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Analysis of optimal control 
strategies on the fungal Tinea 
capitis infection fractional order 
model with cost‑effective analysis
Shewafera Wondimagegnhu Teklu 1*, Abebe Addise Meshesha 2 & Saif Ullah 3

In this study, we have formulated and analyzed the Tinea capitis infection Caputo fractional order 
model by implementing three time‑dependent control measures. In the qualitative analysis part, 
we investigated the following: by using the well‑known Picard–Lindelöf criteria we have proved the 
model solutions’ existence and uniqueness, using the next generation matrix approach we calculated 
the model basic reproduction number, we computed the model equilibrium points and investigated 
their stabilities, using the three time‑dependent control variables (prevention measure, non‑
inflammatory infection treatment measure, and inflammatory infection treatment measure) and from 
the formulated fractional order model we re‑formulated the fractional order optimal control problem. 
The necessary optimality conditions for the Tinea capitis fractional order optimal control problem and 
the existence of optimal control strategies are derived and presented by using Pontryagin’s Maximum 
Principle. Also, the study carried out the sensitivity and numerical analysis to investigate the most 
sensitive parameters and to verify the qualitative analysis results. Finally, we performed the cost‑
effective analysis to investigate the most cost‑effective measures from the possible proposed control 
measures, and from the findings we can suggest that implementing prevention measures only is the 
most cost‑effective control measure that stakeholders should consider.

Anthropophilic (human), zoophilic (animal), or geophilic (soil) are Dermatophytes classifications with 
their species as Microsporum,Trichophyton, and Epidermophyton and also they are the main causes of 
 Dermatophytosis1,2. Dermatophyte is one of the most common causes of human fungal infections throughout 
the world and affecting the skin, hair, scalp, and nails of human and animal  hosts1,3.

Tinea capitis (T. capitis) is one of the most common contagious dermatophyte superficial fungal infection of 
the scalp hairs and intervening skin of human beings but commonly observed in people of African descent as 
compared to Caucasians and Hispanics and it has been considered a significant public health issue for decades 
and appears most often in children between 3 and 7 years of  age3–9. Tinea capitis can be classified as an inflam-
matory or non-inflammatory fungal dermatophyte infection caused by fungal species like Trichophyton or 
Microsporum or zoophilic or anthropophilic and affecting the hair and scalp skin of mainly among prepubertal 
 children10–21. Non-inflammatory Tinea capitis infection is not usually causes a permanent hair loss but cause 
a black dot tinea captis where the individual’s hair shafts break at the scalp area, whereas inflammatory Tinea 
capitis infection is a manifestation of acquired immunity and it can be classified as: Majocchi’s granuloma, kerion 
Celsi and  favus2–6.

It is often ignored but it accounts for 25–30% of all fungal infections and is common in developing countries 
especially in sub-Saharan Africa  countries13,14. The Tinea capitis is a common children hair or scalp infection 
problem, and has been a worldwide public health concern and since it is a highly contagious infection and it has 
adverse events such as high economic burden, blood test follow-up, and significant cost of systemic  treatments1,15. 
It predominantly occurs in rular or suburban regions and its common risk factors are poor hygiene, overcrowd-
ing, humidity, cultural habits, socioeconomic status and  heat2,15,20. Even though, it is not always possible to 
carry out the Tinea capitis infection test, the etiological diagnosis is depending on the patients’ clinical find-
ings and confirmation based on the fungus growth in  culture17. The dermatoscopic and clinical findings of the 
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tinea suspected cases help to identify the specific treatment, facilitating precocious and the etiological  agent17. 
Antifungal oral therapy (griseofulvin, terbinafine, fluconazole, and itraconazole) has been considered the basic 
standard for the fungal Tinea capitis  infection2.

Analyses of mathematical modeling for real world situations have been the most important tool in under-
standing of different aspects of the real world  phenomenon22,23. Different researchers have been formulated 
and analyzed a mathematical model for system dynamics in different research topics such as social sciences, 
natural sciences and other sciences, see scholars  studies24–54. We have found various literatures done by different 
researchers that have investigated the real world situations phenomenon using integer order modeling approach 
 like22–24,37–40, using fractional order modeling approach  like25–27,33–36,46–48.

From our reviewing literature process we have faced difficulty on finding published research about fungal 
Tinea capitis infection spreading with mathematical modeling approach, getting organized real data about Tinea 
capitis infection. But we have found different published literatures with cross-sectional approach, case report 
approach and notes prepared by various organizations that are used to justify the current and previous incidence 
and prevalence conditions and also to observe its spreading nature. Having these in mind we have reviewed the 
following studies about different real world situations that are more relevant and some of them are related to 
the proposed Tinea capitis disease study regarding to basic concepts such as mathematical modelling approach, 
theories, methods and methodologies. Karanja et al.16, constructed analyzed a ringworm infections deterministic 
mathematical model in an environment. The analysis shows that the ringworm dynamical system is globally 
asymptotically stable when the basic reproduction number is less than one. Alemneh et al.24 formulated and 
analyzed an integer order model on social media addiction to investigate the most effective strategies to tackle the 
problem. Teklu and  Terefe38 and  Teklu39 formulated and analyzed an integer order model and a fractional order 
model to investigate the most effective strategies on the transmission dynamics of university students’ animosity 
towards mathematics and anxiety towards mathematics respectively. Results of both the studies show that using 
protection and treatment control strategies simultaneously is the best strategy to minimize the transmission 
dynamics of either animosity or anxiety of mathematics in the community. Mandal et al.34 constructed and 
examined a fractional-order epidemic model with fear effect of a communicable disease with treatment control 
measure. The study analyzed fractional backward and fractional Hopf bifurcation and determined possible roles 
of the disease control parameters, level of fear. Din et al.25 formulated and examined a Caputo fractional order 
model on climate change. The study analyzed the model both qualitatively and numerically and the results show 
that the total spectrum lying between two integer values are achieved with more information about the complex-
ity of the fractional climate change-model dynamics. Kotola and  Teklu32 developed and analyzed a racism and 
corruption co-dynamics as infectious diseases and investigate the role of controlling mechanisms. Teklu and 
 Terefe22 constructed and analyzed a violence and racism co-dynamics as contagious diseases and investigate the 
role of controlling mechanisms. From the analysis results one can observed that the violence-racism co-existence 
spreads under control if the co-existence corresponding basic reproduction number is less than one, and it propa-
gates through the community if this number exceeds unity. Teklu et al.54 developed and investigated Tinea capitis 
epidemic fractional order model with optimal control theory. Their model did not consider non-inflammatory 
and inflammatory groups and cost-effective analysis.  Mamo49 formulated and analyzed the transmission dynam-
ics of racism in cyberspace. The analysis results show that the racism spreading could be under control whenever 
the corresponding basic reproduction number is less than unity and it spreads in the community whenever the 
basic reproduction number is more than unity. Similarly  Mamo44 formulated and examined an integer order 
deterministic model on the transmission dynamics of racism propagation with community resilience. One can 
observed the result when decreasing the transmission and racial extremeness rate by increasing the social bonds 
and solidarity through society resilience could control the transmission dynamics of racism in the community. 
From the findings of the above studies one can observe that the fractional order derivative method could produce 
better solutions in the comparison the classical (integer order order) counterpart models, but the analysis of 
fractional order method is more complicated than the classical integer order approach.

Since we have understand that fungal Tinea capitis infection is the most common infectious disease attacking 
mainly children from 3 to 7 years old we are motivated to investigates fungal Tinea capitis infection spreading 
dynamics using fractional order optimal control problem by considering three time-dependent control measures. 
In the model formulation, the fractional order derivative approach in the Caputo case is considered. Moreo-
ver, the human population of infected group is partitioned into non-inflammatory infected and inflammatory 
infected sub-groups. The control measures we considered are prevention against Tinea capitis infection, treatment 
of non-inflammatory infected individuals and treatment of inflammatory infected individuals. We performed 
numerical simulations for the fractional order optimal control problem in order to investigate the impact of the 
control measures. The main aim of this study is formulating and examining the Caputo fractional order model 
of the Tinea capitis spreading dynamics with optimal control theory.

According to various mathematical modeling research studies of infectious diseases discussed above, none 
of them considered a fractional order mathematical model study on Tinea capitis with non-inflammatory and 
inflammatory infection classification to tackle the spreading dynamics in the community by applying the pre-
vention and treatment optimal control strategies with minimum cost. As a result, this scientific gap motivates 
us to formulate and investigate a novel fractional order mathematical model of on fungal Tinea capitis infection 
spreading in the community. The rest part of this paper is organized in different sections as: “Basic concepts of 
fractional calculus” section addressed the fundamental concepts regarding fractional order calculus, “Qualitative 
analysis of the fractional order model (16)” section discussed procedures of the models formulations and ana-
lyzed the Tinea capitis transmission dynamics Caputo fractional-order model, “Formulation of the correspond-
ing optimal control problem” section re-formulated and analyzed the Caputo fractional order optimal control 
problem, “Sensitivity and numerical analysis” section carried out the sensitivity and numerical analysis of the 
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fractional order model, “Cost-effective analysis” section investigate the cost-electiveness analysis, and finally 
“Discussion and conclusion” section gives the conclusion of the whole activities in the study.

Basic concepts of fractional calculus
In mathematical modeling of real world situations especially in mathematical epidemiology the concept of 
fractional calculus is a fundamental tool. Having this in mind, in this section we illustrate the basic aspects 
of fractional calculus (both the integral and derivative aspects) that are relevant to our Tinea capitis infection 
investigation with subsequent sections and sub-sections.

Definition 1 Suppose g(t) ∈ L∞(R) ∩ F(R). Let κ > 0  then the Riemann–Liouville fractional integral of 
order κ > 0  is defined by

where Ŵ(.) is the gamma  function25.

Definition 2 Suppose g(t) ∈ L∞(R) ∩ F(R) then the Riemann–Liouville type fractional order derivative of g 
having order κ > 0  is defined by

where Ŵ(.) is the gamma  function53.

Definition 3 Suppose g(t) ∈ L∞(R) ∩ F(R) then the Caputo type fractional order derivative of g having order 
κ > 0  is defined by

where Ŵ(.) is the gamma  function53.

Proposition l Stated below summaries some fundamental representations on the Riemann–Liouville integral illus-
trated in (1), the Riemann–Liouville and Caputo fractional operator illustrated in Eqs. (2) and (3) respectively.

Proposition 2 Suppose g(t) ∈ L∞(R) ∩ F(R) and κ ∈ R, m− 1 < κ ≤ m,m ∈ N the the following conditions hold

(a)  
(

CDκ
t I

κg
)

(t) = g(t).

(b) (Iκ CDκ
t g)(t) = g(t)−

m−1
∑

k=0

ti

i! g
i(0).

(c) Especially, if 0 < κ < 1 , then

(d) For a constant function g(t) = b then CDκ
t (b) = 0 , where m = [κ]+ 1 , with [κ] is the integer part of κ ∈ R+ 53.

Definition 4 Let α > 0,β > 0 then the two parameters Mittag–Leffler function is defined  by47

Definition 5 Suppose  β = 1 be the constant parameter then the one parameter Mittag–Leffler function is 
defined by 47

Definition 6 A constant number x∗ is said to be an equilibrium point of the Caputo-fractional order model, then 53

Proposition 3 The Laplace transform of the Caputo fractional order derivative with order κ , m− 1 < κ ≤ m,m ∈ N 
is given by

(1)Iκa f (t) =
1

Ŵ(κ)

t
∫
a
(t − τ )κ−1g(τ )dτ , t > 0,

(2)RLDκ
t g(t) =







1
Ŵ(m−κ)

dm

dtm

t
∫
0
(t − τ )m−κ−1g(τ )dτ , m− 1 < κ ≤ m ∈ N

dm

dtm g(t), κ = m ∈ N

, t > 0,

(3)CDκ
t g(t) =







1
Ŵ(m−κ)

t
∫
0
(t − τ )m−κ−1gm(τ )dτ , m− 1 < κ ≤ m ∈ N

dm

dtm g(t), κ = m ∈ N

, t > 0,

(4)(Iκ CDκ
t g)(t) = g(t)− g(0).

(5)Eα,β(t) =

∞
∑

m=0

tm

Ŵ(αm+ β)
.

(6)Eα,1(t) =

∞
∑

m=0

tm

Ŵ(αm+ 1)
= Eα(t).

(7)CDκ
t x(t) = f (t, x(t)), κ ∈ [0, 1] if and only if f

(

t, x∗
)

= 0
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where H(s) is the Laplace transform of the function h(t) 47

Proposition 4 The Laplace transformation of two parameters function of Mittag Leffler case is given by 47

Proposition 5 (Generalized Mean Value theorem) Suppose h(t) ∈ L[0,T0] and C Dκ
t h(t) ∈ L[0,T0] for κ ∈ (0, 1] 

then the theorem states that

where ξ ∈ [0, t] , for each t  such that 0 < t ≤ T0 36.

Lemma 1 From proposition 3 we derived the following 53

Construction of the dynamical system
In this sub-section, we need to formulate both the integer order and fractional order representation of the fungal 
Tinea capitis infection spreading dynamics in the community by partitioning the human host population K(t) 
into five distinct mutually exclusive groups as: S(t) is the Tinea capitis infection susceptible group,E(t) is the Tinea 
capitis exposed group, U(t) is Tinea capitis non-inflammatory infected group, A(t) is the Tinea capitis inflamma-
tory group and R(t) be the Tinea capitis infection recovered group where the total host population is given by

Since the host population is not constant, the assumed host population is large and Tinea capitis is not a 
density dependent spreading infectious disease the Tinea capitis susceptible group acquire Tinea capitis infection 
at the standard incidence rate stated by

where ρ1 and ρ2 are relative infectiousness of non-inflammatory and inflammatory infected groups respectively.
Additional fundamental model assumptions:

• A portion π of the exposed group go to the Tinea capitis inflammatory group A(t) at rate δ.
• The remaining portion of exposed group given by 1− π of the rate δ go to the non-inflammatory group U(t).
• Some of the individuals from the non-inflammatory group U(t) and the inflammatory group A(t) are entering 

to the Tinea capitis recovered group R(t) with rates ε1 and ε2 respectively.
• The total host population is not constant.
• There is permanent recovery from Tinea capitis.
• The host population is homogeneously mixing.

Applying each basic terminology illustrated above and descriptions in Tables 1 and 2 respectively the sche-
matic diagram representation of the Tinea capitis transmission dynamics is given by Fig. 1.

Applying the schematic diagram illustrated by Fig. 1 we have formulated the integer order model for Tinea 
capitis infection spreading in the community by the systems of non-linear ordinary differential equation given by

with initial host population

(8)L
(

Dκ
t h

)

(s) = sκH(s)−

m−1
∑

i=1

sκ−i−1hi(0)

(9)L
(

tβ−1 Eα,β
(

±γtα
)

)

(s) =
sαβ

sα ∓ γ
.

(10)h(t) = h(0)+
1

Ŵ(κ)

CDκ
t h(ξ)t

κ

(11)
(a) The function h is non - decreasing for all t ∈ [0,T0], if

CDκ
t h(t) ≥ 0.

(b) The function h is non - decreasing for all t ∈ [0,T0], if
CDκ

t h(t) ≤ 0.

(12)K(t) = S(t)+ E(t)+ U(t)+ A(t)+ R(t).

(13)�T(t) =
ϕ

K
(ρ1U(t)+ ρ2A(t)),

(14)

dS

dt
= �− (�T + µ)S,

dE

dt
= �TS− (µ+ δ)E,

dU

dt
= (1− π)δE− (µ+ ε1)U ,

dA

dt
= πδE− (µ+ d + ε2)A,

dR

dt
= ε1U + ε2A− µR,
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Using the integer order Tinea capitis infection model (14) we re-construct the associated Tinea capitis spread-
ing dynamics Caputo fractional order model in order to investigate the memory effects and gain more insights 
about the Tinea capitis spreading dynamics in the population. The Tinea capitis fractional order model is re-
formulated as

with initial host population described by

(15)S(0) > 0, E(0) ≥ 0,U(0) ≥ 0, A(0) ≥ 0, and R(0) ≥ 0.

(16)

CDκ
t S = �κ −

(

�T + µκ
)

S,

CDκ
t E = �TS−

(

µκ + δκ
)

E,

CDκ
t U = πκδκE −

(

µκ + εκ1
)

,

CDκ
t A =

(

1− πκ
)

δκE −
(

µκ + dκ + εκ2
)

A,

CDκ
t R = εκ1U + εκ2A− µκR

Table 1.  Definitions of the model parameters.

Symbol Definition

µ The human host natural death rate

� Host recruitment rate

δ Rate of the exposed group progress to the infectious groups

ε1 Recovery rate of non-inflammatory group

ε2 Recovery rate of inflammatory group

φ Tinea capitis spreading rate

π Portion of exposed who are entered to inflammatory group

d Inflammatory infection induced death rate

Table 2.  State variables definitions.

Symbol Definition

S Susceptible to Tinea capitis group

E Tinea capitis exposed group

U Tinea capitis non-inflammatory infection group

A Inflammatory Tinea capitis infection group

R Recovered group against Tinea capitis infection

   S    E 

+  

 

∆  

 

 

   U 

   A 

   R 

Figure 1.  Schematic diagram of the Tinea capitis transmission where �T stated in Eq. (13).
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Qualitative analysis of the fractional order model (16)
The model (16) solutions existence and uniqueness
Let  TF be a positive real number and J = [0,TF ] . Let F0

b (J) is the set of every bounded continuous function 
defined on J with the associtated norm defined by W = sup{|W(t)| : t ∈ J}.  The dynamical system with Eq. (12) 
can be defined in the form

in which W(t) = (S(t),E(t),U(t),A(t),R(t)) describes the dynamical system (16) host population sub-divisions 
and E is a continuous function given by

Using term (c) of Proposition 2 we have derived the following integral equations

From the system (15) we have derived the new system given by

Furthermore, by applying the Picard’s numerical iteration criteria we have described the iterated integral 
equations given by

Thus, the initial value problem (13) can be written by W(t) = W(0)+ 1
Ŵ(κ)

t
∫
0
E(s,W(s))(t − s)κ−1ds and 

hence one can write the following Lemmas.

Lemma 2 The vector E(t,W) stated by Eq. (14) holds the Lipchitz condition in the variable W on a set [0, TF]× R
5
+ 

with Lipchitz constant Ŵ = max
(

ϕκ
(

ρκ1 + ρκ2
)

, (µκ + δκ),
(

µκ + εκ1
)

,
(

µκ + dκ + εκ2
)

,µκ
)

.

(17)
S(0) ≥ 0, E(0) ≥ 0, U(0) ≥ 0,

A(0) ≥ 0, R(0) ≥ 0.

(18)
{

Dκ
t W(t) = E(t,W(t)), 0 < t < TF < ∞,

W(0) = W0,

(19)E(t,W(t)) =











E1(t, S(t))
E2(t,E(t))
E3(t,U(t))
E4(t,A(t))
E5(t,R(t))











=











�κ − (�T + µκ)S
�TS − (µκ + δκ)E

(1− πκ)δκE −
�

µκ + εκ1
�

U
πκδκE −

�

µκ + dκ + εκ2
�

A
εκ1U + εκ2A− µκR











.

(20)

S(t)− S(0) = Iκt
(

�κ −
(

�T + µκ
)

S
)

,

E(t)− E(0) = Iκt
(

�TS−
(

µκ + δκ
)

E
)

,

U(t)− U(0) = Iκt
(

(1− πκ
)

δκE −
(

µκ + εκ1
)

U),

A(t)− A(0) = Iκt
(

πκδκE −
(

µκ + dκ + εκ2
)

A
)

,

R(t)− R(0) = Iκt
(

εκ1U + εκ2A− µκR
)

.

(21)

S(t) = S(0)+
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E1(s, S(s))ds,

E(t) = E(0)+
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E2(s,E(s))ds,

U(t) = U(0)+
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E3(s,U(s))ds,

A(t) = A(0)+
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E4(s,A(s))ds,

R(t) = R(0)+
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E5(s,R(s))ds.

(22)

Sn(t) =
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E1(s, Sn−1(s))ds,

En(t) =
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E2(s,En−1(s))ds,

IAn(t) =
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E3(s,Un−1(s))ds,

ICn(t) =
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E4(s,An−1(s))ds,

Rn(t) =
1

Ŵ(κ)

t
∫
0
(t − s)κ−1E5(s,Rn−1(s))ds.
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Proof We can write the assertions illustrated by

Therefore, we proved that

where Ŵ = max
(

ϕ
(

ρκ1 + ρκ2
)

, (µκ + δκ),
(

µκ + εκ1
)

,
(

µκ + dκ + εκ2
)

,µκ
)

.

Lemma 3 From Eq. (19), the dynamical system (17) with (18) one can prove that the system has a unique solution 
W(t) ∈ F

0
b (J).

Proof We can show the uniqueness in Lemma 3 using Picard–Lindelöf criteria with the corresponding fixed 
point theory. The dynamical system (17) with initial host population illustrated in (18) can be illustrated by 
W(t) = T(W(t)) where T represented the Picard operator given by

Furthermore we have

If we have Ŵ
κŴ(κ)

T < 1 , then T shows a contraction, therefore, the dynamical system stated in (17) with initial 
host population (18) has a unique solution.

The positive invariant region
In this sub-section, we need to prove the positivity and boundedness of the dynamical system (16) solutions to 
investigate the mathematical and epidemiological well-posedness of the dynamical system.

Theorem 1 The region given by B =

{

(S,E,U ,A,R) ∈ R
5
+,K(t) ≤

�κ

µκ

}

 is positively invariant and bounded for 
each t ∈ [0, T0] where T0 > 0.

Proof Using the dynamical system (16) we have derived the following expressions

Given that (S(0),E(0),U(0),A(0),R(0)) ∈ R
5
+ and the parameters of the dynamical system are all posi-

tive then by applying Proposition 5 and Lemma 1 the solutions of fractional order model (16) represented 
by (S(t),E(t),U(t),A(t),R(t)) enter in the space R5

+ . This, one can justify that the region R5
+ is positively 

invariant. Here we add all the equations illustrated in (16) and derive the equation given by CDκ
t K(t) = 

CDϑκ
t S + CDκ

t E + Dκ
t U  + CDκ

t A + CDκ
t R = �κ − µκK(t)− dκA.

(23)

�E1(t, S1(t))− E1(t, S2(t))� =

∥

∥

∥

∥

∥

ϕκ
(

ρκ1U + ρκ2A
)

K
− µκ(S1(t)− S2(t))

∥

∥

∥

∥

∥

≤ (ϕκ
(

ρκ1 + ρκ2
)

+ µκ)�S1 − S2�,

�E2(t, E1(t))− E2(t, E2(t))� ≤
(

µκ + δκ
)

�E1 − E2�,

�E3(t, U1(t))− E3(t, U2(t))� ≤
(

µκ + εκ1
)

�U1 − U2�,

�E4(t, A1(t))− E4(t, A2(t))� ≤
(

µκ + dκ + εκ2
)

�IC1 − IC2�,

�E5(t, R1(t))− E5(t, R2(t))� ≤ µκ�R1 − R2�.

(24)E(t,W1(t))− E(t,W2(t)) ≤ ŴW1 −W2,

T : F0
b

(

J ,R5
)

→ F
0
b

(

J ,R5
)

, T[W(t)] = W(0)+
1

Ŵ(κ)

t
∫
0
E(s,W(s))(t − s)κ−1ds

�T(W1(t))− T(W2(t))� =

∥

∥

∥

∥

1

Ŵ(κ)

t
∫
0
(t − s)κ−1 × [E(s, W1(s))−W(s, W2(s))]

∥

∥

∥

∥

≤
1

Ŵ(κ)

t
∫
0
(t − s)κ−1ds × �E(s, W1(s))− E(s, W2(s))�

≤
Ŵ

Ŵ(κ)

t
∫
0
(t − s)κ−1ds ≤

Ŵ

κŴ(κ)
T .

CDκ
t S|S=0=�κ ≥ 0,

CDκ
t E|E=0 = �TS ≥ 0,

CDκ
t U |U=0 = πκδκE ≥ 0,

CDκ
t A|A=0 =

(

1− πκ
)

δκE ≥ 0,

CDκ
t R|R=0 = εκ1U + εκ2A ≥ 0.
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Based on the Laplace transformation criteria stated in Proposition 3 and Proposition 4 we computed the result 
given by L

(

Dκ
t K(t)

)

≤ �κ

S − µκL(K(t)) .  Let us simplify it  and put the result  given by 
L(K(t)) ≤ �κS−1

Sκ+dκ +
Sκ−1K(0)
Sκ+µκ  . Using Definition 6 and the inverse Laplace transform operation we derived the 

expression K(t) ≤ K(0)Eκ (−µκ tκ )+ �κ

µκ (1− Eκ (−µκ tκ )) . Hence, whenever K(0) ≤ �κ

µκ  , then 0 < K(t) ≤ �κ

µκ  
for each time t ≥ 0 and the total host population denoted by K(t) is bounded in the region given by 
B =

{

(S,E,U ,A,R) ∈ R
5
+,K(t) ≤

�κ

µκ

}

.

Reproduction number and equilibrium points
The fractional order dynamical system (17) disease-free equilibrium point is calculated by making all the equa-
tion zero as CDκ

t S(t) = CDκ
t E(t) = CDκ

t U(t) = CDκ
t A(t) = CDκ

t R(t) = 0 such that  E = U = A = R = 0. Computing 
the equations and simplifying the result we have determined the required disease-free equilibrium point by 
E0T = (S0,E0,U0,A0,R0) = 

(

�κ

µκ , 0, 0, 0, 0
)

.
The fractional order dynamical system (17) of Tinea capitis infection basic reproduction number represented 

by Rκ
0 has crucial epidemiological factors and plays significant role in mathematical epidemiology. Applying the 

criteria derived by Van den Driesch and Warmouth illustrated  in34 we have calculated the basic reproduction 
number of Tinea capitis spreading Rκ

0 given by

Here we have computed and simplifying the result to determine the endemic equilibrium point of the dynami-
cal system (16) by setting its right hand side equal to zero. Let E∗T = (S∗,E∗,U∗,A∗,R∗) be the endemic equi-
librium point of the fractional order dynamical system (16) and solving for each of S∗,E∗,U∗,A∗,R∗ we have 
calculated the required unique endemic equilibrium point whenever Rκ

0 > 1 and is given by

Disease‑free equilibrium point local and global stability
Theorem 2 The disease-free equilibrium point E0T of for the fractional order dynamical system (16) has local asymp-
totic stability whenever Rκ

0 < 1  and unstable whenever Rκ
0 > 1.

Proof The dynamical system (16) disease-free equilibrium point E0T = (S0, ,E0,U0,A0,R0) = 
(

Kϑ

dϑ
, 0, 0, 0, 0

)

 local 
stability has been examined by using the method explained  in38. For simplicity of computations of the stability 
analysis, for the fractional order dynamical system (16) ignore the last equation involving R since it does not 
occurs in the remaining equations. The dynamical system (16) Jacobian matrix at the disease-free equilibrium 
point can be calculated and is given by

Solving the det
(

J
(

E0T
)

− �I4
)

= 0 using the Jacobian matrix J
(

E0T
)

 we have computed the eigenvalues of 

J
(

E0STC
)

 determined as �1 = −µκ , �2 = −(µκ + δκ) ,  �3 = −
(

εκ1 + µκ
)

R
κ
1 , and �4 = −

(

dκ + εκ2 + µκ
) 1−R

ϑ
0

1−R
κ
1
 , 

hence every eigenvalue has negative real part provided  Rκ
0 < 1 and the hence the disease-free equilibrium point 

E0T is locally asymptotically stable.

⇒ Dκ
t K(t) ≤ �κ − µκK(t).

R
κ
0 =

1

δκ + µκ

(

R
κ
1 +R

κ
2 +R

κ
3

)

where Rκ
1 =

φκδκρκ
1 (1− πκ)

εκ1 + µκ
, Rκ

2 =
φκδκρκ

2 π
κ

dκ + εκ2 + µκ
,

and R
κ
3 =

φκδκρκ
2 (1− πκ)

(

εκ1 + µκ
)(

dκ + εκ2 + µκ
) .

(25)

E∗ =
�κ

(

R
κ
0 − 1

)

(δκ + µκ)
(

R
κ
0 − 1

)

+

(

µκ +
µκ

φκρκ1
+

εκ1
µκϕκρκ1

)

R
κ
1 +

(

1
φκρκ2

+
εκ2

µκφκρκ2

)

(Rκ
2 +R

κ
3 )
,

S∗ =
1+ (δκ + µκ)Rκ

0

R
κ
0 − 1

E∗,U∗ =
R

κ
1

φκρκ
1

E∗, A∗ =

(

R
κ
2

φκρκ
2

+
R

κ
3

φκρκ
2

)

E∗,

and R∗ =

(

εκ1

µκφκρκ
1

R
κ
1 +

εκ2

µκφκρκ
2

(

R
κ
2 +R

κ
3

)

)

E∗.

J
�

E0T
�

=







−µκ 0 −�κκ −φκρκ
2

0 − (δκ + µκ) ϕκρκ
1 φκρκ

2
0 δϑ (1− πκ) −

�

εκ1 + µκ
�

0
0 δκπκ 0 −

�

dκ + εκ2 + µκ
�






.
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Equilibrium points global stabilities
Theorem 3 

(a) Let y(t) be real valued , continuous and differentiable function then for any for any t ≥ T, we do have 
1
2
C
TD

κ
t

(

y2(t)
)

≤ y(t)CTD
κ
t y(t) for all 0 < κ ≤ 1 51.

(b) Let y(t) be real valued, positive, continuous and differentiable function then for any for any t ≥ T, we do have 
C
TD

κ
t

[

y(t)− y∗ − y∗ ln
(

y(t)
y∗

)]

≤

(

1−
y(t)
y∗

)

C
TD

κ
t y(t), y

∗ ∈ R+, for all 0 < κ ≤ 1 51.

Theorem  4 The fractional order dynamical system (17) disease-free equilibrium point illustrated by 
E0T =

(

S0, E0, U0, A0, R0
)

 = 
(

�κ

µκ , 0, 0, 0, 0
)

 is globally asymptotically stable provided that Rκ
0 < 1 and unstable pro-

vided that Rϑ
0 > 1.

Proof Let us formulate the representative Lyapunov function defined by

where S0 = �κ

µκ .
The representative Lyapunov function L(t) is positive definite and continuous for all t ≥ 0.
Applying Theorem 4 we do have

Since B =

{

(S,E,U ,A,R) ∈ R
5
+,K(t) ≤

�κ

µκ

}

 we do have

Based on the equilibrium point U =
δκ (1−πκ )

(εκ1+µκ)
E we determined the result

Because S ≤ K and Rκ
0 ≤ 1 the last explanation (inequality) implies that CDκ

t (L(t)) ≤ 0 . Moreover, we have 
CDκ

t (L(t)) = 0 if and only if (S,E,U ,A,R) = E0T =
(

S0, 0, 0, 0, 0
)

 . Thus, the maximum invariant set.
Represented by 

{

(S,E,U ,A,R) ∈ R
5
+ : Dκ

t (L(t)) = 0
}

 is the singleton set 
{

E0T =

(

�κ

µκ , 0, 0, 0, 0
)}

 . Therefore, 
by the LaSalle’s invariance principle the dynamical system (16) disease free-equilibrium point is globally asymp-
totically stable provided that Rκ

0 < 1.

L(t) =
Ŵ(κ)

2S0
E2(t)+

φκρκ
1Ŵ(κ)

2S0
(

εκ1 + µκ
)U2(t)+

φκρκ
2Ŵ(κ)

2S0
(

dκ + εκ2 + µκ
)A2(t)

CDκ
t (L(t)) =

Ŵ(κ)

2S0
Dκ
t E

2(t)+
φκρκ

1Ŵ(κ)

2S0
(

εκ1 + µκ
)Dκ

t U
2(t)+

φκρκ
2Ŵ(κ)

2S0
(

dκ + εκ2 + µκ
)Dκ

t A
2(t),

≤
Ŵ(κ)

S0
E(t)Dκ

t E(t)+
φκρκ

1Ŵ(κ)

S0
(

εκ1 + µκ
)U(t)Dϑ

t A(t)+
φκρκ

2Ŵ(κ)

S0
(

dκ + εκ2 + µκ
)A(t)Dκ

t A(t).

CDκ
t (L(t)) ≤

�κ

Ŵ(κ)µκ

(

Ŵ(κ)

S0
Dκ
t E(t)+

φκρκ
1Ŵ(κ)

S0
(

εκ1 + µκ
)Dκ

t U(t)+
φκρκ

2Ŵ(κ)

S0
(

dκ + εκ2 + µκ
)Dκ

t A(t)

)

,

≤ Dκ
t E(t)+

φκρκ
1

(

εκ1 + µκ
)Dκ

t U(t)+
φκρκ

2
(

dκ + εκ2 + µκ
)Dκ

t A(t)),

≤

(

φκ
(

ρκ
1U + ρκ

2A
)

S

K
− (δκ + µκ

)

E)+
φκρκ

1

(

δκ (1− πκ)E −
(

εκ1 + µκ
)

U
)

(

ηϑ + αϑ
1 + dϑ

)

+
φκρκ

2

(

φκπκE −
(

dκ + εκ2 + µκ
)

U
)

(

εκ1 + µκ
)

≤ (φκ
(

ρκ
1U + ρκ

2A
)

(

S

K
− 1

)

φκρκ
1

(

εκ1 + µκ
)

(

δκ
(

1− πκ
)

+
φκρκ

2 δ
κπκ

(

dκ + εκ2 + µκ
) − (δκ + µκ

)

E

+
ϕκρκ

2U
(

dκ + εκ2 + µκ
) .

C
D
κ
t (L(t)) ≤ (φκ

(

ρκ
1
U + ρκ

2
A
)

(

S

K
− 1

)

+
φκρκ

1
(

εκ
1
+ µκ

)

(

δκ
(

1− πκ
)

+
φκρκ

2
δκπκ

(

dκ + εκ
2
+ µκ

) − (δκ + µκ )

)

E

+
φκρκ

2
U

(

dκ + εκ
2
+ µκ

) ≤ φκ
(

ρκ
1
U + ρκ

2
A
)

(

S

K
− 1

)

+ (δκ + µκ )

(

φκρκ
1
δκ

(

1− πκ
)

(δκ + µκ )
(

εκ
1
+ µκ

) +
φκρκ

2
δκπκ

(δκ + µκ )
(

dκ + εκ
2
+ µκ

) +
φκρκ

2
δκ (1− πκ )

(δκ + µκ )
(

εκ
1
+ µκ

)(

dκ + εκ
2
+ µκ

)

)

E,

≤ ϕκ
(

ρκ
1
U + ρκ

2
A
)

(

S

K
− 1

)

+ (δκ + µκ )
(

R
κ
0
− 1

)

E.
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Theorem  5 The fractional order dynamical system (16) endemic equilibrium point represented by 
E∗T = (S∗, E∗, U∗, A∗, R∗) s tated  in  (25)  i s  g lobal ly  asy mptotical ly  stable  in  the  reg ion 

B =

{

(S,E,U ,A,R) ∈ R
5
+,K(t) ≤

�κ

µκ

}

 provided that Rκ
0 > 1.

Proof Let 0 < κ ≤ 1 is the order of the dynamical system (16) then we seek to prove that the unique endemic 
equilibrium point E∗T is globally asymptotically stable whenever Rκ

E > 1 . Applying the Lyapunov function devel-
opment criteria described in  references36,38, we represent the Lyapunov function defined by

Using item (b) of Theorem 4 we have the result given by

Based on the fractional order dynamical system (16) and its endemic equilibrium point computed in (25) we 
have the results represented by:

Substituting expressions from (28) to (31) in (27) and computing it gives the result

then applying the arithmetic–geometric mean conditions we determined the result given by 2− S
S∗ − S∗

S ≤ 0, 
3− S∗

S − EU∗

E∗U − SE∗U
S∗EU∗ ≤ 0 , and 3− S∗

S − EA∗

E∗A − SE∗A
S∗EA∗ ≤ 0 . From this result we have determined the result 

CDκ
t M(t) ≤ 0. And also CDκ

t M(t) = 0 if and only if (S,E,U ,A,R) = (S∗,E∗,U∗,A∗,R∗) . Hence, the largest 
positive invariant set in this feasible region which satisfies the condition 

{

(S,E,U ,A,R) ∈ R
5
+ : Dκ

t M(t) = 0
}

 is 
only the singleton set {E∗ = (S∗,E∗,U∗,A∗,R∗)} . Therefore, the fractional order dynamical system (16) endemic 
equilibrium point is globally asymptotically stable provided that Rκ

0 > 1.

Formulation of the corresponding optimal control problem
In this sub-section, we consider three time-dependent control measures to extend the dynamical system (16). 
Suppose r1(t),r2(t) and r3(t) such that with 0 ≤ r1(t), r2(t), r3(t) ≤ it be the measurable Lebesgue controlling 
functions that represents the control strategies defined by:

1. Prevention measures of Tinea capitis infection: The strategy r1(t) describes the level of Tinea capitis prevention 
efforts in order to minimize the effective contact rate. Tinea capitisi preventive measures include washing 
and do not use other person dressing materials.

2. Treatment measures of Tinea capitis infection: The time dependent control strategy denoted by r2(t), r3(t) 
are treatment measures of non-inflammatory and inflammatory infected people respectively.

Depending on the control functions illustrated above the new fractional order optimal control problem of 
the dynamical system (16) can be re-structured by:

(26)

M(t) =

(

S − S∗ − S∗ ln

(

S

S∗

))

+

(

E − E∗ − E∗ ln

(

E

E∗

))

+
φκρκ

1
(

εκ1 + µκ
)S∗

(

U− U∗ − U∗ ln

(

U

U∗

))

+
φκρκ

2
(

dϕ + εκ2 + µκ
)S∗

(

A− A∗ − A∗ ln

(

A

A∗

))

.

(27)

CDκ
t (M(t)) ≤

(

1−
S

S∗

)

Dκ
t S(t)+

(

1−
E

E∗

)

Dκ
t E(t)+

φκρκ
1

(

εκ1 + µκ
)S∗

(

1−
U

U∗

)

Dκ
t U(t)

+
φκρκ

2
(

dκ + εκ2 + µκ
)S∗

(

1−
A

A∗

)

Dκ
t A(t).

(28)�κ = φκ
(

ρκ
1 U

∗ + ρκ
2 A

∗
)

S∗ + µκS∗,

(29)−(δκ + µκ) =
φκ

(

ρκ
1 U

∗ + ρκ
2 A

∗
)

S∗

E∗
,

(30)δκ (1− πκ) =

(

εκ1 + µκ
)

U∗

E∗
,

(31)δκπκ =

(

dκ + εκ2 + µκ
)

A∗

E∗
.

CDκ
t M(t) ≤ 2µκS∗

(

2−
S

S∗
−

S∗

S

)

+ φκρκ
1U

∗S∗
(

3−
S∗

S
−

EU∗

E∗U
−

SE∗U

S∗EU∗

)

+ δκρκ
2A

∗S∗
(

3−
S∗

S
−

EA∗

E∗A
−

SE∗A

S∗EA∗

)
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with initial host population S(0) > 0 , E(0) ≥ 0,U(0) ≥ 0 , A(0) ≥ 0 , and R(0) ≥ 0, and the limited control-
ling set given by �C =

{

r1(t), r2(t), r3(t) : 0 ≤ r1(t), r2(t), r3(t) ≤ 1, t ∈
[

0,Tf

]}

 , where Tf  is the final time of 
implementing control measures. The objective of the control problem is to minimize the number Tinea capitis 
infected individuals and to maximize the number of recovered individuals under the cost of incorporating 
control measures. To reduce the number of infected individuals in the community we construct the objective 
function defined by

In order to controlling the number of Tinea capitis infected people and the cost to apply prevention and 
treatment control measures described by r1(t), r2(t) and r3(t) are minimized subject to the system (33) where the 
constant Tf  describes the final time, the coefficients D1,D2 and D3 are positive weight constants and Ŵ1

2 , Ŵ2
2  and 

Ŵ3
2   are the measure of relative costs of prevention and treatments associated to the controls r1, r2 and r3 , respec-

tively, and also balances the units of the integrand. The aim is to find the optimal values r∗ =
(

r∗1 , r
∗
2 , r

∗
3

)

 of the 
controls r = (r1, r2, r3) such that the corresponding state trajectories S∗,E∗,U∗,A∗,R∗ are solution of the Eq. (33) 
in the given time interval 

[

0,Tf

]

 with initial data and minimize the objective functional. In the cost functional, 
the term D1E refer to the cost related to exposed individuals, the term D2IA refer to the cost related to acutely 
infected individuals and the term D3IC refer to the cost related to chronically infected individuals. Also Di for 
i = 1, 2, 3 are positive constants that represent the cost of incorporating the three controlling strategies and Ŵi 
for i = 1, 2, 3 are the corresponding efforts applying to minimize the transmission of the infection and Tf  is the 
final time of applying the control measures.

The objective of the Tinea capitis fractional order optimal control problem constructed in (32) is to investigate 
the optimal control variable r(t) that minimize the objective functional given by min

r∈R
J(r) , subject to the new 

optimal control dynamical system stated in (32) with the initial data. The vector r = {r1, r2, r3) is the controlling 
vector, and the closed and bounded set

is the set of admissible controls.

Existence and optimality of the control measures
The fractional order dynamical system (22) with (23) can be re-formulated by

where Z(t) = (S(t),E(t),U(t),A(t),R(t)) represents the dynamical system state variables, r(t) = (r1(t), r2(t), r3(t) 
represents the control functions (variables) in the control problem stated in (32) and

Here to prove that the existence of the three optimal control strategies we need to prove the conditions illus-
trated as: The control trajectories are non-empty, the set of admissible controls is convex, bounded and closed, 
the function defined by M(t,Z(t))+ N(t,Z(t)) is bounded in the state varibles and controlling variables, and 
D1E + D2U+ D3A+ Ŵ1

2 r21 +
Ŵ2
2 r22 +

Ŵ3
2 r23 is convex on the admissible control set R.

Note Based on definitions written in the manuscript we have the conditions stated as: For control func-
tions with values r1 = 1, r2 = 0 and r3 = 0 in the admissible control set R defined in (34) and the solution 
Z = (S,E, U, A,R) of the fractional order model (16) with given initial data the set of all the control problem 
feasible solution is non-empty, based on the definition of the admissible control set R the control set R is bounded, 
closed and convex, based on the existence and uniqueness criteria for the model (16) the model (32) solutions 
are unique and bounded because 0 ≤ ri ≤ 1, for i = 1, 2, 3.

(32)

CDκ
t S = �κ −

(

(1− r1(t))
φκ

(

ρκ
1U + ρκ

2A
)

K
+ µκ

)

S,

CDκ
t E = (1− r1(t))

φκ
(

ρκ
1U + ρκ

2A
)

M
−

(

µκ + δκ
)

E,

CDκ
t U =

(

1− πκ
)

δκE −
(

µκ + r2(t)ε
κ
1

)

U ,

CDκ
t A = πκδκE −

(

µκ + dκ + r3(t)ε
κ
2

)

A,

CDκ
t R = r2(t)ε

κ
1U + r3(t)ε

κ
2A− µκR,

(33)J(r1, r2, r3) =
Tf

∫
0

(

D1E + D2U+ D3A+
Ŵ1

2
r21 +

Ŵ2

2
r22 +

Ŵ3

2
r23

)

dt.

(34)R =

{

r ∈
(

L∞
([

0,Tf

]))3
, 0 ≤ ri ≤ 1, i = 1, 2, 3,

}

CDκ
t Z = M(t,Y(t))+ N(t,Z(t))u, 0 ≤ t ≤ Tf , Z(t) = Z0,

M(t,Z(t)) =















�κ −

�

φκ(ρκ1U+ρκ2 A)
K + µκ

�

S

φκ(ρκ1U+ρκ2 A)
K S − (µκ + δκ)E

(1− πκ)δκE − µκU
πκδκE − (µκ + dκ )A

−µκR















, N(t,Z(t)) =













φκ(ρκ1U+ρκ2 A)
K S 0 0

−
φκ(ρκ1U+ρκ2 A)

K S 0 0
0 −εκ1U 0
0 0 −εκ2A
0 εκ1U εκ1U













.
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Theorem 6 The function defined by M(t,Z(t))+ N(t,Z(t))r which satisfies at the solution Z = (S,E, U, A,R) 
such that

where k1 = max
(

1+ φκ
(

ρκ
1 + ρκ

2

)

+ µκ ,µκ + δκ ,µκ + εκ1 ,µ
ε + dκ + εκ2 ,µ

κ
)

 , and k2 = max
(

φκ
(

ρκ
1 + ρκ

2

)

,

0, 1),

Proof Let us re-write the above matrix M(t,Z(t)) as

where D = �κ

S −
φκ(ρκ1U+ρκ2 A)

M  . From the matrix M(t,Z(t)) we have �κ ≤ S and since the solution is bounded 
and we have shown that

Using similar process we can show the following

Theorem 7 The function given by V
(

t,Z, r
)

= D1E + D2IA + D3IC + Ŵ1
2 r21 +

Ŵ2
2 r22 +

Ŵ3
2 r23 is convex in the admis-

sible control region R and there exists a constant k which is non-negative such that V
(

t,Z, r
)

≥ kr.

Proof For the function  V
(

t,Z, r
)

 we derived the corresponding Hessian matrix given by

Therefore the matrix H is positive definite matrix in the admissible control region R and hence V
(

t,Z, r
)

 is 

strictly convex in r.  Let k = min
(

Ŵ1
2 , Ŵ2

2 , Ŵ3
2

)

 then V
(

t,Z, r
)

= D1E + D2IA + D3IC + Ŵ1

2
r
2
1
+ Ŵ2

2
r
2
2
+ Ŵ3

2
r
2
3
≥

Ŵ1

2
r
2
1
+ Ŵ2

2
r
2
2
+ Ŵ3

2
r
2
3
≥ k

(

Ŵ1

2
r
2
1
+ Ŵ2

2
r
2
2
+ Ŵ3

2
r
2
3

)

 . Thus, we established the proof.

Theorem  8 There is an optimal control point r∗ =
(

r∗1 , r
∗
2 , r

∗
3

)

 and the model associated solutions 
Z
∗
= (S∗,E∗,U∗,A∗,R∗) which minimizes the objective function J(r) on the admissible control set R such that 

min
r∈R

J(r) = J(r∗).

The optimality necessary condition The optimality necessary condition required to be fulfilled by the optimal control 
problem (32) and (33) is adopted from the Pontryagin’s Maximum principle stated  in39, and it is also fulfilled by 
changing in to a minimizing Hamiltonian function with respect to the control variables (r1, r2, r3) . The corresponding 
Hamiltonian corresponding to (32) and (33) is derived as:

where �1(t), �2(t), �3(t), �4(t), and �5(t) are the co-state variables or adjoint variables.

Theorem 9 Let us given the optimal control solutions r∗i  for i = 1, 2, 3 and the solutions of the optimal control 
problem (32) that minimizes the objective function (34) in the admissible control region R , the there are functions 
�1, �2, �3, �4 and �5 such that
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The transversality conditions of the system (37) are �∗i (Tf) = 0 , i = 1, 2, . . . , 5 , with the Hamiltonian function H 
defined in Eq. (36). Moreover, the optimal control strategies are determined as:

where �1(t), �2(t), �3(t), �4(t), �5(t) and �6(t) are the co-state variables or adjoint variables and the transversality 
conditions discussed above.

Proof Let the co-state variables be �1(t), �2(t), �3(t), �4(t), �5(t) and the Pontryagin’s maximal principle illus-
trated in  reference39,51 we can prove the assertion in (38). And also the characterization of each optimal control 
strategy defined in (38) is computed by solving the following partial differential equations in the interior of the 
admissible control set R.

Let r∗ =
(

r∗1 , r
∗
2 , r

∗
3

)

 and S∗,E∗, U∗,A∗ and R∗ be the required solustions. Then based on Pontryagin’s maximal 
principle, there exists adjoint-variables that satisfy:
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= 0 . On the interior of the set 
0 < ri < 1 for each i = 1, 2, 3 computed the expressions and we do have the final result

Then solving and simplifying these equations we have determined the required results stated in Eq. (3) 
illustrated by

This complete the required prove.

Sensitivity and numerical analysis
In this sub-section of the study we need to perform the model parameters sensitivity analysis and the numerical 
simulations such as simulations to investigate the parameter change impacts on the dynamical system, the impact 
of the fractional order change on the model state variables, and simulations to investigate the impacts of optimal 
control strategies on the model (32) state variables by applying MATLAB programming codes with Euler forward 
or/and backward finite difference approach and take the values of the model parameters as: D1 = D2 = D3 = 13 , 
Ŵ1 = 36 , Ŵ2 = 39 , Ŵ3 = 41, π = 0.51 , φ = 0.42 , d = 0.23,µ = 0.35, � = 50,δ = 0.42,ε1 = 0.46,ε2 = 0.4 , and 
using different initial host population data.
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Sensitivity analysis
Definition 6: The Tinea capitis infection fractional order model basic reproduction number (Rκ

0 ) normalized 
forward sensitivity index w that depends differentially on a parameter ω is defined by SEI(ω) = ∂R

κ
0

∂ω
∗

ω
R

κ
0
 33,40.

In this sub-section based on Definition 6 and using the Tinea capitis fractional order model (16) parameters 
values illustrated in “Sensitivity and numerical analysis” section above we have calculated the sensitivity index 
for the parameters in terms of Rκ

0.
Here using the parameter values illustrated in “Sensitivity and numerical analysis” section above, we calcu-

lated the Tinea capitis fractional order model (16) basic reproduction number as Rκ
0 = 2.76 > 1 which implies 

Tinea capitis has been spreading in the community. From results illustrated in Table 3 we have observed that the 
Tinea capitis spreading rate ϕ is the most sensitive model parameter which has direct relationship with the basic 
reproduction number and the recovery rates have also high impact on the basic reproduction number and have 
an indirect relation with the basic reproduction number.

The graph illustrated by Fig. 2 verifies the sensitivity analysis of the dynamical system parameters. From the 
illustrated figure we observe that the Tinea capitis spreading rate φ is the most sensitive parameter to be controlled 
in order to tackle the Tinea capitis spreading dynamics in the community.

Numerical simulations
In this sub-section of the study we need to perform the numerical simulations such as simulations to investi-
gate the parameter change impacts on the dynamical system, the impact of the fractional order change on the 
model state variables, and simulations to investigate the impacts of optimal control strategies on the model (32) 
state variables by applying MATLAB programming codes with Euler forward or/and backward finite difference 
approach.

Numerical simulations to show the parameters impact
The numerical simulation illustrated by Fig. 3A–D reveals that the impacts of parameter changes on the model 
state variables. From Fig. 3A we observe that whenever the transmission rate increases implies the number of 
exposed individuals also increases, from Fig. 3B,C we observe that increasing the treatment rates leads to decrease 
the number of non-inflammatory and inflammatory infected individuals respectively whereas whenever the 
treatment rate increases implies the Tinea capitis recovered group decreases.

Numerical simulations to show impact of fractional order changes
The numerical simulation curves illustrated by Fig. 4A–D shown that the effect of fractional order (memory 
effects) on the infection status of the Tinea capitis fractional order model variables. From the result of Fig. 4 
one can observe that whenever the fractional order decreases then the number of Tinea capitis exposed, non-
inflammatory infected, and the inflammatory infected individuals’ decreases due to the memory effect whereas 
the fractional order decreases implies the number of Tinea capitis recovered individuals also increases.

Numerical simulations of the optimal control problem
To observe the impact of the controlling strategies and verify the analytical results of the fractional order opti-
mal control problem (32) we carried out the numerical simulation of (32) by applying MATLAB programming 
codes with Euler forward or/and backward finite difference approach for the following proposed optimal control 
strategies.

Measure 1: Implementing prevention and non-inflammatory strategies ( r1, r2 ) only,
Measure 2: Implementing prevention strategy ( r1 ) only,
Measure 3: Implementing prevention and inflammatory infected treatment strategies ( r1, r3),
Measure 4: Implementing both treatment strategies ( r2, r3 ) simultaneously, and
Measure 5: Implementing all the controlling strategies ( r1, r2, r3 ) simultaneously.

Effect of Measure 2 ( r1  = 0). In this sub-section, we perform numerical simulations without applying preven-
tion or/and treatment control measures in place and by implementing the Tinea capitis infection prevention 
measure (Measure 2) and investigate the impact of prevention strategy i.e., r1  = 0 , r2 = 0 and r3 = 0 and making 

Table 3.  Sensitivity indices of Rκ
0
.

Sensitivity index Values

SEI(ϕ)  + 1

SEI(ε1)  − 0.541

SEI(ε2)  − 0. 694

SEI(ρ1)  + 0.382

SEI(ρ2)  + 0.431

SEI(δ)  + 0.512

SEI(d)  + 0.362

SEI(π)  + 0.421
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ϑ = 0.75 . From Fig. 5 we observed the graphical interpretation which shows the impact of the prevention strat-
egy on the Tinea capitis transmission dynamics. Whenever we incorporating the control measure r1 , the exposed 
individuals illustrated by Fig. 5B, non-inflammatory infected individuals illustrated by Fig. 5C, and inflamma-
tory infected individuals illustrated by Fig. 5D are decreasing significantly, whereas the susceptible individuals 
illustrated by Fig. 5A and recovered individuals illustrated by Fig. 5E also decreases compared to the case of 
simulation without controlling strategies.

Effects of Measure 1 ( r1  = 0 and r2  = 0). In this sub-section, we perform numerical simulations without 
implementing prevention control and non-inflammatory infection treatment control measures (r1  = 0 and 
r2  = 0) (Measure 1). From the simulation curve illustrated by Fig. 6 above, Fig. 6A shows decrease of the num-
ber of susceptible individuals, Fig. 6B shows individuals in the exposed class are reduced slightly as compared 
Fig. 5B, the total number of non-inflammatory and inflammatory infected individuals illustrated by Fig. 6C is 
reduced highly as compared to the first similar classes and the number of recovered individuals illustrated by 
Fig. 6D increases.

Effects of Measure 3 ( r1  = 0, and r3  = 0). Numerical simulation illustrated by Fig. 7 reveals that implement-
ing prevention and Tinea capitis non-inflammatory infected individuals leads to a minimization of the total 
number of Tinea capitis infected individuals as compared to the simulation curve without implementing any 
control measures.

Effects of Measure 4 ( r2  = 0, and r3  = 0). Numerical simulation illustrated by Fig. 8 reveals that implement-
ing prevention and Tinea capitis inflammatory infected individuals leads to a minimization of the total number 
of Tinea capitis infected individuals as compared to the simulation curve without implementing any control 
measures.

Effects of Measure 5 ( r1, r2  = 0, and r3  = 0). In this sub-section, we perform numerical simulations without 
applying all controlling strategies in place and by applying all the possible controlling strategies (r1  = 0, r2  = 0 
and r3  = 0) (Measure 5) simultaneously. Here one can compare the effects of different controlling strategies on 
the infection status of the model state variables. Figure 9A shows the effect of all the proposed controlling strate-
gies on the number of susceptible individuals and has a great impact on increasing the number of susceptible 
individuals as compared to the number of susceptible individuals in the other strategies. Figure 9B shows the 
effect of all the proposed controlling strategies on the number of exposed individuals and has a great impact 
on decreasing the number of exposed individuals as compared to the number of exposed individuals in similar 
other strategies. Figure 9C shows the effect of all the proposed controlling strategies on the number of infected 
individuals and has a great impact on decreasing the number of infected individuals as compared to the number 
of infected individuals in other similar strategies. Figure 9D shows the effect of all the proposed controlling 
strategies on the number of recovered individuals and has a great impact on increasing the number of recov-
ered individuals as compared to the number of recovered individuals in other similar strategies. Finally, from 
Fig. 9 we observed the result that implementing all the possible controlling strategies (r1  = 0, r2  = 0 and r3  = 0) 
(Measure 5) simultaneously makes the number of Tinea capitis infected individuals in the community highly 
decreases after 30 days. And as compared to other strategies this one is the most effective strategy to tackle the 
spreading rate of Tinea capitis infection throughout the community.

Cost‑effective analysis
In this sub-section, we need to carry out the optimal control measures described in “Numerical simulations” 
section cost-effectiveness analysis to investigate and compare benefits in terms of cost for the control meas-
ures applied. To compute the implemented control measures cost-effective analysis, we apply the criteria used 
 by52 i.e., the method ICER known as incremental cost-effectiveness ratio which is mathematically defined by 

Figure 2.  Simulation for sensitivity of the model parameters.
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ICER = Costs difference in strategies x and y divided by infected averted differences in measures x and y where 
the numerator incorporates cost differences averted or the cases prevented, interventions costs, and productivity 
lose costs among others and the denominator is the health outcomes difference of the total infections averted. 
Based on the results we arrange the effectiveness with increasing order in terms of infection averted quantity 
and hence the total number of infection averted in measure one, three, two, four and five in an ascending order 
illustrated in Table 4.

Now computing the incremental cost-effectiveness ratios for each possible control measures as: ICE
R(1) = 25,220/55,230 = 0.4566, ICER(5) = (60,300–40,200)/(450,254–370,258) = 20,100/79,996 = 0.2514, 
ICER(4) = (40,200–33,604)/(370,258–280,362) = 6596/89,896 = 0.0734,ICER(2) = (33,605–33,603)/(280,362–26
0,185) = 2/20,177 = 0.0001 and ICER(3) = (33,603–25,220)/(260,185–55,230) = 2/20,177 = 0.0409.

From the result illustrated in Table 5, one can compare control measures 5 and 1 reveal a cost saving of 
0.2514 for measure 5 over measure 1. The lower ICER for measure 5 shows that measure 1 is strongly dominated. 
Which means measure 1 is more costly and less effective than measure 5 hence we should exclude measure 1 
from other list.

Using the ICER results illustrated in Table 5 we compare values and observe that measure 2 has least value and 
implementing the control measure 2 or strategy 2 is most cost effective measure we recommend to stakeholder 
to apply to tackle the Tinea capitis spreading dynamics in the community.
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Discussion and conclusion
In this study we have formulated and analyzed the fractional order dynamical system on the fungal Tinea capitis 
infection with time-dependent optimal control measures (strategies). In the qualitative analyses part of the 
study we have determined all the equilibrium points and the dynamical system basic reproduction number and 
proved the stabilities of the equilibrium points. In this process, we have re-formulated the corresponding frac-
tional order optimal control problem of Tinea capitis infection dynamics in order to minimize the implemented 
control measure cost while the total number of Tinea capitis infected people also needs to be minimized. For 
the fractional order optimal control problem we have investigated the existence and uniqueness of the optimal 
controls, and in addition by applying the Pontryagin’s maximum principle we have determined the conditions 
necessary to investigate the optimal values of the proposed control measures that minimize the transmission of 
Tinea capitis infection and the possible cost of the implemented control measures. Next, we have carried out the 
sensitivity and numerical analysis of the fractional order model with optimal control measures to investigate 
the most sensitive model parameters, to show the impact of fractional order on the memory effect, and to verify 
the qualitative analysis results. The results of these analyses are fundamental to understand how to minimize 
or eliminate the Tinea capitis infection spreading in the community at the cost effective mechanism. From the 
results of the fractional order optimal control problem numerical simulation part we can suggest that the Tinea 
capitis infection may be eliminated from the community by continuous application of the control measures in a 
medium time interval. Finally, from the results of cost-effective analysis part the implementing the Tinea capitis 
prevention measure is observed as the most cost-effective strategy. However, implementing other proposed 
control measures can minimize the number of Tinea capitis infected individuals in the community.

5.2.2. pact of fractional order changes 
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For future work, since this study is not exhaustive other potential scholars in the area can modify the proposed 
model by incorporating additional aspects such as the stochastic approach, age structure of individuals, roles of 
the community, and fitting the model with appropriate real data.
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Figure 6.  Effect of the control measures (r1  = 0 and r2  = 0) on the infection status of different infected groups 
at κ = 0.75.
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Figure 9.  Effect of all the proposed control measures (r1  = 0, r2  = 0 and r3  = 0) (Measure 5) simultaneously 
on the infection status of different population groups with ϑ = 0.75.
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