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ResNet incorporating the fusion 
data of RGB & hyperspectral 
images improves classification 
accuracy of vegetable soybean 
freshness
Yuanpeng Bu 1, Jinxuan Hu 2, Cheng Chen 3, Songhang Bai 2, Zuohui Chen 2, Tianyu Hu 2, 
Guwen Zhang 1, Na Liu 1, Chang Cai 2, Yuhao Li 2, Qi Xuan 2, Ye Wang 4, Zhongjing Su 2, 
Yun Xiang 2* & Yaming Gong 1*

The freshness of vegetable soybean (VS) is an important indicator for quality evaluation. Currently, 
deep learning-based image recognition technology provides a fast, efficient, and low-cost method 
for analyzing the freshness of food. The RGB (red, green, and blue) image recognition technology 
is widely used in the study of food appearance evaluation. In addition, the hyperspectral image 
has outstanding performance in predicting the nutrient content of samples. However, there are 
few reports on the research of classification models based on the fusion data of these two sources 
of images. We collected RGB and hyperspectral images at four different storage times of VS. The 
ENVI software was adopted to extract the hyperspectral information, and the RGB images were 
reconstructed based on the downsampling technology. Then, the one-dimensional hyperspectral data 
was transformed into a two-dimensional space, which allows it to be overlaid and concatenated with 
the RGB image data in the channel direction, thereby generating fused data. Compared with four 
commonly used machine learning models, the deep learning model ResNet18 has higher classification 
accuracy and computational efficiency. Based on the above results, a novel classification model named 
ResNet-R &H, which is based on the residual networks (ResNet) structure and incorporates the fusion 
data of RGB and hyperspectral images, was proposed. The ResNet-R &H can achieve a testing accuracy 
of 97.6%, which demonstrates a significant enhancement of 4.0% and 7.2% compared to the distinct 
utilization of hyperspectral data and RGB data, respectively. Overall, this research is significant in 
providing a unique, efficient, and more accurate classification approach in evaluating the freshness 
of vegetable soybean. The method proposed in this study can provide a theoretical reference for 
classifying the freshness of fruits and vegetables to improve classification accuracy and reduce human 
error and variability.

Vegetable soybean (VS) is typically harvested immaturely when the seeds have filled  90% of the seed cavity 
and the pod color has not yet turned  yellow1,2. The premature harvest makes VS rich in free amino acids and 
carbohydrates, a fresh green color, and a soft and sticky texture; all of which are important organoleptic quality 
properties of  VS3. However, the texture and physicochemical properties of immature VS still undergo complex 
changes after harvest due to continuing metabolic processes. These changes lead to a rapid decrease in fresh-
ness, such as yellowing, increased spots, and decreased sweetness and flavor, which can significantly affect the 
nutritional value, taste, and appearance quality of  VS4. It is reported that the sucrose contents can be drastically 
decreased over 60%, from 8.7%–10.4% to 3.0%–3.1%, within one day stored in 25◦C5.
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The freshness of VS plays a crucial role in attracting  consumers6. Various factors, such as genotype, pod 
mature degree at harvest, storage time and conditions, can affect the physicochemical properties, thereby influ-
encing the freshness of  VS2,4,7. Researchers have examined that the physicochemical characteristics, including 
total soluble sugar, moisture, total free amino acid, starch, protein, oil, pod green intensity, and seed hardness, 
are closely connected to the taste and appearance quality of  VS8–12. The color of the pod is the first aspect of the 
appearance quality that consumers pay attention to. Additionally, in sensory quality evaluation, the total soluble 
sugar is reported significantly positively correlated with the taste-quality score (r = 0.864, p < 0.01)13. The tender 
texture or low hardness is one of the important characteristics of VS for better taste and easier processing. VS 
with low moisture content have higher hardness and are scored lower in overall sensory  evaluation14. The content 
of free amino acids significantly affected the umami taste and flavor of vegetable  soybeans10. In the agricultural 
industry standard of the People’s Republic of China, “Vegetable Soybean Varieties Quality” (NY/T3705-2020), 
the aforementioned eight physicochemical parameters serve as the basis for quality assessment.

According to our knowledge, research is scarce on how to identify and evaluate the freshness of VS. Tradi-
tionally, freshness is quantified through sensor evaluation and physical and chemical index testing. However, 
sensory evaluation is subjective and lacks accuracy and universality. It is performed by individual experts and 
the results all depend on their sight, touch, taste, and smell. The measurement and evaluation of freshness-related 
indicators through physical and chemical experiments are the most common method. However, these processes 
are very time-consuming and laborious. As one of the most efficient techniques for plant nutrients  analysis15, 
proton nuclear magnetic resonance spectroscopy has been used to determine sugars, organic acids, and amino 
acids changes of VS  seeds2. Although this method does not require complex chemical reactions, the contribution 
of each indicator to freshness is challenging to define accurately. Therefore, it is important and urgent to develop 
an objective, efficient, and comprehensive evaluation technology for VS freshness research.

Non-destructive analysis of food freshness and quality using optical sensing technology has become a current 
research  hotspot16–18. In its early phase, this technique was primarily utilized for detecting fungi which is respon-
sible for rotting citrus  fruits19, identifying mechanical damage in mangoes, categorizing agricultural produce, 
and assessing the ripeness of  tomatoes16,20. Thereinto, hyperspectral imaging provides both spatial and spectral 
information, making it ideal for monitoring the ripening process of agricultural products, such as ethylene bio-
synthesis, chlorophyll degradation, nutrient conversion and respiratory  action21. Machine learning classification 
algorithms based on RGB images have been widely used in the quality grading of agricultural  products22,23, as 
well as ripeness monitoring of bell  peppers24 and  gooseberries25. The deep residual networks (ResNet) can greatly 
enhance the efficiency of neural networks in the image classification  tasks26. Convolutional Neural Network 
(CNN) is a kind of Feedforward Neural Network with a deep structure including convolution calculation. It is 
one of the representative algorithms of deep learning. At present, CNN technology has been used for fruit and 
vegetable classification and fruit ripened detection based on RGB  images27,28. Recently, a deep learning system 
for multi-category classification is proposed based on an improved YOLOv4  model29. The system first identifies 
the type of objects in the RGB image, and then categorizes them as fresh or rotten. However, in their work, only 
two categories are distinguished with limited accuracy.

The RGB image  recognition30 technology is widely used in the study of food appearance evaluation. In 
addition, the hyperspectral image has outstanding performance in predicting the nutrient content of samples. 
However, research on classification models based on the fusion data of RGB and hyperspectral images are scarce. 
Therefore, in this work, we classified the freshness of VS by different stored times and determine their physico-
chemical properties. Then the RGB and hyperspectral images were collected in chronological order. ResNet is 
a widely used deep neural network architecture and is excellent in tasks such as image classification and target 
detection. It also has good generalization capabilities across different datasets and tasks. ResNet makes it easier 
to train deep networks while mitigating vanishing gradients. Hyperspectral images and RGB images cannot be 
directly fused because their dimensions are 1D single-channel and 2D dual-channel, respectively. In that case, 
the ResNet-based model is helpful in capturing their complex relationships. Moreover, the residual connection 
of ResNet can fully consider the correlation between multi-channel data. Therefore, ResNet model is capable 
of integrating these two types of data efficiently. Based on the fusion of RGB and hyperspectral image data, we 
develop a vegetable soybean freshness classification model named ResNet-R &H (RGB & Hyperspectral imagery).

Materials and methods
In this section, we present the sample management method, including physical and chemical characterization 
analysis, RGB and hyperspectral image acquisition, calibration, and processing. For vegetable soybean freshness 
classification, we develop ResNet-R &H model, which is based on the fusion of RGB image and hyperspectral 
data.

Experimental materials
The genotype “Zhenong 6”, one of China’s most representative and popular VS  cultivars31, is used. The experimen-
tal materials were planted in the experimental field of the Zhejiang Academy of Agricultural Sciences on April 5, 
2022. One thousand well-developed and disease-free three seed pods were harvested at the R6 stage, when the 
seeds were filled  90% of the seed cavity, and the pods and seeds were bright green in color. The pods are stored 
in a controlled environment greenhouse, maintaining a constant temperature of 24◦C , an ambient humidity of 
60%, a  CO2 concentration of 400 ppm, a 12/12-hour light/dark photoperiod, and a photosynthetic flux density 
of 600 μ mol  m−2s−1. The harvested pods are divided into two groups: one consisting of 100 pods, and the other 
consisting of 900 pods. On the 1st, 3rd, 5th, and 7th days, the 100 pods from the first group are numbered and 
subjected to collect RGB and hyperspectral images. Simultaneously, 200 pods are randomly selected from the 
second group, and their seeds are extracted to perform quantitative measurements of hardness, soluble sugar, free 
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amino acid, starch, moisture, protein, and oil content. The collection of plant materials complied with relevant 
institutional, national, and international guidelines and legislation.

PCI extraction
Physical characterization
The TA.XT Plus texture analyzer (Stable Micro Systems Ltd., UK) was adopted to test the seed hardness of VS 
according to the method described by our previous  report14. Put it briefly, a cylinder stainless probe with a 
diameter of 2mm was equipped for puncture testing. The puncture test speed is 1mm s−1 and the test time (t) 
is 2 s. The averaged mechanical work (calculated as W =

∫ t
0
f (t)dt ) from six parallel tests was used as the seed 

hardness index.

Chemical compositions
To measure the moisture content, twenty green seeds were heated in a constant temperature oven at 75◦C until 
the weight stops dropping. The moisture content of the fresh VS seeds was then determined  gravimetrically32. 
Freeze-dried VS seeds were ground into powder for determination of amino acid content, soluble sugar, pro-
tein, crude protein, and oil. The analysis of free amino acids was performed using a Hitachi 8900 amino acid 
analyzer (Hitachi High-Technologies, Tokyo, Japan) referring to the  literature3. The soluble sugar content was 
determined by anthrone colorimetry using glucose as the standard 33. The Kjeltec TM2300 autosampler system 
(Foss Analytical, Hillerd, Denmark) was adopted to measure protein content. The crude protein was estimated 
using a conversion factor of 6.2511. Oil content is estimated using a Soxtec 2050 Soxhlet extraction system (Foss 
Analytical, Hillerd, Denmark)34. Each sample was analyzed three times to ensure accuracy.

Image data processing
Image acquisition
RGB images of VS pods were captured using a Canon EOS 200D II camera in a RGB image acquisition system. 
The camera parameters were as follows: lens f=18–55mm, focal length 0.25 m, shutter speed 1/4000 to 1 sec, 
aperture f/4−5.6, lens mounting height 46mm. The digital images were converted into RGB (red–green–blue) and 
input to the CIELAB system using the Conversion Munsell (program version 4.01), thus deriving the parameters 
of the Lab color model. To assess the green intensity of VS, the hue parameter [H = arctang (b/a)] was calculated 
35–37.

A hyperspectral image acquisition  system38 was adopted to collect hyperspectral images of VS. The system 
consisted of a Pika XC hyperspectral camera, an imaging spectrograph, a high-performance Schneider Xenoplan 
1.4/17 lens unit, four 15-W 12-V tungsten halogen lamps, and a Spectral Image data acquisition software. In this 
study, reflectance data was obtained within a spectral range spanning 386 to 1004 nm. The spectral resolution 
employed for this data collection was set at 1.3 nm. To initiate the spectral analysis process, the spectrometer 
undergoes a preheating phase aimed at achieving a consistent light irradiation. Subsequent to this step, a black 
and white correction procedure was executed. The initial stage of this correction process involves utilizing a 
whiteboard as the background. Following the acquisition of the background image of the whiteboard, the white-
board was removed and then replaced by the samples, thereby allowing for the capture of hyperspectral images.

RGB image processing
To reduce the noise of varying ambient light on RGB images, a one-time color difference correction using a 
24-color Macbeth card were performed .Then we extract the positions corresponding to the hyperspectral region 
of interest (ROI). Those positions in the RGB image are cropped and downsampled to ensure consistency.

Hyperspectral image processing
The ROI was manually selected on the pods with the assistance of ENVI5.3 (ITT, Visual Information Solutions, 
America)38–40, as shown in Fig. 1. Then the average spectrum was calculated. Multiple scattering correction (MSC) 
was adopted to process the hyperspectral data. It can effectively eliminate the spectral  differences41. MSC is a 
commonly used algorithm for hyperspectral data preprocessing. It can effectively eliminate spectral differences 
due to different scattering levels, and enhance the correlation between spectra and data. MSC corrects the baseline 
translation and offsets phenomena of spectral data. The detailed steps are as follows. 

1. It first derives the average value of all spectral data as the “ideal spectrum”.
2. It performs a linear regression between the spectra of each sample and the ideal spectrum, and solve the 

least-squares problem to obtain the baseline shift and offset of each sample.
3. It calibrates the spectra of each sample by subtracting the baseline shift and dividing by the offset to derive 

the corrected spectra.

Data fusion model
Combining RGB images with hyperspectral ones in the same model can significantly improve the estimation per-
formance. The RGB images were two-dimensional while the processed hyperspectral data were one-dimensional. 
The size of the hyperspectral data was 1*462. In accordance with the deep learning model’s prerequisite, it was 
imperative that the dimensions of both the hyperspectral data and the image data align with each other. Therefore, 
the hyperspectral data was reconstruct to two dimensions (22×21). For the RGB image data, the entire areas of 
the soybean pods were extracted and aligned with the hyperspectral data, i.e., the shape of the image data after 
downsampling was 22×21× 3. Then we merged the single-channel hyperspectral data with the three-channel 
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RGB image. The processed hyperspectral data was concatenate with the RGB image data in the color channel. 
Therefore, our model had 4 input channels.

The fused data were fed into ResNet-R &H. The fused data was four channels and its size was 22*21*4. The 
mathematical process for the ResNet-R &H model is as follows.

where Win,Hin,Din are the width, height and number of channels of the fused data, respectively. Wr is the width; 
Hr is the height; and Dr is the number of channels of the RGB image. Wh is the width; Hh is the height; and Dh is 
the number of channels after reshape of the hyperspectral data.

The core idea of ResNet is the introduction of residual block (residual block), whose mathematical expres-
sion is as follows.

where xl is the input of a layer, xl+1 is the input of the next layer, and the function F(x, wi ) is the residual mapping 
to be learned, which consists of convolution, normalization, and relu activation functions. For a deeper layer L, 
its relation to layer l can be expressed as follows:

The L layer can be represented by the combination of any l-layer network shallower than it and the sum of the 
residual parts between them. the inputs of the l+1 layer are the outputs of the l layer as follows:

where f(x) is the activation function such as ReLU.The residual block is divided into two parts, which are the 
direct mapping part and the residual mapping part. The generic representation of the residual network is as 
follows:

where h(x) is the direct mapping part, which represents the direct mapping to the input (e.g., a constant trans-
formation, i.e.,h(xl)=xl ); and f(x,w) is the residual part, which is the result of the input processed through the 
direct mapping part and the residual mapping part. The final output of the model in our experiments contains 
four classes.

The ResNet-R &H contains a conv1 stage, Layer1, Layer2, Layer3, Layer4 modules, a pooling layer, and a 
linear layer.The conv1 stage comprises of a convolutional layer, along with a batch normalization element. This 
layer operates with 4 input channels and generates 64 output channels. It employs a kernel size of 3, a stride of 
1 for convolution, and is accompanied by a padding of 1. The batch normalization layer is used to accelerate the 
network’s convergence. Layer1 contains two normal residual modules, Layer2 to Layer4 consists of a downsam-
pled convolutional module and a normal residual module.

The convolutional module contains three Conv2d convolutional layers and has two paths. The first path goes 
through the first convolutional layer, the Relu activation function, and the second convolutional layer sequen-
tially. The second path contains a shortcut convolutional layer. The two paths are summed up and the result 
goes through the activation function Relu. To ensure shape consistency, the Conv2d convolutional kernel on 

(1)Win ∗Hin ∗ Din = Wr ∗Hr ∗ Dr +Wh ∗Hh ∗ Dh,

(2)xl+1 = xl + F(xl ,wl),

(3)xL = xl +
L−1∑

i=l

F(xi ,Wi).

(4)xl+1 = f (yl),

(5)yl = h(xl)+ F(xl ,wl),

Figure 1.  The soybean images and the corresponding ROI. (a) The original hyperspectral image. (b) The 
hyperspectral ROI is colored in red.
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the shortcut is set to 1. The residual module does not have the convolutional layer at the shortcut and directly 
adds up the original input. There are 8 blocks of convolutional modules. Then the model has one average pooling 
layer to deduce the parameters. It can improve the model’s accuracy and stability while reducing overfitting. The 
final output has four classes, representing four freshness categories.

Results
Physicochemical characteristics of VS
The freshness of VS decreases as the storage time increases. From an external perspective (Fig. 2a), the pod 
exhibits a vibrant green color and the surface is smooth and spotless when stored for one day. By the third day, 
the green intensity and vividness of the pod color began to decline slightly, and a yellowish hue starts to emerge 
from the base of the pod near the stalk. By the fifth day, this yellowing spreads throughout the entire pod, with 
brown spots appearing at its stem end. Upon reaching the seveth day, not only does the yellow color intensify 
but also do these brown spots enlarge and spread across the entire pod, rendering it unsuitable for sale and 
devoid of market value. The appearance characteristics of the samples showed regular changes with the decrease 
of freshness. The freshness is negatively correlated with the yellowing color and rust spot areas of the pods. In 
reality, experienced experts or consumers also measure freshness by observing these changes with their eyes. To 
give a clearer view of the details of the vegetable soybeans after they decay, we show the pictures of the vegetable 
soybeans from Day1 and Day7 in Supplement Figure S1.

Besides appearance, physicochemical characteristics of VS are also of great importance to freshness evalua-
tion. Therefore, eight physicochemical traits (total soluble sugar, moisture, total free amino acid, starch, protein, 
oil, green intensity, hardness) that have been reported to be related to freshness are determined on the first, 
third, fifth, and seventh days after harvest (Fig. 2b and Supplement Table S1). With the extension of storage time, 
except for oil and hardness, the other six traits of VS show a downward trend. From the first day to the third day, 
the soluble sugar content dropped sharply from 12.64 to 7.22%, with a decrease rate of 42.88%. After the third 
day, the soluble sugar content slowly decreased. On the seventh day, the soluble sugar content is 6.30%, with a 
decrease rate of 12.68% compared to the third day. From the first day to the seventh day, the total soluble sugar 
decreased by 50.13%. The changes of total free amino acid content and green intensity are similar to those of 
soluble sugar content, which decrease rapidly from the first day to the third day and then decreased slowly. From 
the first day to the seventh day, the total free amino acid content decreased from 0.18 to 0.10%, with a decrease 
rate of 47.24%, which is slightly smaller than the decrease rate of total soluble sugar (50.13%). From the first day 
to the third day, the green intensity decreases from 1.15 to 1.00, and on the fifth and seventh days, it decreases 
to 0.97 and 0.94, respectively. High moisture content is one of the most obvious characteristics of VS as well as 

Day 1

(b)(a)

Day 3

Day 5

Day 7

Figure 2.  Changes in appearance and nutrients of vegetable soybean with different freshness. (a) represents 
photos of VS pods on the first-, third-, fifth- and seventh-day after storage in the artificial climate chamber, 
respectively; (b) represents line chart of eight physicochemical traits (total soluble sugar, moisture, total free 
amino acid, starch, protein, oil, green intensity, hardness) change with storage time series.
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other vegetables or fruits. Water is the most abundant component of VS and make up more than 60% of the seed’s 
wet weight. The moisture content decreases from 67.16% on the first day to 60.70% on the seventh day, with a 
slow decrease from the first day to the third day and a rapid decrease from the third day to the seventh day. The 
starch content shows an approximately linear decrease process, from 21.43% on the first day to 15.04% on the 
seventh day, with a decline rate of 29.80%. The process of protein content change is quite unique. From the first 
day to the third day, the content slightly increases and then continues to decrease. However, the overall change 
is not obvious. Among the two increased characters, the hardness increased greatly, from 3.88 ×10−5 J to 6.39 
×10−5 J , with an increase rate of 64.74%, and the process of change is approximately linear. Oil content increase 
from 15.88 to 17.60%. In this process, the change from the third day to the fifth day is relatively obvious, while 
the other time periods have small changes.

Evaluation metrics
Different measures, including accuracy, precision, recall, and others, were employed for evaluating the efficacy 
of the model. The confusion matrix was also commonly employed. The main evaluation metrics are as follows:

• True positive (TP): In cases wherein the actual value of the sample is positive, and the projected outcome of 
the model corresponds positively as well.

• False positive (FP): In cases wherein the actual value of the sample is negative, yet the projected outcome of 
the model is positive.

• True negative (TN): In cases wherein the actual value of the sample is negative, and the projected outcome 
of the model corresponds negatively as well.

• False negative (FN): In cases wherein the actual value of the sample is positive, yet the projected outcome of 
the model is negative.

Accordingly, we employ the following metrics.

• Accuracy: It is the percentage of positive and negative cases correctly predicted. 

• Recall: it is the percentage of actual positive cases that are correctly predicted to be positive. 

• Precision: it is the percentage of positive cases predicted by the model as positive. 

• F1-Score: it is the summed average of the precision and recall scores. 

The results were presented by a confusion matrix. The X axis was the prediction of the model and the Y axis was 
the number of true labels of the data.

In this work, the technique proposed in this study was compared with four widely used machine learning 
models as follows.

• Decision tree In machine learning, the decision  tree42 finds fundamental application for both classification 
and regression purposes. It has proven to be highly effective in solving classification problems and is widely 
used in practice. The decision tree operates by selecting the most relevant features in the data, dividing the 
training samples based on these features, and then recursively repeating this process. The selection of features 
in the decision tree is based on two criteria: information entropy and information gain. The features with 
higher information gain were selected as the basis for dividing the data.

• Random forest
  A random forest is a collection of decision trees that combines numerous decisions into a single  outcome43. 

This algorithm runs by reconstructing multiple decision trees during the training phase, and it blongs to 
ensemble learning. Ensemble learning was employed to predict a single outcome by erecting a composite of 
numerous models. It functions by generating various classifiers, each of which learns and produces predic-
tions autonomously, and then consolidating the ultimate prediction.

• Adaboost
  Boosting, also known as augmented learning, is a crucial technique for integrated learning. It can transform 

weak learners, which have prediction accuracy only slightly better than random guesses, into strong learners 
with high prediction accuracy. The AdaBoost algorithm is equivalent to a forward staged additive modeling 
algorithm that minimizes the loss of new indices used for multi-class  classification44.

• KNN

(6)Accuracy =
(TP + TN)

TP + TN + FP + FN

(7)Recall =
TP

(TP + FN)

(8)Precision =
TP

TP + FP

(9)F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall
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  The K-Nearest Neighbor (KNN) classification approach quantifies the gap separating unidentified samples 
from their established counterparts by referencing known samples spanning various  categories45. Within this 
process, the algorithm singles out K known samples, those closest in proximity to the unidentified specimen. 
Subsequently, adhering to the guideline of minority voting, the categorization of the unidentified samples 
aligns with the class of the K nearest instances spanning the most extensive array of categories.

Evaluation results
The current study has partitioned the processed VS samples and their associated images into two distinct sets, 
the training set was 70% and the test set was 30%. Notably, the selection of samples for each set was executed 
randomly. Moreover, the distribution of each category remains consistent in both sets, satisfying the principle 
of proportionality. The algorithms were run on a system equipped with an Intel Xeon Gold 5218 CPU, NVIDIA 
Tesla V100 GPU, and Ubuntu 18.04 operating system. The classification model was trained using Python (ver-
sion 3.6.8) and PyTorch (version 1.7.1).

The method was evaluated through three datasets: the hyperspectral dataset, the RGB image dataset, and the 
fused dataset. Each dataset consists of four classes of VS with varying freshness levels. The datasets contain 462 
bands of hyperspectral data, which was reprocessed into a single channel of 22× 21 data. The colored images 
were also resized to 22× 21 with a total number of 416.

Firstly, a waveband analysis on VS of varying freshness levels was performed. The hyperspectral values of 
each VS were then averaged and normalized. Fig. 3a illustrates the normalized spectral values corresponding to 
different bands of VS at four freshness levels. Fig. 3b shows the first-order derivatives corresponding to different 
bands of VS at the same freshness levels. As shown in Fig. 3a, there is one peak at 562 nm and one trough at 688 
nm. The results of the first-order derivative analysis in Fig. 3b demonstrate that the spectral reflection separation 
between the types and levels of VS freshness mainly occurs within the 494 nm to 681 nm and 695 nm to 764 
nm  range46. The spectral values within this range vary significantly, indicating that the spectrum in this band is 
strongly correlated to VS freshness.To better indicate the location of the peaks and valleys of the wave band in 
Fig. 3a and the reflectance separation band region in Fig. 3b, the 500 nm–710 nm region of Fig. 3a was zoomed 
(Supplement Figure S2). The 420nm-700nm region of Fig. 3b (Supplement Figure S3), and the 650nm-770nm 
region (Supplement Figure S4) are also amplified.

Then, VS samples were classified using machine learning techniques and our deep learning method based 
on RGB image data and hyperspectral data separately. Table 1 presents the accuracy, average precision, average 
recall, and average F1 score metrics for four machine learning models and deep learning models trained with 
hyperspectral data, image, and fused data, respectively. The results indicate that the highest testing accuracy 
achieved by machine learning models is 87.2%, while the deep learning method achieves the highest accuracy 
of 97.6% among all the types of data. And the values of precision, recall, and F1-score are all higher than those 
of traditional machine learning models. This demonstrates that the model developed in this study significantly 
enhances the classification performance. Due to the small number of samples and high accuracy, we use Wil-
son’s method to derive the confidence intervals. We calculate the confidence intervals for the 125 test samples 
with 97.6% classification accuracy at 95% confidence level and 99% confidence level, respectively. The results 
are 93.18%–99.18% and 93.15%–99.50%. This demonstrates the reliability of our method and show enough 
statistical significance.

Table 2 shows the processing time of 125 samples from the test set using different methods. When the data 
sources are RGB images and hyperspectral images, the time required by the proposed ResNet-R &H method in 
this study is 13.80 ms and 10.18 ms, respectively, which are higher than the remaining four machine learning 
models. When the data source is fused data, its required time is 15.23ms, which is only 1.43–5.05 ms higher 
than that based on the single source data. And the ResNet-R &H requires more inference time than that of 

(a) (b)

Figure 3.  Normalized spectral values and first-order derivatives corresponding to different bands of vegetable 
soybeans at four freshness levels. (a) Normalized spectral. (b) First order derivative.
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DecisionTree/KNN/RandomForest based on the fusion data, the time gap required to process 125 samples is 
only 4.38–11.29 ms, which is generally acceptable in real-world applications. What’s more, the computation time 
of the ResNet-R &H model is even much lower than that of AdaBoost.

Figure 4 shows the confusion matrix of VS freshness classification under four machine learning methods and 
one deep learning method. Comparing Fig. 4a–d and e–h, it is clear that these models trained solely on RGB or 
hyperspectral data have considerably lower classification. This suggests that relying upon a single data source 
suffers from incomplete representation of certain essential characteristics. Therefore, using fused data has led to 
a marked improvement in classification accuracy, precision, recall, and F1 score.

Band ablation analysis
The characteristic bands most closely related to freshness were identified. Instead of utilizing the full-band 
data, feature band selection on the hyperspectral bands was  performed47–49.In Fig. 5, the correlation analysis 
was employed to investigate the relationship between various wavelengths of data and their corresponding 
freshness categories. The correlation between bands and freshness was analyzed using the distance correlation 
 coefficient50,51. It was calculated by dividing the distance covariance of two random variables with the product 
of their distance standard deviations. The detailed equation is shown as follows.

A stronger correlation was indicated by a correlation coefficient closer to 1. The experimental results show a series 
of highly correlated wavelengths around 670 nm and 980 nm. The distribution of selected wavelengths closely 
resembles the outcomes of the first-order derivative analysis, indicating that peaks and valleys at wavelengths 
correspond to higher correlations.

We selected 32 bands (673 nm–695 nm and 979 nm–1003 nm) with correlation coefficients greater than 
0.7 to train models. All the other bands were set to zero. The results are shown in Table 3. It is observed that 
the ResNet-R &H model achieves the highest accuracy in general. The test accuracy obtained by the AdaBoost 
method is nearly equal to the full-band accuracy (462). The RandomForest method is about 5.6% lower than the 
fullband model. KNN has a 20% drop in accuracy compared to the full band.

(10)dCor(X,Y) =
dCov(X,Y)

√
dVar(X)dVar(Y)

.

Table 1.  Evaluation metrics of the classification effects of five classification models on VS freshness based on 
RGB image data, hyperspectral data, and fusion data. The hyperspectral data used for model training is based 
on the full bands.

Decision tree (%) KNN (%) Random forest (%) AdaBoost (%) ResNet-R &H (%)

Accuracy

RGB image 77.6 80.0 84.0 77.6 90.4

Hyperspectral 79.2 86.4 82.4 83.2 93.6

Fusion data 84.0 87.2 84.8 87.2 97.6

Precision

RGB image 76.0 83.6 83.8 78.6 91.3

Hyperspectral 79.2 86.7 82.1 83.2 93.5

Fusion data 87.0 87.0 84.9 86.9 98.0

Recall

RGB image 75.9 81.8 84.9 78.1 91.5

Hyperspectral 78.1 86.3 82.6 83.1 93.5

Fusion data 87.1 86.8 85.2 87.4 97.5

F1-Score

RGB image 75.4 79.7 84.0 77.6 90.5

Hyperspectral 78.3 86.4 82.3 83.0 93.5

Fusion data 87.0 86.9 85.1 87.0 97.8

Table 2.  Time required for inference test set of 125 samples under different methods.

Decision tree KNN Random forest AdaBoost ResNet-R &H

Time(ms)

RGB image 0.37 7.31 7.74 10.16 13.80

Hyperspectral 0.27 6.09 7.69 3.76 10.18

Fusion data 3.94 9.56 10.85 38.08 15.23
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According to results of the experiment, the RandForest and AdaBoost methods have achieved 92.0% and 
92.8% accuracy, respectively. Which are higher than those trained on the full-band fused data, with values of 
84.8% and 87.2% (Table 1 and Table 3. The feature selection can select the feature bands that are most closely 
related to the freshness, thus reducing the hardware requirement. Moreover, the average time required to train 
the network reduced from 3.634 to 3.465 s per epoch.

Discussion
Through visual and physicochemical indicators (Fig. 2), differences can be observed between samples at different 
freshness levels. The classification of vegetable freshness based on sensory evaluation and physical and chemi-
cal characteristics detection is a time-consuming and laborious task, and the results are difficult to reproduce. 
Therefore, there is a growing interest in non-contact technologies utilizing image and spectral analysis to achieve 
rapid and automated classification of vegetable freshness. At present, hyperspectral technology has been more 

Figure 4.  Classification confusion matrix. (a-i): Confusion matrix of four machine learning methods 
(AdaBoost, KNN, Random forest, and Decision tree) based on RGB images (a−d), hyperspectral images 
(e–h), as well as fusion data (i–l). (m–o): Confusion matrix of deep learning method based on RGB image, 
hyperspectral image and fusion data, respectively. The axis labels 0,1,2,3 represent Day1,Day3, Day5,Day7, 
respectively. The numbers in the confusion matrix represent the corresponding number of samples, and the total 
sample size is 125.
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and more widely used in the study of vegetable and fruit freshness. The research results of Polder et al.52show that 
hyperspectral images have more advantages than ordinary RGB images in identifying the maturity of tomatoes, 
and the recognition and classification error of single pixel decreases from 51% to 19%. However, the efficiency 
of freshness classification is not high enough due to ignoring the external characteristics of the  sample53. The 
accuracy of classification results may be compromised by relying solely on a single source of data. And we experi-
mentally prove this corollary in our study(Table 1). It is imperative to consider the fusion of data from multiple 
sources to improve classification accuracy. For example, there exist blurring distinctions between Day 1 and Day 
3 observed from photos (Fig. 2a), while significant changes occur in the levels of chemicals like soluble sugars 
and free amino acids (Fig. 2b), which can be rapidly and sensitively detected with hyperspectral techniques 
(Fig. 3). In contrast, the contents of total soluble sugar, protein, and oil showed no difference between Day 5 
and Day 7 (Fig. 2b), but the samples can be preliminarily distinguished visually (Fig. 2a). And this subjective 
visual distinction of the sample’s appearance changes can be more accurately and efficiently performed through 
RGB images. Therefore, the above results further illustrate that fusion data from both RGB and hyperspectral 
sources can effectively improve the accuracy and precision of freshness classification when compared to relying 
on a single data source (Table 1). Actually, this inference is confirmed in the subsequent experimental results of 
this paper. From the confusion matrix in Fig. 4m-o and Supplement Figure S5, it is demonstrated that the deep 
learning classification method based on RGB images misclassified 4 samples belonging to Day1 as Day3 (Fig. 4m). 
When the data source changes to hyperspectral (Fig. 4n) or fused data (Fig. 4o), the number of misclassifications 
is reduced to 0. On the contrary, there is a significant difference in the appearance of the samples on Day 3 and 
Day 7, which can be correctly distinguished through RGB images (Fig. 4m). However, there is still one sample 
misclassified based on hyperspectral images (Fig. 4n). Above all, based on the fusion data can effectively reduce 

Figure 5.  The correlation between the hyperspectral reflectance of vegetable soybeans and corresponding 
freshness. The bands with a correlation coefficient greater than 0.7 are marked in pink.

Table 3.  Evaluation metrics of the classification effects of five classification models on VS freshness based on 
hyperspectral data and fusion data. The models were trained from 32 bands of data with correlation coefficient 
greater than 0.7, and the rest of the bands were set to 0.

Decision tree (%) KNN (%) Random forest (%) AdaBoost (%) ResNet-R &H (%)

Accuracy

hyperspectral 75.2 66.4 76.8 82.4 88.0

fusion data 83.2 73.6 92.0 92.8 92.8

Precision

hyperspectral 75.6 68.3 78.1 82.7 87.8

fusion data 83.2 73.5 92.0 92.6 92.8

Recall

hyperspectral 75.5 67.1 76.9 82.4 87.5

fusion data 83.9 74.5 92.3 93.1 93.5

F1-Score

hyperspectral 75.1 64.2 76.8 82.3 87.5

fusion data 83.0 73.6 92.1 92.1 93.0
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the occurrence of the above mentioned misclassification situation (Fig. 4o), which highlighting the strength of 
the proposed model.

Hyperspectral imaging techniques enable the simultaneous acquisition of images at different wavelengths. In 
this work, the hyperspectral data have 462 wave bands. Due to the small sampling interval of imaging spectrom-
eters, adjacent bands have high correlations and suffer from information redundancy. An RGB image is an array 
of color pixels of size M×N×3 (M×N pixel points, 3 channels), and each color pixel point is a composition of 
red, green, and blue components. The RGB camera decomposes the spectrum into three broad bands to capture 
images with superior spatial resolution but limited spectral resolution. Hyperspectral imaging techniques can 
simultaneously acquire images of different wavelengths in the same scene. However, the existing hyperspectral 
imaging equipment has low spatial  resolution54–56. The fusion of high spatial-resolution RGB images with low-
resolution hyperspectral images can improve classification  accuracy57.

This work proposes a deep learning-based method to classify the freshness of VS based on RGB and hyper-
spectral image data. It combines hyperspectral data and image data to effectively distinguish the VS freshness. 
As shown in Table 1, the classification accuracy of VS freshness is significantly improved.

In the data preprocessing stage, the input image is downsampled. The downsampling processed image reduces 
the pixel points of the RGB image, thus reducing the model input complexity. The reduction of input data can 
shorten the training and inference time. Overall, the classification accuracy of the data fusion-based approach 
can be significantly improved with a quite slightly increased of inference time.

A feature selection model is proposed to select the most relevant bands. The correlation coefficient calculation 
is used, which requires limited resources. By reducing the input bands number from 462 to 32, performance for 
most methods decreases, except for RandomForest and AdaBoost. Their accuracies remain at 92.0% and 92.8% 
with fused input, respectively. For incomplete data sets, Random Forest can handle missing values and incomplete 
features. When building decision trees, Random Forest uses a random subset of features for training, so that 
even if some features are missing, other features can be used for prediction. The AdaBoost algorithm can handle 
incomplete data sets because it is an iterative algorithm that gradually adjusts the model to fit the missing data. 
In each iteration, AdaBoost adjusts the sample weights to focus more attention on the misclassified samples, 
thus improving the adaptation to the missing data. Such experimental results show that the feature selection 
method reduces the training time with less impact on the classification accuracy. In addition, our method offers 
the possibility to propose training algorithms with reduced training samples.

The method proposed in this study can provide a theoretical reference for classifying the freshness of other 
kinds of fruits and vegetables to improve classification accuracy and reduce human error and variability. The 
appearance and nutrient content of different vegetables or fruits are very different. With the decrease of maturity, 
the change trend of physical and chemical characteristics is also very different from that of vegetable soybeans. 
Therefore, our proposed model may only be applicable to the freshness classification of vegetable soybeans. In 
the later stage, the type and number of experimental samples can be expanded to improve the discrimination 
accuracy and generalization of the model.

Conclusions
In this study, we propose a novel classification model called ResNet-R &H, which is based on the residual net-
works (ResNet) structure and incorporates the fusion data of RGB and hyperspectral images. ResNet-R &H is 
significant in providing a unique, efficient, and more accurate classification approach in evaluating the freshness 
of vegetable soybean.

Data availability
Our dataset and code will be publicly available at https://github.com/HZSUZJ/DLDF.
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