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An image inpainting‑based 
data augmentation method 
for improved sclerosed glomerular 
identification performance 
with the segmentation model 
EfficientNetB3‑Unet
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The percent global glomerulosclerosis is a key factor in determining the outcome of renal transfer 
surgery. At present, the rate is typically computed by pathologists, which is labour intensive and 
nonstandardized. With the development of Deep Learning (DL), DL‑based segmentation models 
can be used to better identify and segment normal and sclerosed glomeruli. Based on this, we can 
better quantify percent global glomerulosclerosis to reduce the discard rate of donor kidneys. We 
used 51 whole slide images (WSIs) from different institutions that are publicly available on the 
internet. However, the number of sclerosed glomeruli is much smaller than that of normal glomeruli in 
different WSIs, which can reduce the effectiveness of Deep Learning. For better sclerosed glomerular 
identification and segmentation performance, we modified and trained a GAN (generative adversarial 
network)‑based image inpainting model to obtain more synthetic sclerosed glomeruli. Our proposed 
inpainting method achieved an average SSIM (Structural Similarity) of 0.8086 and an average PSNR 
(Peak Signal‑to‑Noise Ratio) of 22.8943 dB in the area of generated sclerosed glomeruli. We obtained 
sclerosed glomerular segmentation performance improvement by adding synthetic sclerosed 
glomerular images and achieved the best Dice of glomerular segmentation in different test sets based 
on the modified Unet model.

There are a large number of patients in need of kidney transplantation waiting for kidney donors, and this 
demand is still  growing1. Meanwhile, many studies have shown that chronic damage to donor kidney biopsy 
specimens is closely related to transplant outcomes, so approximately 17–20% of collected donor kidneys need 
to be discarded after pathologist  evaluation2. Additionally, in daily practice, often due to the urgency of time, dif-
ferent pathologists will have subjective biases when evaluating sections, potentially resulting in unnecessary dis-
carding of organs. We need to minimize the occurrence of this discarding due to the shortage of kidney donors.

In kidney transplant evaluation, there are many indicators to consider, among which the percent of global 
glomerulosclerosis is considered to be the entry point for kidney  transplantation3. Due to the large number of 
glomeruli, the assessment of percent global glomerulosclerosis is very time-consuming and causes poor repro-
ducibility among pathologists. The professional knowledge requirements of pathologists are high, and human 
error easily occurs. Therefore, automatic image processing methods that can accurately detect and classify glo-
meruli are needed.
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Recently, due to the strong feature extraction ability of Deep Learning, an increasing number of studies have 
begun to use it to detect or segment objects in pathological images. In the imaging task, CNNs in particular are 
widely used. Unet, introduced by Ronneberger et al. based on  CNN4, has proven to be useful in many tasks of 
tissue image segmentation and classification.

However, the performance of Deep Learning often depends on the quantity and quality of the training data. 
The acquisition of medical images involves the privacy of patients and requires the annotation of experts, so it 
is relatively difficult to obtain the training data of medical images. Meanwhile, in the publicly available data for 
glomerular studies, the number of sclerosed glomeruli is much smaller than that of normal glomeruli. Class 
imbalance can bring difficulties to Deep Learning.

In our study, we proposed a GAN-based image inpainting framework to generate more new sclerosed glo-
meruli from masks. Innovatively, newly generated sclerosed glomeruli were obtained based on the diverse shapes 
of the masks and the surrounding contextual information. Furthermore, we improved the segmentation network 
based on Unet and trained the model by combining the original data with new synthetic data. We realized the 
automatic segmentation and classification of normal and globally sclerosed glomeruli in digital pathological 
sections.

Related research
GAN and medical image generation
Since Ian Goodfellow proposed GAN in 2014, it has become possible to generate realistic images by designing 
the game process of the generator and  discriminator5. Because of their powerful data generation capabilities, an 
increasing number of GANs have been used in the generation of pathological and medical images to perform 
data augmentation.  In6, the combination of VAE and StyleGAN was proposed. The network generated the hidden 
code of the image through VAE as the input of StyleGAN to generate realistic cell images.  In7, a medical image 
augmentation method, namely, a texture-constrained multichannel progressive generative adversarial network 
(TMP-GAN) was proposed.  In8, Lei et al. proposed a lesion attention conditional generative adversarial network 
(LACGAN) to synthesize retinal images with realistic lesion details to improve the training of the disease detec-
tion model. Amirrajab, S. et al. proposed a novel framework consisting of image segmentation and synthesis 
based on mask-conditional GANs for generating high-fidelity and diverse Cardiac Magnetic Resonance (CMR) 
 images9. Although different GAN-based frameworks have been applied in the generation of medical images, 
they still need to improve the performance in the field of pathological images, and there are also few studies on 
the generation of glomerular pathological images to improve segmentation performance.

Deep learning on glomerular identification and classification
In recent years, an increasing number of methods based on Deep Learning have been proposed to realize the 
identification and classification of glomeruli in digital pathological images. Each of these approaches has its own 
advantages and drawbacks. Jon N. Marsh et al. used a fully convolutional neural network based on the VGG16 
architecture for glomerular segmentation and achieved 0.784 Aggregate Dice coefficients for nonglobally sclero-
sed glomeruli and 0.600 for globally sclerosed  glomeruli10. Jaime Gallego et al. trained the Unet model on PAS-
stained WSIs and H&E-stained WSIs. On the PAS-stained WSIs, normal and sclerosed glomeruli were classified 
with F1-scores of 97.5% and 68.8%, respectively. On H&E-stained WSIs, F1-scores of 90.8% and 78.1% were 
 achieved11. Gloria Bueno proposed the sequential CNN segmentation-classification strategy(SegNet-AlexNet) 
and this two-step framework achieved 98.16% accuracy in classifying normal and sclerosed glomeruli when 
trained on 47 PAS-stained  WSIs12. Lei Jiang et al. trained cascade mask region-based CNN architecture to detect, 
classify, and segment glomeruli into three categories: (i) GN, structural normal; (ii) global sclerosis; and iii) glo-
merular with other lesions. They achieved F1 scores of 0.839, 0.806, and 0.753, respectively, in the whole-slide 
image  group13. Tianyuan Yao et al. developed and released a holistic Glo-In-One open-source toolkit to provide 
holistic glomerular detection, segmentation, and lesion  characterization14. Kawazoe et al. developed an auto-
mated computational pipeline for detecting glomeruli on PAS-stained WSIs, followed by segmenting Bowman’s 
space, the glomerular tuft, the crescentic, and the sclerotic region inside of the  glomeruli15. Silva et al. proposed 
the end-to-end network, named DS-FNet, combining the strengths of semantic segmentation and semantic 
boundary detection networks via an attention-aware mechanism, and it showed consistently high performance 
in a one-to-many-stain glomerulus  segmentation16.

Most of the existing studies have not focused on the performance improvement of sclerosed glomerular seg-
mentation. However, in fields such as kidney transplantation, the evaluation of sclerosed glomeruli is necessary 
and meaningful. Therefore, this paper focuses on improving the identification and segmentation performance 
of sclerosed glomeruli while solving the problem of automatic identification and segmentation of glomeruli.

Materials
Data source
In our study, we collected 51 WSIs from open sources, and they are introduced as follows. Thirty-one WSIs 
generated by the European project AIDPATH (http:// aidpa th. eu) were chosen. The tissue samples were stained 
using periodic acid–Schiff (PAS) and were scanned at 20× with a Leica Aperio ScanScope CS  scanner17. The 
remaining 20 WSIs representing various human kidney pathologies came from four sources: three independent 
medical centres and TCGA. The data from three independent medical centres were collected  by10, including 4 
H&E-stained slides from the Military Institute of Medicine in Warsaw in Poland, six PAS-stained slides from 
Hospital Universitario Valld’Hebron, Barcelona in Spain and five H&E-stained slides from Cedars-Sinai Medi-
cal Center in Los Angeles in the USA. Five H&E-stained slides from the publicly available TCGA  repository18. 

http://aidpath.eu
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All slides were prepared from formalin-fixed paraffin-embedded (FFPE) sections with a thickness of 4 μm. The 
 literature11 specifically describes the method followed for making the slides.

The 31 WSIs  from17 contain two folders. DATASET_A: Raw data with 31 whole slide images (WSIs) in SVS 
format. We converted these to PNG format. DATASET_B: 2340 images with a single glomerulus, 1170 normal 
glomeruli and 1170 sclerosed glomeruli. All of them are in PNG format and are detected from DATASET_A. 
As the repository only provided normal glomerular patches and sclerosed glomerular patches, with the help 
of professional pathologists, we should find the specific locations of these glomeruli in WSIs, and use QuPath 
software to label categories and draw their outlines. For 20 WSIs from three independent medical centres and 
TCGA, the pathologists  in11 first identified 78 ROIs and then delineated 1,184 glomeruli within the ROIs. ROIs 
were extracted for × 10, which corresponded to a pixel size of ~ 10 μm. In the availability of materials and data 
section of this article, we provide the URL where the data can be obtained.

Data processing
We used 25 PAS-stained WSIs from AIDPATH and 20 PAS stained ROIs from three independent medical centres 
and TCGA as training data for glomerular identification and classification, and the remaining six WSIs from 
AIDPATH and 58 ROIs were used as different test sets to verify the effectiveness of the glomerular identification 
algorithm. As shown in Fig. 1, we called the six PAS-stained WSIs from AIDAPTH Test1, the five PAS-stained 
ROIs from Zenodo and the 53 H&E-stained ROIs from Zenodo Test2 and Test3. Because the training data did 
not include H&E-stained slides, we could also test algorithm migration performances on H&E- stained WSIs. 
Since the resolution of a single WSI or ROI was very high, it was not easy to train. We performed overlapping 
cropping on WSIs or ROIs. The size of the cropping was 1024 × 1024, and the step length was 512. For the test 
sets, we also adopted the same strategy as the processing method of the training sets. The number of patches 
obtained from different datasets is shown in Fig. 1. To reduce the training and testing time, we downsampled all 
slides two times to reduce the size of the picture before cropping. We converted all glomerular contour labelling 
into pixelwise mask. Specifically, each WSI corresponded to two masks, with black representing the background 
and white representing all the normal glomeruli and sclerosed glomeruli, respectively. Figure 2 shows the masks 
of normal and sclerosed glomeruli on a patch.

Methods
Framework of sclerosed glomerular generation
Cropped sclerosed glomerular masks
To realize the generation of sclerosed glomeruli considering shapes and contextual information, we must create 
sclerosed glomerular datasets and corresponding masks to train the image inpainting network. Inspired  by19,20, 
we synthesized our datasets using existing data. Specifically, the datasets were created as shown in Fig. 3. It is 
worth noting that our cropping method is designed to place the sclerosed glomeruli in the centre of the cropped 
image as much as possible, thus potentially assisting in the subsequent training of the generative network.

First, we need to obtain all sclerosed glomerular masks from the segmentation training set. In Fig. 3, the bot-
tom left portion shows the mask of a certain part of sclerosed glomeruli that is shown in the full section image 
(Fig. 3 top half). Based on the sclerosed glomerular labels provided by the masks of the open data source, the 
minimum peripheral circle was made for each sclerosed glomerulus, as shown in the red circles in the bottom 
left of Fig. 3. The centre of the outer circle was taken as the centre of the cropped rectangle picture, and the size 
is 256× 256 , as shown in the green rectangle box in the bottom left section. The position of the rectangular box 
is mapped to the position of the original slice, as shown in the bottom right of Fig. 3. The rectangular masks and 
the corresponding pictures were cropped. The final training data are shown in the Fig. 4.

Figure 1.  Data processing and settings.
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The ROIs are usually synthesized in both the foreground and the background to be fair and unbiased. For 
example,  in21,22, the authors adopted this idea for synthesis. However, when considering the synthesis of ROIs in 
this article, we did not consider the generation both the glomeruli and the adjacent tissues (background). The 
reasons are as follows. In the segmentation task, the area of the sclerosed glomerular regions is relatively small 
compared to the area of its background. Thus, when the deep learning network segments and classifies the glo-
meruli in the image, the fraction of other parts is much higher than the fraction of glomerular regions. So, the 
diversity of other tissues can be guaranteed. Based on this, we adopted a generation way like image inpainting 
to make the generated glomeruli have a good fusion with the existing adjacent tissue and reduce the number of 
training parameters. Subsequently we can also generate the adjacent tissue and combine it with the generated 
glomeruli, which may make our model more robust.

Architecture of sclerosed glomerular inpainting network
The training phases of the sclerosed glomerular inpainting network are shown in Fig. 5. It is divided into four 
modules as follows. (1) The sclerosed glomerular mask input module controls the area of sclerosed glomerular 
generation. (2) The Generator module is mainly based on AutoEncoder, which consists of an encoder and a 
decoder. (3) The discriminator module mainly determines whether the input picture is a real picture or a gen-
erated picture and, in turn, promotes the training of the generator. (4) The sclerosed glomerular attention loss 
module includes the global image loss and the loss of the sclerosed glomerular foreground itself.

Figure 2.  Label making. (a) Original patch, (b) normal glomerular mask, (c) sclerosed glomerular mask.

Figure 3.  Explanation of the sclerosed glomerular cutting method.
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A. Sclerosed glomerular mask input
A picture with only background Xgap is obtained by Eq. (1), where Xori represents a cropped picture of the 
sclerosed glomerulus with background,Xmask represents the corresponding masks, and ⊙represents pixelwise 
multiplication. According to Eq. (2), we can obtain the network input Xinput by merging the images Xgap and 
the masks Xmask in the channel dimension, where merge(•) is the function realizing dimension concatenation. 
Through passing Xinput into the generator, we can realize sclerosed glomerular generation at the vacancy.

B. Generator
The generator consists of an encoder, a stack of building blocks, a self-attention block and a decoder. In addition, 
we use skip connections between the encoder and the decoder. The generator takes the 256 × 256 Xinput as the 
input. In the encoder section, the input first passes through a convolutional network of 7 × 7 convolution kernel 
size, with batch normalization and a LeakyReLU activation function, followed by two 4 × 4 convolutional layers 
with a stride of 2 to downsample the image. This is followed by eight AOT blocks, all with the same parameter 
settings to reduce the amount of computation required. The AOT block was proposed  in23, and the architecture 
is shown in Fig. 6a. AOT blocks adopt the split-transformation-merge strategy in three  steps24. During the trans-
formation, each subkernel performs a different transformation of the input feature x1 by using a different dilation 
rate. Inspired by ResNet, a gated residual connection first calculates the spatially-variant gate value β from × 1 
by a standard convolution and a sigmoid operation, and then the AOT block aggregates the input feature × 1 
and the learned residual feature × 2 by a weighted sum with β.The network structure of the decoded part and 
the encoding part are consistent, and two deconvolution layers are used to make the size of the masked picture 
the same as the size of the input image. Before the first layer of the upsampling network, there is a self-attention 
block whose input size is 64× 64 . It is proposed  in25. As shown in Fig. 6b, by obtaining the self-attention feature 
maps, we can explore the relationship between the locality of the picture and the whole to solve the problem of 
long-distance dependence. Finally, the tanh function is applied in the output layer.

C. Discriminator
The discriminator in this task was set to two, namely, the local discriminator and the global discriminator. 
The local discriminator only discriminated the generated sclerosed glomeruli, and the global discriminator 
discriminated the complete generated images, including the sclerosed glomeruli and the background. When 
we used the local discriminator, the region of the nonglomerulus can be filled in white so that the size of the 
local glomeruli image is consistent with the input whole image. In this way, the local discriminator has the 
same network structure as the global discriminator to reduce the amount of calculation. The input size of each 
discriminator is 256× 256pixels . There are a total of six convolutional layers, and each convolutional layer uses 
a 4 × 4 kernel with a stride of 2 (Convolution + LeakyReLU + Batch normalization) to decrease the size of the 

(1)Xgap = X
ori

⊙ (1− Xmask)

(2)Xinput = merge(X
gap

,Xmask)

Figure 4.  Illustration of cropped sclerosed glomerular images (1st row) and their corresponding images with 
sclerosed glomerular masks (2nd row).
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feature representations. The number of channels in the discriminator is set to 64, 128, 256, 512 and 1. The last 
layer of both discriminators produces N × N output patches representing classification scores (‘real’ or ‘fake’).

D. Sclerosed glomerular attention loss module
As shown in Fig. 5, the image loss and sclerosed glomerular loss are set up to ensure that the whole pictures 
remain consistent and that the sclerosed glomeruli show a sense of clear texture and staining. Based on the 
designed loss module with the nature of attention, the generated network achieved a balance between the gen-
eration of glomeruli itself and the inpainting of the complete image.

The adversarial loss of the global image and local sclerosed glomeruli are shown in Eqs. (3) and (4), respec-
tively, where D is the global discriminator and Dl is the local discriminator. To reduce the amount of computation 
required, we set the network parameters of D and Dl to be the same. Xrec is the generated global image, which 
is obtained by the generator as shown in Eq. (5), where G represents the generator. Rori and Rrec are the original 

Figure 5.  Architecture of sclerosed glomerular inpainting network.
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local sclerosed glomeruli and the generated local sclerosed glomeruli, respectively. They are obtained as shown 
in Eqs. (6) and (7).

Usually, in the field of image generation, we use pixel reconstruction loss ( L1 ) to describe the pixel difference 
between images. As shown in Eqs. (8) and (9), L1g and L1l represent global L1 and local L1.

With the good effect of the generative algorithm in the field of image style transformation, the image features 
extracted by the convolutional network have been widely used as part of the objective function. We use the per-
ceptual loss and style loss of the global image, which are shown in Eqs. (10) and (11), respectively.

(3)Ladvg = E
[

D(Xrec)
2
]

+ E
[

(1− D(Xori))
2
]

(4)Ladvl = E
[

Dl(Rrec)
2
]

+ E
[

(1− Dl(Rori))
2
]

(5)Xrec = G
(

Xinput

)

(6)Rori = Xori ⊙ Xmask + (1− Xmask)

(7)Rrec = Xrec ⊙ Xmask + (1− Xmask)

(8)L1g =� Xori − Xrec �1

(9)L1l =� Rori − Rrec �1

(10)Lper =
∑Ni

i=1
� φi(Xori)−φi(Xrec)�1

Ni

Figure 6.  Key modules in the inpainting network. (a) Architecture of the AOT block. (b) Architecture of the 
self-attention block.
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where φi is the activation map from the i-th layers of a pretrained network (e.g.,  VGG1926)andNi is the number of 
elements in φi . Similarly, the style loss is defined as the L1 distance between the Gram matrices of deep features 
of inpainting and real images.

The loss values of each part are added by a certain weight to obtain the final loss function, as shown in Eq. (12).

where Ltotal is the total loss and �adv=0.02, �1=1, �per=0.1, and �sty=150.

Process of synthesizing datasets
As shown in Fig. 7, in the stage of sclerosed glomerular synthesis, we used Deep Convolutional Generative 
Adversarial Network (DCGAN)27 to generate masks of different shapes and sizes based on the existing masks. 
Since colourful pixel values are likely to appear during mask generation, it is necessary to grayscale the generated 
masks and set a threshold at the same time to eliminate isolated regions in the masks whose area was smaller 
than the threshold. The glomerular contours in the masks are scaled so that the number of contours of different 
sizes are evenly distributed. Based on the pathologist’s recommendation, we locate the potential positions for 
sclerosed glomeruli and cropped out squares of 256× 256 in these positions. Similar to the operation during 
training, masked images ( Xgap_t ) are obtained by pixelwise multiplication, as shown in Eq. (13) based on ran-
domly selected generated masks ( Xgmask ) and cropped images ( Xori_t).Xgmask and Xgap_t are concatenated as the 
input of the inpainting model. Finally, the generated images were merged into the original cropped area, and a 
new ROI with several sclerosed glomeruli in different positions was obtained.

Glomerular segmentation network
For the design of the glomerular image segmentation network, we generally adopt an encoder-decoder architec-
ture, within which the decoder structure is Unet. The skip connection in Unet is used to fuse multiscale features 
from the encoder with upsampled features. Here, shallow features and deep features are connected together 
to reduce the spatial information loss caused by downsampling. In the encoder part, we select EfficientNet as 
our encoder backbone. The reason why the more advanced transformer structure is not adopted here is that its 
performance heavily relies on pretraining and requires a large amount of computation. Thus, its training time 
and computation time will be higher than those of the CNN model under the same parameters. Meanwhile, its 
prediction time will be longer. We hope that EfficientNet can obtain the result faster while ensuring the effect, 
which is very important for slice evaluation. EfficientNet was proposed  in28 and takes into account both the 
depth and width of the network. There are currently several versions of EfficientNet including B0-B7. To meet 

(11)Lsty = Ei

[

� φi(Xori)
Tφi(Xori)− φi(Xrec)

Tφi(Xrec

)

�
1

]

(12)Ltotal = �adv(Ladvg + Ladvl)+ �1gL1g + �1lL1l + �perLper + �styLsty

(13)Xgap_t = X
ori_t

⊙
(

1− Xgmask

)

Figure 7.  Testing phases of glomerular synthesis.
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the speed and accuracy requirements of network training, we use EfficientNetB3 as the backbone of our encoder. 
The input size of the network is 1024 × 1024. Before training the model, the inputs are normalized. The network 
architecture is shown in Fig. 8.

When training the segmentation model, the batch size was 8, and the optimizer was Adam. We adopted 
CosineAnnealingLR in the Pytorch framework for the learning strategy and the minimum learning rate was 
0.00001. We used the weighted sum of Binary CrossEntropy Loss ( LBCE)and Dice Loss ( LDice)29 as the total loss 
( Lseg ). The specific formula is shown in Eq. (14), where � = 0.5. We trained our segmentation models on a single 
Tesla P100 (16 GB). A total of 200 epochs were trained, and the ratio of training sets and validation sets was 
8:2. When evaluating the test set, the model with the lowest Dice coefficient of the validation sets was selected 
for evaluation.

Experiments and results
Details and evaluation methods
Based on the images of sclerosed glomeruli and the corresponding masks obtained in the previous chapter, we 
trained and tested the inpainting network. The ratio of the training set to the test set was 8:2. We trained the 
models on a single Tesla P100 (16 GB). Here, we used ADAM as the optimizer with an initialized learning rate 
of 0.0001 and betas of {0.5; 0.999}. We trained our model for 100 epochs with a batch size of 16. The size of the 
network output was 256 × 256.

To characterize the model’s glomerular segmentation ability, especially the performance on sclerosed glo-
meruli, quantitative evaluation is needed. In the segmentation process, for each pixel in the image, there are two 
categories: positive and negative. If the prediction of positive or negative is correct, it is TP or TN. Conversely, it 
is FP or FN. Based on these four values, we can also obtain other commonly used metrics, as shown in Table 1.

(14)Lseg=�LBCE+LDice

Figure 8.  Architecture of the glomerular segmentation network.
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Generation results and analysis
To evaluate the quality of generated sclerosed glomeruli quantitatively, we used the mean absolute error (MAE), 
peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) to compare the differences between 
generated glomeruli and the original. Table 2 shows the values of the three metrics.

As shown in Fig. 9, we obtained the synthetic images by combining the cropped glomeruli from the generated 
images with the background of the original images.

Glomerular segmentation and analysis
Before adding generated sclerosed glomeruli to the training data, we verified the effect when using traditional 
data augmentation, including random flipping and rotating. We evaluated the performance of glomerular seg-
mentation with traditional data augmentation and without traditional data augmentation for three test sets. 
The data augmentation strategy we adopted is an online method and each input training picture has a certain 
chance to be flipped or rotated. We performed ten experiments, with each experimental training set and vali-
dation set randomly divided. As shown in Table 3, we obtained the performance of glomerular segmentation 
based on our segmentation model under traditional data augmentation. “√” represents the use of traditional 
data augmentation.

As seen from the Table 3, for different test sets, applying traditional data augmentation to training data can 
improve the overall effect of glomerular segmentation to a certain extent, but there may be a decline in preci-
sion. The experiments show that the segmentation performance of normal glomeruli is much better than that of 
sclerosed glomeruli, which is consistent with most of the current studies and validates the necessity of our data 
generation. At the same time, we see that the performance on test 3 is lower than that of test 1 and test 2, and we 
can conclude that the migration ability of the algorithm in recognition of renal pathological images with different 
staining needs to be improved because of the characteristics of different staining methods.

Table 1.  Equations of metrics performance.

Metric Equation

Recall TP

TP+FN

Precision TP

TP+FP

F1-score 2× Precision×Recall

Precision+Recall

Dice 2×TP

FP+2×TP+FN

Table 2.  Values of inpainting performance.

Metric Value

MAE 0.0152

PSNR 22.6943

SSIM 0.8086

Figure 9.  Examples of synthetic sclerosed glomeruli. (a) Sclerosed glomerular masks, (b) original samples, (c) 
synthetic samples.
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Therefore, in order to better evaluate the effect of the sclerosed glomerulus we generated on image segmen-
tation, we analyse the influence of different amounts of synthetic data on the model identification ability for 
sclerosed glomeruli on the basis of traditional data augmentation, as shown in Table 4.

Table 4 shows that by adding different amounts of synthetic data based on our algorithm, the segmentation 
performance of scleral glomerulus is greatly improved. This shows that the ability to recognize sclerosed glo-
meruli is improved, as our generated sclerosed glomeruli have different shapes and sizes distributed in different 
locations. However, the performance of adding more synthetic data is not always better than that of others. The 
reason for our analysis is that although the diversity of the generated data shapes is greatly improved, the mecha-
nism features inside the sclerosed glomeruli are still generated based on the existing data, and the distribution 
of features is still consistent with the original ones.

Additionally, we compared our segmentation model with other classical models to verify the advantages of 
our method in the task of glomerular segmentation, as shown in Table 5.

Compared with other medical semantic segmentation algorithms including Unet and Unet++ 30 which are all 
trained with 100% generated data, we calculated the mean value of each metric of the two classes on the different 
test sets. We see that our algorithm performs better than other algorithms on different test sets. In addition, on 
the test set stained by H&E, our algorithm has greater advantages than the others, such as better generalization 
and migration ability.

Figure 10 shows the visualization of our final model output, with the annotations of the data in the left column 
and the output of the model in the right column. Blue represents normal glomeruli, and red represents sclerosed 
glomeruli. We can see that our model can label sclerosed glomeruli that missed the mark in the original data 
label, especially in the marginal part, which shows the excellent identification ability of our model. However, at 
the same time, there are smaller sclerosed glomeruli that are missing and need to be improved.

Conclusion
In the task of glomerular identification and classification, it is difficult and costly to obtain large amounts of data 
for training the model, and there is a problem of class imbalance because the number of sclerosed glomeruli is 
much larger than that of normal glomeruli in the available data. Therefore, we proposed a sclerosed glomerular 

Table 3.  Performance of glomerular segmentation based on our segmentation model under traditional data 
augmentation or not, where NG-normal glomeruli and SG-sclerosed glomeruli. The values represent the mean 
and standard deviation of the ten training times.

Trad aug Class Precision Recall F1 Dice

Test1 (PAS)

–
NG 0.8952 ± 0.0018 0.9169 ± 0.0031 0.9059 ± 0.0010 0.9036 ± 0.0005

SG 0.8492 ± 0.0020 0.4089 ± 0.0025 0.5520 ± 0.0014 0.5145 ± 0.0006

✔
NG 0.9028 ± 0013 0.9228 ± 0.0017 0.9127 ± 0.0006 0.9134 ± 0.0003

SG 0.8451 ± 0021 0.5353 ± 0.0016 0.6534 ± 0.0009 0.6218 ± 0.0004

Test2 (PAS)

–
NG 0.9328 ± 0023 0.7727 ± 0.0020 0.8452 ± 0.0009 0.8445 ± 0.0004

SG 0.7531 ± 0019 0.5577 ± 0.0028 0.6408 ± 0.0014 0.6355 ± 0.0007

✔
NG 0.9202 ± 0.0030 0.7768 ± 0.0021 0.8424 ± 0.0011 0.8406 ± 0.0005

SG 0.8409 ± 0.0032 0.5820 ± 0.0019 0.6879 ± 0.0012 0.6828 ± 0.0006

Test3 (HE)

–
NG 0.9725 ± 0.0028 0.6770 ± 0.0022 0.7983 ± 0.0011 0.7956 ± 0.0005

SG 0.7496 ± 0.0029 0.2585 ± 0.0030 0.3844 ± 0.0023 0.3637 ± 0.0008

✔
NG 0.9779 ± 0.0027 0.6871 ± 0.0021 0.8071 ± 0.0010 0.8052 ± 0.0005

SG 0.7353 ± 0.0041 0.2334 ± 0.0032 0.3543 ± 0.0027 0.3439 ± 0.0010

Table 4.  Performance comparison of sclerosed glomerular segmentation based on our segmentation model 
when adding different amounts of synthetic data. The values represent the mean and standard deviation of the 
ten training times.

Synthetic data Precision Recall F1-score Dice

Test1 (PAS)

 + 30% 0.8813 ± 0.0014 0.6025 ± 0.0038 0.7157 ± 0.0016 0.7010 ± 0.007

 + 60% 0.8924 ± 0.0016 0.6426 ± 0.0032 0.7472 ± 0.0013 0.7328 ± 0.0006

 + 100% 0.8947 ± 0.0021 0.6408 ± 0.0029 0.7468 ± 0.0012 0.7491 ± 0.0006

Test2 (PAS)

 + 30% 0.8825 ± 0.0023 0.6023 ± 0.0012 0.7160 ± 0.0008 0.7313 ± 0.0004

 + 60% 0.9022 ± 0.0019 0.6219 ± 0.0027 0.7363 ± 0.0012 0.7641 ± 0.0006

 + 100% 0.9068 ± 0.0025 0.6211 ± 0.0031 0.7372 ± 0.0014 0.7685 ± 0.0007

Test3 (HE)

 + 30% 0.7729 ± 0.0032 0.4017 ± 0.0042 0.5286 ± 0.0025 0.4278 ± 0.0009

 + 60% 0.7761 ± 0.0029 0.4165 ± 0.0037 0.5421 ± 0.0022 0.4871 ± 0.0009

 + 100% 0.7801 ± 0.0042 0.4303 ± 0.0025 0.5547 ± 0.0018 0.4916 ± 0.007



12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1033  | https://doi.org/10.1038/s41598-024-51651-1

www.nature.com/scientificreports/

generation method based on image inpainting. With the existing masks, we generated diverse masks and scaled 
them to obtain more small sclerosed glomeruli. By using the proposed image inpainting-based method and gen-
erated masks, we synthesized multiple images of sclerosed glomeruli with good fusion with the backgroundand 
ensured that the texture of sclerosed glomeruli was clear and true. We combined the synthesized data with the 
original data and passed them into the segmentation network. The glomerular segmentation network was based 
on Unet where we used EfficinetNetB3 as the backbone of the encoder. When we incorporated synthetic sclerosed 
glomeruli, we achieved better sclerosed glomerular identification under traditional data augmentation. Com-
pared with other segmentation models, our model achieved the best mean F1 and Dice coefficients containing 
2 classes by using EfficientNetB3-Unet.

Since our identification algorithm is mainly targeted at the training of globally sclerosed and normal glo-
meruli, the identification performance of other classes using our algorithm needs to be improved. Our generated 
glomeruli are also globally sclerosed, and we can further explore the controlled generation of different degrees 
of sclerosed glomeruli. In this way, we can reduce the number of missed glomerular tests.

Data availability
The 31 WSIs generated in the AIDPATH are hosted by Mendeley at: https:// data. mende ley. com/ datas ets/ k7nvt 
gn2x6/3 and 78 ROIs from 21WSIs are hosted by Mendeley at: https:// zenodo. org/ record/ 42996 94.

Table 5.  Performance comparison of glomerular segmentation based on three modes, including our proposed 
method. The values represent the mean and standard deviation of the ten training times.

Model Mean Precision
Mean
Recall

Mean
F1-score

Mean
Dice

Test1 (PAS)

Unet 0.7223 ± 0.0012 0.6630 ± 0.0010 0.6914 ± 0.0006 0.7690 ± 0.0003

Unet++ 0.7816 ± 0.0014 0.6719 ± 0.0011 0.7226 ± 0.0006 0.7828 ± 0.0003

Swin-Unet 0.8545 ± 0.0010 0.7730 ± 0.0014 0.8117 ± 0.0005 0.8025 ± 0.0003

EfficientNetB3-Unet 0.9002 ± 0.0012 0.7918 ± 0.0009 0.8425 ± 0.0004 0.8325 ± 0.0002

Test2 (PAS)

Unet 0.8628 ± 0.0027 0.6423 ± 0.0012 0.7364 ± 0.0009 0.7310 ± 0.0004

Unet++ 0.8901 ± 0.0022 0.6310 ± 0.0027 0.7385 ± 0.0012 0.7524 ± 0.0006

Swin-Unet 0.8804 ± 0.0008 0.6621 ± 0.0015 0.7556 ± 0.0006 0.7730 ± 0.0003

EfficientNetB3-Unet 0.9137 ± 0.0020 0.6713 ± 0.0024 0.7740 ± 0.0010 0.8045 ± 0.0005

Test3 (HE)

Unet 0.7909 ± 0.0011 0.4871 ± 0.0020 0.6029 ± 0.0010 0.5521 ± 0.0004

Unet++ 0.8054 ± 0.0020 0.4993 ± 0.0017 0.6164 ± 0.0010 0.5564 ± 0.0004

Swin-Unet 0.8621 ± 0.0029 0.5335 ± 0.0009 0.6591 ± 0.0009 0.6102 ± 0.0004

EfficientNetB3-Unet 0.8790 ± 0.0018 0.5626 ± 0.0012 0.6861 ± 0.0007 0.6882 ± 0.0003

Figure 10.  Segmentation results obtained by our model.

https://data.mendeley.com/datasets/k7nvtgn2x6/3
https://data.mendeley.com/datasets/k7nvtgn2x6/3
https://zenodo.org/record/4299694
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