worst predic-
tive performance for all model settings is predicting from day 3, especially when predicting the outcome in the 
next two days. This can be explained by both the nature of spontaneous SAH and the dataset. Firstly, regarding 
the nature of spontaneous SAH, complications, e.g., vasospasm. are highly probable within this time period16. 
Thus lack of prognostic information about the time to complications during this critical period hinders our 
model’s ability to capture essential prognostic information, leading to reduced predictive performance. Secondly, 

Table 5.   Prediction performance of different joint model settings.

Covariate Baseline joint model NIT jointmodel

GCS score

dt/Ts 1 2 3 5 7 dt/Ts 1 2 3 5 7

1 0.9143 0.7423 0.7016 0.6715 0.7405 1 0.8950 0.7250 0.7039 0.6896 0.7335

2 0.7441 0.7505 0.6391 0.7561 0.7564 2 0.7432 0.7509 0.6513 0.7521 0.7534

3 0.7736 0.7294 0.6791 0.7245 0.7544 3 0.7761 0.7383 0.6835 0.7370 0.7685

5 0.7886 0.7811 0.7046 0.7031 0.7472 5 0.7888 0.7924 0.7255 0.7479 0.7799

7 0.7865 0.7878 0.7511 0.6968 0.7320 7 0.7831 0.7976 0.7700 0.7603 0.7705

Marginal 0.8014 0.7582 0.6951 0.7104 0.7461 Marginal 0.7973 0.7609 0.7069 0.7369 0.7611

MeanAUC: 0.7422± 0.0524 MeanAUC: 0.7526± 0.0466

GCS score+ Glucose

dt/Ts 1 2 3 5 7 dt/Ts 1 2 3 5 7

1 0.8966 0.7758 0.7285 0.7152 0.7542 1 0.9328 0.7510 0.6984 0.6955 0.7468

2 0.7795 0.7684 0.6554 0.7588 0.7673 2 0.7563 0.7645 0.6522 0.7521 0.7634

3 0.7908 0.7546 0.6875 0.7331 0.7632 3 0.7896 0.7581 0.6941 0.7422 0.7669

5 0.8018 0.8065 0.7205 0.7181 0.7622 5 0.8016 0.8080 0.7294 0.7456 0.7814

7 0.7975 0.8015 0.7526 0.7168 0.7571 7 0.7954 0.7991 0.7667 0.7497 0.7792

Marginal 0.8132 0.7814 0.7089 0.7284 0.7608 Marginal 0.8151 0.7761 0.7082 0.7370 0.7675

MeanAUC: 0.7585± 0.0468 MeanAUC: 0.7608± 0.0518

GCS score+WBC

dt/Ts 1 2 3 5 7 dt/Ts 1 2 3 5 7

1 0.8273 0.7714 0.7381 0.7120 0.7476 1 0.8271 0.7597 0.7147 0.7115 0.7436

2 0.7803 0.7917 0.6647 0.7636 0.7668 2 0.7400 0.7644 0.6589 0.7589 0.7592

3 0.8000 0.7626 0.7003 0.7392 0.7684 3 0.7938 0.7573 0.6996 0.7416 0.7749

5 0.8038 0.8095 0.7228 0.7262 0.7675 5 0.8062 0.8137 0.7328 0.7527 0.7903

7 0.8006 0.8047 0.7589 0.7289 0.7614 7 0.7991 0.8035 0.7731 0.7654 0.7912

Marginal 0.8024 0.7880 0.7170 0.7340 0.7623 Marginal 0.7932 0.7797 0.7158 0.7460 0.7718

MeanAUC: 0.7608± 0.0384 MeanAUC: 0.7613± 0.0390

GCS score+ Glucose+WBC

dt/Ts 1 2 3 5 7 dt/Ts 1 2 3 5 7

1 0.8309 0.7446 0.7176 0.7061 0.7627 1 0.8155 0.7425 0.7520 0.7110 0.7719

2 0.7815 0.7850 0.6686 0.7626 0.7728 2 0.7469 0.8032 0.6944 0.7767 0.7874

3 0.8069 0.7684 0.7011 0.7414 0.7700 3 0.8221 0.7879 0.7258 0.7626 0.7892

5 0.8144 0.8155 0.7340 0.7245 0.7751 5 0.8192 0.8313 0.7636 0.7654 0.7972

7 0.8061 0.8025 0.7618 0.7196 0.7749 7 0.8138 0.8177 0.7930 0.7715 0.7957

Marginal 0.8080 0.7832 0.7166 0.7308 0.7711 Marginal 0.8035 0.7965 0.7458 0.7574 0.7883

MeanAUC: 0.7619± 0.0407 MeanAUC: 0.7783± 0.0356
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calculations of AUCs are based on the comparison between model’s predictions and actual outcomes within the 
prediction interval and can be impacted by few outliers or atypical cases. Therefore, we measure and compare 
the overall performance acorss different model settings by averaging AUCs across multiple prediction periods.

Figure 2 compares the prediction accuracy with time between two modelling approaches and combina-
tions of dynamic covariates, measured by marginal AUC by the time of prediction. It can be found that, with 
all combinations of dynamic covariates, the prediction performance of proposed NIT joint model is better 
than the corresponding model developed by baseline joint modelling methods. This figure also shows that the 
prediction performance of proposed NIT joint model with GCS score, glucose and WBC as dynamic covari-
ates is good and consistent with different prediction time, where the AUC is at least around 0.75 for all starting 
points of prediction. Moreover, prognostic NIT joint model can provide good prediction performance in both 
acute phase ( Ts + dt ≤ 3 , Mean AUC: 0.7683) and sub-acute phase ( 3 < Ts + dt ≤ 14 , Mean AUC: 0.7797) of 
spontaneous SAH.

According to the predictive performance of different dynamic prognostic models, there are three main find-
ings of this study. Firstly, repeated measured neurological status, measured by GCS score, is a strong dynamic 
predictor for clinical outcomes, adjusting for baseline clinical conditions. Incorporation of haematological 
biomarkers, i.e., WBC and glucose, can provide additive prognostic information and improve the prediction 
accuracy of prognostic models.

Secondly, intermediate events, i.e., neurological interventions in this study, provide prognostic information 
on the disease progression. Incorporating intermediate events as transitions between states of prognostication 
can add granularity to a prognostic model by dividing the overall prognosis process into multiple prognostic 
states, which allows for a more detailed analysis into disease progression. Compared with baseline joint models, 
NIT joint models have better predictive accuracy when including the same baseline and dynamic covariates.

Moreover, NIT joint models contribute to personalised prognosis. Modelling the time point of neurological 
intervention as individualised transition point of prognostic states adds individual-specific characteristics to 
the prognostic model so that a prognostic model can take individualised milestones in disease progression into 
account for personalised outcome predictions.

Finally, compared to baseline joint models, NIT joint models perform better in relative long-term outcome 
prediction. The average improvement of prediction accuracy from baseline to NIT joint model across four covari-
ate combinations is 0.0212 for prediction in the sub-acute phase, while the overall improvement is 0.0074. This 
merit of NIT joint model may result from that it explains the change of disease progression, which has higher 
impact on the values of dynamic covariates in the sub-acute phase of prognostication.

The multivariate NIT joint model, incorporating GCS score, WBC and glucose as dynamic prognostic covari-
ates is the optimal model in this study, increasing the predictive accuracy of outcome from 0.7422, in baseline 
joint model only considering the neurological grades of patients, to 0.7783. It can be used as an accurate and 
comprehensive clinical tool for dynamic personalised prognosis in patients suffering from spontaneous SAH, 
potentially benefiting disease progression monitoring, optimising treatment plans for better clinical outcomes.

Discussion
This study has proposed a multivariate NIT joint model for prognosis of spontaneous SAH. Compared to widely 
used clinical tools such as Hunt and Hess grade, which are highly dependent on patient’s neurological status, the 
prognostic model explores the prognostic values of medical conditions, haematological biomarkers, and events 
of neurological interventions. It is thus suitable for modelling the multi-factorial mechanism of SAH prognosis. 
Moreover, prognostic information from medical conditions and haematological biomarkers are individual-
specific, together with individualised disease progression modelled by individualised prognostic state transitions, 
making proposed NIT models in this study a good clinical tool for personalised prognosis.

Figure 2.   Comparisons in prediction accuracy between baseline and NIT joint models.
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The optimal NIT joint model is composed of five baseline covariates, i.e., cerebral oedema, cerebral infarction, 
respiratory failure, hydrocephalus and vasospasm, three dynamic covariates, i.e., GCS score, WBC and glucose, 
and a state transition indicator, i.e., intermediate event of neurological intervention. This model can provide 
accurate outcome predictions across all starting points of prediction and prediction intervals, with the overall 
AUC 0.7783, respectively 0.7683 and 0.7797 in the acute and sub-acute phases of spontaneous SAH.

In analysis of the predictive power of neurological status, haematological biomarkers, and vital signs, GCS 
score was found to be the most valuable covariate in prognostication. This finding was consistent with the fact 
that neurological scales are widely used clinical tools for prognosis of SAH, which estimated patients’ clinical out-
comes based on results in neurological assessments. WBC and glucose are not independent prognostic factors but 
can provide additive prognostic information to neurological status and improve the model prediction accuracy.

Although the prognostic values of vital signs were found to be limited in this study, their variability, e.g., 
systolic blood pressure variability, which may indicate impaired blood pressure regulation and cardiovascular 
instability, is drawing research attention in prognosis studies17. With more frequent measurements of vital signs, 
their variability and the changes of variability during disease progression can be obtained, and can be potentially 
included as influential dynamic covariate for the prognostication of SAH.

This study provides a novel approach to incorporate different types of covariates and events into prognosti-
cation of spontaneous SAH, on the basis of joint modelling framework. This approach is also suitable and can 
be extended to model the prognosis of other cerebrovascular diseases due to its ability to incorporate different 
types of prognostic information. Incorporated prognostic information is from demographics, clinical conditions, 
neurological status, haematological biomarkers, vital signs, radiological findings, and some intermediate events 
that can have a direct impact on disease progression such as complications and neurological surgeries. Moreover, 
the Bayesian approach adopted for parameter estimation allows for incorporating expert knowledge into prior 
distributions, which facilitates its clinical use and improves model’s interpretability for clinicians.

The findings of this study also contribute to the development of personalised prognosis, which is a tendency 
in critical care management. Personalised prognosis considers individual characteristics and can guide tailored 
treatment decisions, individualised follow-up and surveillance strategies, and resource allocation. Implementa-
tion of personalised prognosis in clinical practice by integration with EHR systems can help improve patient 
outcomes, enhance the collaboration between patients and caregivers, and support more patient-centred health-
care. This study is the first research taking all three types of individual-specific covariates and events, i.e., baseline 
clinical conditions, dynamic prognostic factors and clinical intermediate events, into prognostic modelling in 
studies of neurovascular diseases. Findings and approaches proposed in this study can thus potentially contribute 
to the development of personalised prognosis for neurovascular diseases (supplementary information file 1).

There are three main future directions of this study. Firstly, neurological intervention is not the only interme-
diate event that can provide additive prognostic information to baseline and dynamic covariates. Occurrences 
of major complications during critical care, e.g., re-bleeding, and delayed cerebral ischaemia (DCI), are also 
informative indicators for changes in disease progression, which often indicate worsening neurological condi-
tions. Incorporating multiple intermediate outcomes and development of a multi-state prognostic model can 
potentially provide more accurate and comprehensive prognostication. Secondly, we have incorporated daily 
average values of dynamic covariates into prognostic modelling. Thus, our prognostic model may not fully cap-
ture within-day changes in patients’ conditions, and the precision of predictions may be impacted, which can 
be improved with increased frequencies in measuring dynamic covariates. Finally, application of deep learning 
strategies in the prognosis of spontaneous SAH can potentially help capture informative features for prognosis 
research, thus improving model’s flexibility and adaptability, which can be potentially integrated with our pro-
posed modelling framework for higher predictive performance18.

Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information file. MIMIC-IV dataset is publicly available on https://​physi​onet.​org/​conte​nt/​mimic​iv/.
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