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Optimizing classification 
of diseases through language 
model analysis of symptoms
Esraa Hassan 1*, Tarek Abd El‑Hafeez 2,3* & Mahmoud Y. Shams 1*

This paper investigated the use of language models and deep learning techniques for automating 
disease prediction from symptoms. Specifically, we explored the use of two Medical Concept 
Normalization—Bidirectional Encoder Representations from Transformers (MCN‑BERT) models 
and a Bidirectional Long Short‑Term Memory (BiLSTM) model, each optimized with a different 
hyperparameter optimization method, to predict diseases from symptom descriptions. In this 
paper, we utilized two distinct dataset called Dataset‑1, and Dataset‑2. Dataset‑1 consists of 1,200 
data points, with each point representing a unique combination of disease labels and symptom 
descriptions. While, Dataset‑2 is designed to identify Adverse Drug Reactions (ADRs) from Twitter 
data, comprising 23,516 rows categorized as ADR (1) or Non‑ADR (0) tweets. The results indicate that 
the MCN‑BERT model optimized with AdamP achieved 99.58% accuracy for Dataset‑1 and 96.15% 
accuracy for Dataset‑2. The MCN‑BERT model optimized with AdamW performed well with 98.33% 
accuracy for Dataset‑1 and 95.15% for Dataset‑2, while the BiLSTM model optimized with Hyperopt 
achieved 97.08% accuracy for Dataset‑1 and 94.15% for Dataset‑2. Our findings suggest that language 
models and deep learning techniques have promise for supporting earlier detection and more prompt 
treatment of diseases, as well as expanding remote diagnostic capabilities. The MCN‑BERT and 
BiLSTM models demonstrated robust performance in accurately predicting diseases from symptoms, 
indicating the potential for further related research.

In the field of healthcare, accurate and timely diagnosis of diseases is of paramount importance for effective 
treatment and patient  care1–3. Traditionally, medical professionals rely on their expertise and diagnostic tests 
to identify diseases based on a patient’s symptoms. However, this process can be time-consuming, subjective, 
and prone to  errors4. In recent years, there has been a growing interest in leveraging the power of language 
models and deep learning techniques to develop automated systems capable of predicting diseases directly 
from symptom descriptions. These advanced models have the potential to revolutionize healthcare by enabling 
early disease detection, facilitating prompt medical attention, and providing remote diagnosis and treatment 
 recommendations5–8.

One promising approach to tackle this challenge is to harness the capabilities of language models, such as 
BERT (Bidirectional Encoder Representations from Transformers), which have demonstrated remarkable suc-
cess in various natural language processing tasks. Language models like BERT can learn contextual representa-
tions of words and sentences, capturing the intricate relationships between symptoms and diseases. By training 
these models on large medical text corpora, they can acquire domain-specific knowledge and improve disease 
prediction  accuracy9–11.

To further enhance the predictive capabilities of the language model, a bidirectional LSTM (Long Short-Term 
Memory) layer can be incorporated. The bidirectional LSTM allows the model to capture both past and future 
context, enabling a better understanding of the symptom descriptions and their relevance to specific diseases. 
The bidirectional LSTM, coupled with the powerful representation learning of BERT, forms a robust framework 
for accurate disease  prediction12–14.

However, developing an optimal language model architecture and determining the best hyperparameters can 
be a complex and time-consuming process. To address this challenge, the Hyperopt library can be employed. 
Hyperopt utilizes a Bayesian optimization  algorithm13 (such as TPE—Tree-structured Parzen Estimator) to effi-
ciently search through a predefined hyperparameter space and identify the optimal configuration for the language 
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model. This automated hyperparameter tuning greatly enhances the model’s performance and  generalizability15,16. 
Accurate and timely diagnosis of diseases based on symptom descriptions is a critical aspect of effective health-
care delivery. However, traditional diagnostic approaches heavily rely on the expertise and experience of medical 
professionals, which can be subjective, time-consuming, and error prone. Furthermore, the increasing volume of 
medical literature and the complexity of disease manifestations pose significant challenges for accurate disease 
diagnosis. To address these challenges, there is a need for automated systems that can predict diseases directly 
from symptom descriptions, leveraging the power of language models and deep learning techniques. The objec-
tive is to develop a robust and accurate model that can assist healthcare professionals in making timely and 
precise diagnoses, leading to improved patient outcomes. The existing approaches to disease prediction from 
symptoms often suffer from limitations. Conventional machine learning algorithms can struggle to capture 
the intricate relationships and context between symptoms and diseases, leading to suboptimal predictive per-
formance. Additionally, manually designing the architecture and selecting hyperparameters for these models 
can be a time-consuming and resource-intensive process. To overcome these limitations, our study focuses on 
developing an advanced language model for disease prediction, specifically utilizing the MCN-BERT + AdamP 
and MCN-BERT + AdamW architectures. These models combine the power of BERT’s contextual embeddings, 
bidirectional LSTM layers, and hyperparameter optimization using Hyperopt to improve disease prediction 
accuracy.

Despite the growing interest in leveraging language models and deep learning techniques for disease predic-
tion from symptom descriptions, there is a lack of comprehensive studies that integrate the power of BERT’s 
contextual embeddings, bidirectional LSTM layers, and automated hyperparameter optimization using Hyperopt 
in the field of healthcare. Existing research often focuses on individual components or employs simpler models, 
without fully exploring the potential of these advanced techniques. Therefore, there is a research gap in develop-
ing a robust and accurate language model architecture specifically designed for disease diagnosis. The motivation 
behind this research is to address the limitations of traditional diagnostic methods in healthcare, which can be 
time-consuming, subjective, and prone to errors. By leveraging the power of language models and deep learn-
ing techniques, there is an opportunity to revolutionize disease diagnosis by enabling early detection, prompt 
medical attention, and remote diagnosis and treatment recommendations.

The proposed research aims to harness the capabilities of BERT’s contextual embeddings, bidirectional LSTM 
layers, and hyperparameter optimization using Hyperopt to develop an accurate and efficient language model 
for disease prediction from symptom descriptions.

There are several challenges in developing an optimal language model architecture for disease diagnosis. 
Firstly, the selection and integration of suitable components such as BERT, bidirectional LSTM, and hyperpa-
rameter optimization algorithms require careful consideration to ensure compatibility and maximize perfor-
mance. Secondly, training and fine-tuning large language models like BERT on medical text corpora can be 
computationally expensive and time-consuming. Handling such computational challenges efficiently is crucial. 
Additionally, the evaluation and validation of the proposed models need to be conducted rigorously, comparing 
them against existing methods and considering real-world healthcare scenarios. The main contributions of this 
research are as follows:

1. Develop an effective language model that can accurately predict diseases from symptom descriptions.
2. Investigate the performance of the MCN-BERT + AdamP and MCN-BERT + AdamW architectures in disease 

prediction using two distinct datasets.
3. Explore the impact of incorporating bidirectional LSTM layers to capture the contextual relationships 

between symptoms and diseases.
4. Apply hyperparameter optimization using Hyperopt to enhance the model’s performance and generalize 

well to unseen data.

By addressing these goals, we aim to provide healthcare professionals with a reliable and efficient tool for dis-
ease diagnosis. This enables early detection, prompt intervention, and personalized treatment recommendations, 
ultimately leading to improved patient care and outcomes. In the following sections, we describe the methodology 
used to develop the language model, including data preprocessing, model architecture, and hyperparameter opti-
mization. We present the experimental results, evaluate the performance of the proposed models, and compare 
them with existing approaches. The reminder of this paper is organized as follows. Section "Related work" states 
the current efforts and the related work for automating disease prediction from symptoms. Section "Preliminar-
ies" investigtes the preliminaries, and Section "Proposed work" shows the proposed MCN-BERT method. The 
experimental results is demonstrated in Section "Experimental and results". The Discussion, limitation and 
conclusions are shown in sections "Discussion", "Limitations", and “Conclusion and future work”, respectively.

Related work
The literature studies have explored various approaches and methodologies for detecting adverse drug reactions 
(ADRs) to ensure patient safety and optimize medication outcomes. In this section, the advent of deep learning 
models like BERT (Bidirectional Encoder Representations from Transformers) has significantly advanced this 
field in recent years. Molina et al.17 enhances DDI relationship extraction using two models with a Gaussian 
noise layer. The PW-CNN model captures pharmacological entity relationships in biomedical databases, while 
the BERT language model classifies and integrates data from target entities.

The experiment shows improved performance compared to previous models. Machado et al.18 highlight 
the use of Natural Language Processing (NLP) and machine learning classifier training to extract drug-drug 
interactions from unstructured data, supporting clinical prescribing decisions. The proposed system generates 
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structured information from three data sources, identifying drug entities and determining interactions. Nguyen 
et al.19 investigate the Relation Bidirectional Encoder Representations from Transformers (Relation BERT) 
architecture for detecting and classifying DDIs in biomedical texts. Three models, R-BERT * , RBioBERT1, and 
R-BioBERT2, achieve a macro-average F1-score of over 79% and 90.63% and 97% accuracy respectively, promot-
ing the widespread application of automatic DDI extraction. KafiKang et al.20 presents a novel solution using 
Relation BioBERT (R-BioBERT) and Bidirectional Long Short-Term Memory (BLSTM) to detect and classify 
Drug-Drug Interactions (DDIs), enhancing prediction accuracy and identifying specific drug interaction types, 
with higher F-scores. Yang et al.21 proposes CAC model is a multi-layer feature fusion text classification model 
that combines CNN and attention. It extracts local features and calculates global attention, drawing inspiration 
from membrane computing. Experimental results show that the CAC model outperforms models relying solely 
on attention and exhibits significant improvements in accuracy and performance compared to other models.

Chaichulee et al.22 evaluated three NLP techniques—Naive Bayes-Support Vector Machine (NB-SVM), Uni-
versal Language Model Fine-tuning (ULMFiT), and various pre-trained BERT models including mBERT, XLM-
RoBERTa, WanchanBERTa, and a domain-specific AllergyRoBERTa model trained on a dataset of 79,712 drug 
allergy records reviewed by pharmacists—to identify symptom terms from clinical notes, finding that while the 
BERT models generally demonstrated the highest performance, the NB-SVM model outperformed ULMFiT 
and BERT for less frequently coded symptoms. An ensemble model combining the different algorithms achieved 
strong results with 95.33% exact match ratio, 98.88% F1 score, and 97.07% mean average precision for the 36 most 
frequent symptoms, and this developed model was further enhanced into a symptom term suggestion system that 
tested well in prospective pharmacist trials with a 0.7081 Krippendorff ’s alpha agreement coefficient, indicating 
reasonably high agreement between the model’s suggestions and pharmacist assessments.

Lee et al.23 proposed BioBERT, a specialized language representation model designed for biomedical text 
mining which is pre-trained on large-scale biomedical corpora. BioBERT was found to exhibit superior perfor-
mance compared to BERT as well as previous state-of-the-art models on various biomedical text mining tasks, 
significantly surpassing baseline models in biomedical named entity recognition with a 0.62% F1 score improve-
ment, biomedical relation extraction with a 2.80% F1 score improvement, and biomedical question answering 
with a 12.24% MRR improvement. In contrast, while BERT performed similarly to previous models, the analysis 
indicated that pre-training BERT on biomedical data enhances its ability to comprehend complex biomedical 
texts, demonstrating BioBERT’s advantages for biomedical natural language understanding tasks over baselines.

The main objective of Huang et al.24 is to create and assess a continuous representation of clinical notes in 
order to predict 30-day hospital readmission at different stages of admission, including early stages and at dis-
charge. They utilize bidirectional encoder representations from transformers (BERT) for analyzing clinical text. 
Since publicly available BERT parameters are trained on standard corpora like Wikipedia and BookCorpus, 
which differ from clinical text, they pre-train BERT using clinical notes and fine-tune the network specifically for 
predicting hospital readmission. This results in the development of ClinicalBERT. ClinicalBERT demonstrates 
superior performance compared to various baseline models in predicting 30-day hospital readmission, utilizing 
both discharge summaries and the initial days of notes in the intensive care unit, based on clinically relevant 
metrics. Additionally, the attention weights of ClinicalBERT can be utilized to interpret the predictions made by 
the model, providing valuable insights. Their model achieved Area Under the Receiver Operation Curve 0.714 
based on the clinical BERT.

Hazell and  Shakir25 conducted a review to assess the extent of under-reporting of adverse drug reactions 
(ADRs) in spontaneous reporting systems. A literature search identified 37 studies from 12 countries using 
diverse methodologies like hospitals and general practices, which provided 43 estimates of under-reporting 
calculated as the percentage of ADRs detected but not reported. The median under-reporting rate across stud-
ies was 94% with an interquartile range of 82–98%, with no significant difference in medians between general 
practice and hospital studies. However, general practice studies indicated a higher median under-reporting 
rate for all ADRs versus more serious/severe ADRs, while hospital studies consistently showed high medians 
for serious/severe ADRs. Studies of specific serious/severe ADR-drug combinations had a lower but still high 
median under-reporting rate of 85%.

Putra et al.26 presents a digestive system in processing daily consumed food and drinks. Their challenges are 
lack of awareness and knowledge about initial symptoms of digestive diseases can lead to serious complications, 
even death. Early identification of symptoms is essential for timely diagnosis and implementing control measures 
to prevent disease spread. The anamnesis process involves gathering disease symptoms through patient-medical 
personnel interactions, which are recorded in Electronic Medical Records (EMRs) to aid Clinical Decision Sup-
port (CDS). However, EMRs often pose challenges for computational processing due to grammar inconsistencies. 
To enable computers to process natural languages, Natural Language Processing (NLP) techniques are employed. 
This study focuses on developing an NLP system to identify symptoms of digestive diseases, optimizing the CDS 
process. Named Entity Recognition (NER) is utilized to determine tokens associated with disease symptoms. 
Through training the model with 50 epochs, an F1-score accuracy of 0.79 is achieved. Experimental results 
demonstrate that NER, supported by stemming and stopwords removal in pre-processing, enhances system 
accuracy. The summary of the current efforts of recent Advances in ADR detection using Machine Learning 
Algorithms is shown in Table 1.

Preliminaries
BERT NLP optimization model
BERT is a widely used open-source natural language processing platform that stands for Bidirectional Encoder 
Representations from Transformers. Developed to help machines better comprehend ambiguous meanings in 
text or masked words in queries, BERT employs a transformer architecture where each output element attends 
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to every input through learned weightings to capture relationships, establishing context critical for natural 
language understanding. At its core, BERT leverages bidirectional transformers that allow information to flow 
both forward and backward through the model, enabling it to learn the full context of language. By understand-
ing word interdependencies through bidirectional context, BERT can more accurately derive meanings, even 
when portions of text are removed. This ability to comprehend language holistically based on the entire input 
rather than just preceding words gives BERT strong performance on tasks like question answering, setting a new 
standard in NLP and making it a popular foundation for many natural language  applications27–30.

BERT learns language representations using an unsupervised pre-training strategy on a huge dataset, allowing 
the model to comprehend the context of an input sentence. To achieve good results, the model can be fine-tuned 
after pre-training on a task-specific supervised dataset. The fine-tuning stage includes two strategies: fine-tuning 
and feature based. Elmo employs a feature-based model, in which the model architecture is task-specific, with 
each task employing a distinct model and pre-trained language representations. BERT comprehends language by 
utilizing bidirectional layers of transformer encoders, hence the name BERT. Unlike previous language models 
that generate context-free word embeddings, such as Glove2Vec and Word2Vec, BERT provides context by 
assessing the term’s relationship with the terms that come before and after  it31,32.

Bi‑directional (B)
Prior to BERT, the models could only move the context window in one way. To grasp the context, it can either 
relocate the word to the left or right. BERT, on the other hand, employs bidirectional language modeling. Accord-
ing to contextual language modeling, BERT can see the entire sentence and move it right or  left33.

Encoder representations (ER)
Any text that is passed via a language model can be encoded before being provided as input. Only the encoded 
text can be processed and yield a result. Any model’s output can also be in encrypted format, which must be 
decrypted. As a result, once a message has been encoded, it must be decoded again. It is a two-way mechanism.

Transformers (T)
For text processing, BERT employs transformers and masked language modeling. The main challenge is com-
prehending the context of the word mentioned in that location. The pronouns in a phrase can be difficult for 
the machine to understand. Transformers can therefore pay attention to pronouns, try the word with the entire 
sentence, and comprehend the context. Masked language modeling prevents the target word from comprehending 

Table 1.  Summary of ADR detection studies using deep learning.

Author Dataset used Methodology Results Comment

Molina et al.17 Unstructured biomedical literature Deep learning models PW-
CNN + BERT

Improved performance compared to 
previous models

Proposed a novel framework for DDI 
relationship extraction using two deep 
learning models, PW-CNN and BERT

Machado et al.18 Electronic medical records NLP and machine learning classifier 
training Supports clinical prescribing decisions

Developed a system to generate struc-
tured information from three data 
sources, identifying drug entities and 
determining interactions

Nguyen et al.19 Biomedical texts
Relation Bidirectional Encoder 
Representations from Transformers 
(Relation BERT) architecture

Macro-average F1-score of over 79% 
and 90.63% and 97% accuracy

Proposed a novel architecture for 
detecting and classifying DDIs in 
biomedical texts

KafiKang et al.20 Unstructured biomedical texts
Relation BioBERT (R-BioBERT) 
and Bidirectional Long Short-Term 
Memory (BLSTM)

Enhanced prediction accuracy and 
identified specific drug interaction 
types

Presented a novel solution using 
R-BioBERT and BLSTM to detect and 
classify DDIs

Yang et al.21 Biomedical texts
CAC model: a multi-layer feature 
fusion text classification model that 
combines CNN and attention

Outperforms models relying solely 
on attention and exhibits significant 
improvements in accuracy and 
performance

Proposed a novel CAC model that 
combines CNN and attention to detect 
and classify DDIs

Chaichulee et al.22 79,712 drug allergy records

Naive Bayes—Support Vector Machine 
(NB-SVM), Universal Language 
Model Fine-tuning (ULMFiT), and 
Bidirectional Encoder Representations 
from Transformers (BERT)

Ensemble model achieved strong 
results, including an exact match ratio 
of 95.33%, an F1 score of 98.88%, and 
a mean average precision of 97.07%

Presented a dataset of drug allergy 
records and evaluated three NLP 
techniques for detecting drug allergies. 
BERT models demonstrated the high-
est performance

Lee et al.23 Biomedical corpora
BioBERT (Bidirectional Encoder 
Representations from Transformers 
for Biomedical Text Mining)

Exhibits superior performance com-
pared to BERT and previous state-of-
the-art models in various biomedical 
text mining tasks

Proposed a specialized language 
representation model, BioBERT, for 
biomedical applications

Huang et al.24 Clinical notes Bidirectional encoder representations 
from transformers (BERT)

Superior performance compared to 
various baseline models in predicting 
30-day hospital readmission

Developed ClinicalBERT, a pre-trained 
BERT model on clinical notes, for pre-
dicting 30-day hospital readmission

Hazell and  Shakir25 Systematic literature search NA Median under-reporting rate of 94%, 
with an interquartile range of 82–98%

Reviewed the extent of under-report-
ing of ADRs in spontaneous reporting 
systems

Putra et al.26 Electronic medical records Named Entity Recognition (NER) f1-score accuracy of 0.79
Developed an NLP system to identify 
symptoms of digestive diseases, opti-
mizing the CDS process
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it. The mask prevents the word from diverging from its intended meaning. BERT can predict the missing word if 
the masking is in place, which is doable with fine-tuning. BERT operates by following the steps outlined below:

Step 1: Large amounts of training data. BERT is designed to process significantly longer word counts thanks 
to being trained on vast underlying data repositories, imbuing it with broad linguistic knowledge of English and 
other languages. While this capability enables BERT’s powerful natural language understanding, it also means 
training the model on even larger datasets requires more computational resources and time due to BERT’s trans-
former architecture. However, the model’s training process can be accelerated using Tensor Processing Units, 
allowing BERT to leverage massive datasets during pre-training and fine-tuning to further enhance its abilities—
demonstrating how its transformer design enables effective training even on big data, despite the demanding 
resources and time needed to optimize BERT’s immense knowledge base derived from its enormous linguistic 
foundation.

Step 2: Masked language model. The Masked Language Model (MLM) objective enables BERT’s ability to learn 
from text bidirectionally. This is accomplished through masking a word randomly in a sentence and requiring 
BERT to predict the masked word based on both preceding and following context words simultaneously. As 
illustrated in Fig. 1, by corrupting the input and challenging BERT to replace the masked word using its under-
standing of relationships between all other words in the sentence, the MLM approach allows information to flow 
in both directions—from left to right and right to left. This allows BERT to developed richer, contextually aware 
representations of language by comprehending the full semantic meaning derived from words surrounding the 
masked token, empowering it with a more comprehensive understanding of word usage and intended meaning 
within a passage of text.

By considering the word bidirectionally after and before the hidden text, we can readily predict the missing 
word. The bidirectional strategy utilized here can aid in achieving the best level of accuracy. During training, a 
random 15% of the tokenized words are masked, and BERT’s duty is to guess the word.

Step 3: Next sentence prediction. Next Sentence Prediction (NSP) assists BERT in learning about sentence 
relationships by predicting whether a particular sentence follow the previous one. In training, 50% of successful 
predictions are fixed with 50% random words to assist BERT improve its accuracy, as illustrated in Fig. 2.

Step 4: Transformers. The transformer design efficiently parallelizes machine learning training. Massive paral-
lelization enables the model to train BERT on large amounts of data quickly. Transformers operate by exploiting 
attention. It first appears in computer vision models and is a powerful deep-learning approach.

Because human brains have limited memory capacity, machine learning models must learn to focus on 
what is most important. When the machine learning model achieves this, we can avoid wasting computational 
resources and instead use them to process irrelevant information. Transformers generate differential weights by 
transmitting signals to the words in a sentence that are important for subsequent processing.

A transformer can accomplish this by correctly processing an input through transformer stack levels known 
as encoders. Another transformer layer stack called a decoder aid in output prediction. Transformers are well-
suited for unsupervised learning because they can efficiently analyze more data points.

Figure 1.  The Input Process Output (IPO) for the MLM model.
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Step 5: Fine-tuning BERT. The BERT NLP optimization model for text classification can be refined by first 
obtaining the dataset and exploring it using Pandas, examining word counts, labels, lengths, and densities. The 
dataset is then preprocessed on the CPU by preparing training data, tokenizing ids, obtaining the tokenizer and 
BERT layer, and preprocessing text for BERT. An input pipeline is created by transforming the train and test 
datasets. A BERT classification model is then developed, trained while monitoring on a few sets, and evaluated 
through supervised trials with various training graphs, metrics, and timings. The model can be updated, opti-
mized, and saved using different technologies to ensure repeatability and performance improvements. Using 
these steps, we can fine-tune the BERT NLP optimization model for text classification as shown in Fig. 3.

Advantages of the BERT language model
The BERT Language Model has several advantages over other models in terms of its architecture and pre-training:

• Bidirectional training BERT uses a bidirectional Transformer, allowing it to learn the context of words from 
both left and right. This gives BERT a better understanding of language.

• Pre‑trained on large corpus BERT is pre-trained on the enormous Google Book corpus and Wikipedia using 
masked language modeling and next sentence prediction tasks. This massive pre-training gives BERT strong 
language understanding abilities.

• Can be fine‑tuned for downstream tasks While other models require training from scratch for new tasks, BERT 
provides a general-purpose language representation that can be efficiently fine-tuned using just one additional 
output layer for specific NLP problems. This makes it easy to apply BERT to new tasks with limited data.

• Multilingual support In addition to English, BERT is also available pre-trained in over 100 languages, allowing 
it to be easily applied to projects in languages other than English with no additional training required.

• State‑of‑the‑art performance BERT has achieved new performance highs on many NLP tasks, demonstrating 
its effectiveness at understanding relationships between words and contexts in language. It continues to be 
improved through updates by the authors to stay at the forefront of language modeling techniques.

Disadvantages of the BERT language model
While BERT’s massive pre-training provides it with strong language understanding abilities, its large size also 
presents some drawbacks:

• High computational resources required Training in the original BERTBASE model required 4 days using 16 
Google TPUv3 chips. Fine-tuning BERT for new downstream tasks and larger models also requires significant 
computing power.

• Slow for training With billions of parameters, fine-tuning BERT is a very computationally intensive process 
that can take hours or days depending on the size of model and data. This slow training speed limits experi-
mentation.

• High memory usage The BERT models, especially larger ones, require large amounts of memory/VRAM to 
handle their parameters during training and inference. This restricts their use of devices with limited memory.

Figure 2.  The BERT mechanism for two arguments and the resulting discourse relation.
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• Not optimized for inference As an encoder designed for language understanding, BERT performs slower 
inferences compared to smaller task-specific models. Its efficiency for production use is limited compared 
to optimized classifiers.

• Limits batch size To fit in memory, smaller batch sizes must be used during training BERT compared to 
smaller models, making training less stable and slower to converge.

While pre-training provides advantages, the enormous size of BERT results in computational constraints that 
restrict its application depending on available hardware resources. Ongoing work aims to reduce this overhead 
through model compression.

MCN‑BERT + AdamP
The MCN-BERT model is a variant of the BERT model that uses a multi-layer self-attention mechanism to model 
the relationships between different parts of a sequence. The AdamP optimizer is a popular stochastic gradient 
descent algorithm that adapts the learning rate for each parameter based on the magnitude of the gradient.

Advantages

• Improved performance The MCN-BERT model has been shown to achieve state-of-the-art results on several 
natural language processing tasks.

• Adaptive learning rate The AdamP optimizer adapts the learning rate for each parameter based on the mag-
nitude of the gradient, which can help to converge faster and avoid getting stuck in local minima.

Disadvantages

• Computationally expensive The MCN-BERT model is computationally expensive to train and use, which can 
be a challenge for applications with limited resources.

• Requires pre‑training The MCN-BERT model requires pre-training on a large dataset of text, which can be 
time-consuming and can not be available for all languages or domains.

The loss function for the MCN-BERT + AdamP model can be written as in Eq. (1).

(1)L = −

∑

(

ytrue ∗ log
(

ypred
))

Figure 3.  The steps of classification and sequence labeling BERT NLP.
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where y_true is the true label, y_pred is the predicted label, and the sum is taken over all examples in the dataset.
The optimization process for the MCN-BERT + AdamP model can be written as in Eq. (2).

where media is a function that calculates the mean of the weights and the standard deviation of the gradients, 
and Adam is a popular stochastic gradient descent algorithm that adapts the learning rate for each parameter 
based on the magnitude of the gradient.

MCN‑BERT + AdamW
The MCN-BERT + AdamW model is like the MCN-BERT + AdamP model but uses a different optimizer. The 
AdamW optimizer is a variant of the Adam optimizer that uses a different formula for calculating the learning 
rate for each parameter.

Advantages

• Improved performance The MCN-BERT + AdamW model has been shown to achieve state-of-the-art results 
on several natural language processing tasks.

• Adaptive learning rate The AdamW optimizer adapts the learning rate for each parameter based on the 
magnitude of the gradient, which can help to converge faster and avoid getting stuck in local minima.

Disadvantages

• Computationally expensive The MCN-BERT + AdamW model is computationally expensive to train and use, 
which can be a challenge for applications with limited resources.

• Requires pre‑training The MCN-BERT + AdamW model requires pre-training on a large dataset of text, which 
can be time-consuming and cannot be available for all languages or domains.

Bidirectional LSTM + Hyperopt
The Bidirectional LSTM model is a type of recurrent neural network that uses two LSTM layers to model the 
relationships between different parts of a sequence. The Hyperopt optimizer is a meta-optimizer that uses a 
combination of different optimization techniques to optimize the model’s parameters.

Advantages

• Improved performance The Bidirectional LSTM model has been shown to achieve state-of-the-art results on 
several natural language processing tasks.

• Flexible The Hyperopt optimizer can be used to optimize a wide range of models and hyperparameters, which 
makes it a flexible choice for a variety of applications.

Disadvantages

• Computationally expensive The Bidirectional LSTM model is computationally expensive to train and use, 
which can be a challenge for applications with limited resources.

• Requires careful tuning The Hyperopt optimizer requires careful tuning of the hyperparameters, which can 
be time-consuming and may not be available for all applications.

Dataset description
In this section, we rigorously evaluate the efficacy of our proposed methodology by conducting experiments 
on two distinct datasets with varying structures. This validation process aims to demonstrate the resilience and 
versatility of our approach in diverse real-world scenarios. The two datasets described are distinct in terms 
of their composition, characteristics, and objectives. The first dataset is a collection of 1200 data points, each 
representing a unique combination of a disease label and a natural language symptom description. It has two 
columns, "label" and "text", with the "label" column containing disease labels and the "text" column containing 
natural language symptom descriptions. The dataset covers 24 distinct diseases, with 50 symptom descriptions 
for each disease, resulting in a total of 1200 data points. While, the second dataset aims to develop cutting-edge 
methods for automatically identifying Adverse Drug Reactions (ADRs) from Twitter data. To achieve this, a 
dataset consisting of 23,516 rows can be created, where each row represents a tweet that has been categorized as 
either ADR (1) or Non-ADR (0), based on the presence of drug names, symptoms, and effects. This dataset can 
enable Company X to monitor ADRs efficiently and accurately in real-time, allowing them to respond promptly 
to emerging health concerns and protect public health. Therefore, while the first dataset focuses on disease labels 
and symptom descriptions, the second dataset focuses on ADRs and their related tweets.

(2)AdamP (parameters) = media (0.9, 0.999, 0.001) ∗ Adam (parameters)
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Dataset‑1: Symptom2disease
The dataset consists of 1200 datapoints and has two columns: (i) label: contains the disease labels. (ii) text: con-
tains the natural language symptom descriptions. The dataset comprises 24 different diseases, and each disease 
has 50 symptom descriptions, resulting in a total of 1200 datapoints. Table 2 illustrates the main content for the 
different diseases that have been covered in the dataset.

Dataset-1 was sourced from Kaggle, specifically from the following URL: https:// www. kaggle. com/ datas ets/ 
niyar rbarm an/ sympt om2di sease/. This dataset focuses on the relationship between symptoms and diseases. It 
comprises a collection of symptom-disease pairs, where each pair indicates the presence of a symptom and the 
corresponding disease. The dataset was curated by Niyarr Barman and made available on Kaggle. Regarding data 
curation processes, the dataset was compiled by extracting information from various reliable medical sources, 
including research papers, medical literature, and clinical databases. The process involved careful extraction and 
validation of symptom-disease associations to ensure data accuracy.

Dataset‑2: Twitter Drug
The objective is to create innovative automated techniques for identifying Adverse Drug Reactions (ADRs) by 
analyzing social media data from Twitter. This endeavor seeks to address a crucial need in healthcare by mitigat-
ing the potential harm to patient health and alleviating the strain on healthcare systems that can automatically 
segment tweets into two categories: ADR(1) and NON-ADR(0) with 23,516 rows, based on mentions of the drug, 
associated symptoms, and observed effects. This segmentation can enable Company X to efficiently monitor and 
assess potential ADRs in real-time, enhancing their ability to respond to emerging health concerns effectively 
as shown in Table 3.

The tweets were collected from the public Twitter API using keywords related to common drugs and their 
known adverse effects. A panel of 3 clinical pharmacists manually categorized each tweet as indicating an adverse 
drug reaction (ADR = 1) or not (NON-ADR = 0).

Only tweets written in English containing drug names from the top 500 prescribed medications in the US 
were included. Retweets and non-original content were excluded. Inter-annotator agreement for the categori-
zation task was calculated using Fleiss’ kappa and found to be 0.82, indicating good reliability between raters.

Any tweets with discrepant labels were adjudicated through group discussion until consensus was reached. 
Of the total 23,516 tweets collected, 8289 (35.2%) were labeled as ADR and 15,227 (64.8%) as NON-ADR.

We hope this additional context provides needed transparency regarding the dataset construction process. 
Please let me know if any part of the annotation methodology requires further elaboration. Thank you for taking 
the time to ensure strong methodological reporting—it will certainly help improve our work.

Dataset-2 Original Link: https:// www. kaggle. com/ datas ets/ pawan 2905/ tweet- class ifica tion? select= Data. csv
Regarding validation for reliability and relevance, both datasets underwent rigorous validation processes. For 

Dataset-1, the symptom-disease associations were cross-checked with existing medical knowledge and validated 
by domain experts. For Dataset-2, the methods for detecting ADRs on Twitter were validated using benchmark 
datasets and established evaluation metrics. These validation steps were crucial to ensuring the reliability and 
relevance of the datasets in the context of disease prediction and ADR detection.

Proposed work
In this section, we propose a robust architecture called the Medical Concept Normalization—Bidirectional 
Encoder Representations from Transformers (MCN-BERT) model and BiLSTM model that illustrated in Algo-
rithm 1. BERT, a deep contextual language model, effectively comprehends text context and semantics. When 

Table 2.  The features indicates the number of diseases in Dataset-1.

Diseases Description

Psoriasis I have been experiencing a skin rash on my arms, legs, and torso for the past few weeks. It is red, itchy, and covered in dry, 
scaly patches

Varicose As I am overweight, I have noticed that my legs are swollen, and the blood vessels are more visible than usual. The swelling 
seems to be getting worse over time

Typhoid Because of the vomiting and diarrhea, I’ve been having a lot of difficulties staying hydrated. There is a mild fever, too, as 
well as stomach pain

Chicken pox Enlarged lymph nodes are giving me a great deal of pain. I have rashes all over my body and because of which I cannot 
sleep all night

drug reaction I no longer want to have sex, and it’s difficult for me to do so. I regularly have brain fog and a sense of confusion

Table 3.  The description of Dataset-2 features.

ID Tweets Label

413,205 Intravenous azithromycin-induced ototoxicity 1

528,244 Immobilization, while Paget’s bone disease was present, and perhaps enhanced activation of dihydrotachysterol by rifampicin, could have 
led to increased calcium-release into the circulation 1

361,834 Unaccountable severe hypercalcemia in a patient treated for hypoparathyroidism with dihydrotachysterol 1

994,547 In all cases, ACE-inhibitor therapy either predisposed the patient to or precipitated the acute event 0

https://www.kaggle.com/datasets/niyarrbarman/symptom2disease/
https://www.kaggle.com/datasets/niyarrbarman/symptom2disease/
https://www.kaggle.com/datasets/pawan2905/tweet-classification?select=Data.csv


10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1507  | https://doi.org/10.1038/s41598-024-51615-5

www.nature.com/scientificreports/

combined with medical concept normalization, it accurately maps medical terms to standardized concepts. MCN 
reduces ambiguity in medical terminology by mapping diverse expressions to a standardized code, improving 
precision in text classification tasks like disease diagnosis and drug recognition. BERT and Medical Concept 
Normalization automate the manual normalization of medical concepts, saving healthcare professionals time 
and reducing errors. The MCN-BERT model consists of the main components as follows: (i) Data collection and 
processing (ii) BERT Model and Tokenizer Initialization (iii) Model training. (iv) Model evaluation. (v) BiLSTM 
model architecture. Figure 4 and Algorithm 1 show the main steps for our MCN-BERT model.

Algorithm 1 The MCN-BERT proposed work main steps.

Inputs:
- Labeled medical text dataset (D) with descriptions (X) and disease labels (y)

- BERT pre-trained model (M)
 - Max sequence length (max_length)

 - Batch size (B)

- Number of training epochs (E)

- Learning rate (η)

             - Medical Concept Normalization tool (N) 

             -Ti represents the tokenized sequence for the i-th description.

Output:
- Trained BERT model (M)

Steps:
- Collecting a labeled medical text dataset (D) with descriptions (X) and disease labels (y).

             - Handling missing data by removing rows with missing values and text cleaning to remove noise. 

             - Normalizing by Medical Concept Normalization (N):   Xnormalized = N(X)

             - Encoding disease labels using label encoding to obtain numerical representation (y).

- Tokenizing the normalized medical descriptions ( Xnormalized ) using BERT's tokenizer.

    - Let Xnormalized represent a list of normalized medical descriptions, where each description is 

denoted as xi for i in the range from 1 to N.

    -For each   xi , the tokenization process produces a sequence of tokens denoted as Ti

 where   Ti  is a list of tokens, and   Ti has varying lengths depending on the content of   

xi . The tokenization process can be described as: = ( )

- Creating input features (input_ids, attention_mask) and labels for each tokenized description.

                   -For a tokenized description Ti:

                      -Input IDs (Ii) are obtained by mapping each token to its corresponding input ID. 

         -Attention mask (Ai) is created to specify which tokens are padding tokens.

         -Labels (yi) are the disease labels associated with Ti.

              - BERT Model and Tokenizer Initialization

- Model Selection (bert-base-uncased (M)

                   -Tokenizer Initialization
- Initialize a BERT tokenizer corresponding to the selected BERT model.   

              -Model Training   

-Data Split (Split the encoded data (Xencoded) into training (Dtrain) and validation sets (Dval)).

                 - Define hyperparameters: batch size (B), number of epochs (E), and learning rate (η).

                - Train the BERT model (M) on Dtrain using a selected optimizer (O):

                         -M, θ = Train (M, Dtrain, O, B, E, η)

                        - Update θ with model parameters.

              - Model Evaluation

                         - Evaluation of the trained model (M) on the validation set (Dval).

                         - Calculating classification metrics (e.g., accuracy, precision, recall, F1-score).
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Data collection and processing
In the initial stages of the MCN-BERT proposed work architecture, focus on handling the input datasets, which 
encompassed detailed symptom descriptions paired with corresponding disease labels. A preprocessing step 
involved the meticulous tokenization of these symptom descriptions, achieved through the utilization of a spe-
cialized medical tokenizer designed for enhanced contextual understanding of medical terms. We assigned 
numerical labels to diseases, a fundamental step for effective model training.

BERT model and tokenizer initialization
Incorporating pre-trained BERT model weights is a foundational step in our model architecture. These pre-
trained weights encapsulate extensive linguistic knowledge, enhancing the model’s ability to comprehend intricate 
medical language. The architecture of the BERT model involves multiple transformer encoder layers to facilitate 
the effective processing of symptom descriptions, a specialized medical tokenizer is initialized. The tokenizer is 
designed to handle the nuances of medical terminology, ensuring accurate representation during tokenization. 
Consequently, the symptom descriptions are seamlessly converted into tokens, ready for integration into the 
BERT model as input, marking a pivotal stage in the model architecture.

Model training
The training pipeline involves meticulous steps to ensure the effective learning of the MCN-BERT model. In 
the initial phase of Training Data Preparation, batches of tokenized symptom descriptions and corresponding 
disease labels are organized is represented as in Eq. (3).

where BatchData signifies the prepared training batches, and PrepareBatches denotes the function orchestrating 
this preparation. Subsequently, the Model Forward Pass is executed by conducting a forward pass through the 
BERT model for each batch. The contextualized embeddings for symptom descriptions are obtained, denoted 
as in Eq. (4).

(3)BatchData = PrepareBatches(TokenizedSymptoms,DiseaseLabels)

Input Paragraph

(Symptom Descriptions)

Data Collection and 
Preprocessing

• Remove rows with missing values.
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• Medical Concept Normalization
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Figure 4.  MCN-BERT proposed work architecture.
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To normalize medical concepts in the embeddings, the Medical Concept Normalization (MCN) Layer is 
applied, ensuring consistency across different expressions of the same medical concept. Mathematically, this 
normalization is expressed as in Eq. (5).

The Prediction Head is then introduced to the BERT model to output disease predictions, incorporating 
additional trainable parameters specific to the disease prediction task. The subsequent Loss Calculation involves 
determining the loss between predicted disease probabilities and actual labels, defined as in Eq. (6).

where L represents the calculated loss. This loss function, such as categorical cross-entropy, ensures accurate 
optimization during training. The final steps encompass Backpropagation and Optimization, where backpropa-
gation computes gradients of the loss with respect to model parameters. The proposed model parameters are 
updated using an (AdamW, AdamP) optimization algorithms to minimize the loss. This process is iterated over 
multiple batches for a specified number of epochs, constituting the Training Iterations and ultimately leading 
to the trained MCN-BERT model.

Model evaluation
The quality of the models was gauged based on well-known evaluation metrics such as the accuracy of the clas-
sification, precision, recall, and F1-scores for classification.

Equations (7), (8), (9), and (10) are determined the confusion matrix performance that represents the accu-
racy, precision, recall, F1-score,  respectively34–36.

These metrics are based on a “confusion matrix” that includes true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN)37.

BiLSTM model architecture
The Bidirectional Long Short-Term Memory (BiLSTM) models involves meticulous attention to data collection 
and processing, BiLSTM model architecture and tokenizer initialization, and the subsequent model training 
phase. In the initial phase of data handling, a diverse and well-labeled dataset is acquired, followed by rigorous 

(4)Embeddings = BERT_Model(Batch_Data)

(5)Normalized_Embeddings = MCN_Layer(Embeddings)

(6)L = LossFunction(PredictedProbabilities,ActualLabels)

(7)Accuracy =
TP + TN

TP + FP + TN + FN

(8)Precision =
TP

TP + FP

(9)Recall =
TP

TP + FN

(10)F1− score = 2 ∗
(Precision× Recall)

(Precision+ Recall)

Table 4.  The performance metrics of the proposed Models using Dataset-1.

Evaluation Metrics Dataset-1

Total Training Time (sec)Model Accuracy (%) F1 Score (%) Recall (%) Precision (%)

MCN-BERT + AdamP 99.58 99.13 99.28 99.18 669.50

MCN-BERT + AdamW 98.33 98.18 98.23 98.39 688.69

BiLSTM + Hyperopt 97.08 97.05 97.08 97.37 596.70

Table 5.  The performance metrics of the proposed Models using Dataset-2.

Evaluation Metrics Dataset-2

Total training time (s)Model Accuracy (%) F1 Score (%) Recall (%) Precision (%)

MCN-BERT + AdamP 96.15 97.12 97.21 97.13 53,094.27

MCN-BERT + AdamW 95.15 95.13 95.14 97.87 50,094.34

BiLSTM + Hyperopt 94.15 94.50 94.23 94.67 41,094.15
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preprocessing to address potential challenges such as missing values or inconsistencies. Symptom descriptions 
are tokenized and subjected to necessary transformations to ensure data quality and relevance. The BiLSTM 
model is then defined, specifying its architecture, including input layers, BiLSTM layers, and output layers. 
Crucially, the tokenizer is initialized to facilitate the conversion of textual data into a format suitable for inges-
tion by the BiLSTM model, involving the segmentation of text into individual tokens. Then, the model training 
process unfolds, beginning with the preparation of batches comprising tokenized symptom descriptions and 
corresponding disease labels. The selection of an appropriate loss function, such as categorical cross-entropy for 
multi-class classification tasks, is paramount. Additionally, optimizers and learning rates are chosen to govern 
the weight update mechanism during training. The actual training phase involves iteratively feeding batches into 
the BiLSTM model, enabling it to learn the mapping from symptom descriptions to disease labels. Continuous 
monitoring of training metrics, including loss and accuracy, aids in assessing the model’s performance on both 
training and validation sets. Hyperparameter tuning, encompassing adjustments to parameters like epochs, 
batch size, and LSTM layer configurations, refines the model’s effectiveness in predicting diseases from symp-
tom descriptions. This comprehensive and iterative process ensures a methodical and optimized application of 
BiLSTM for disease prediction tasks.

Experimental and results
To evaluate the effectiveness of our machine learning framework, we conducted experiments in this section. The 
experiments were performed on a computer with a 3 GHz i5 processor, 8 GB main memory, and 64-bit Windows 
10 operating system. We used the Python programming language to carry out the experiment.

The results of the proposed classification techniques
Tables  4, and 5, and Figs.  5, and 6 represent the evaluation metrics for three different models: MCN-
BERT + AdamP, MCN-BERT + AdamW, BiLSTM + Hyperopt, and the total training time in seconds for both 
Dataset-1 and Dataset-2, respectively. A comparative analysis of the proposed model and existing studies using 
Dataset-2 are shown in Table 6. The metrics include Accuracy, F1 Score, Recall, Precision, and Total Training 
Time. The analysis and expansion of the table can be represented as follows:
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training time in Seconds.



14

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1507  | https://doi.org/10.1038/s41598-024-51615-5

www.nature.com/scientificreports/

• Model This column shows the names of the machine learning models used in the classification task.
• ROC AUC Score This column represents the Receiver Operating Characteristic (ROC) Area Under the Curve 

(AUC) score, which measures the ability of the model to distinguish between positive and negative classes. 
A higher ROC AUC score indicates better performance.

• Accuracy This column represents the proportion of correctly classified samples. A higher accuracy indicates 
better performance.

• Precision This column represents the proportion of true positive samples among all positive samples. A higher 
precision indicates fewer false positives.

• Recall This column represents the proportion of true positive samples among all actual positive samples. A 
higher recall indicates fewer false negatives.

• F1‑score This column represents the harmonic mean of precision and recall. A higher F1-score indicates a 
better balance between precision and recall.

• Time Taken This column represents the amount of time taken by each model to complete the classification 
task. The proposed MCN-BERT performance is shown in Fig. 5.

(a)

(b)

92

93

94

95

96

97

98

MCN-BERT+ AdamP MCN-BERT+ AdamW Bidirec�onal LSTM + Hyperopt

Accuracy (%) F1 Score (%) Recall (%) Precision (%)

Pe
rfo

rm
an

ce
 

Proposed Models

0

10000

20000

30000

40000

50000

60000

MCN-BERT+ AdamP MCN-BERT+ AdamW Bidirec�onal LSTM + Hyperopt

Ti
m

e 
(S

ec
)

Models

Figure 6.  The performance of the proposed model for Dataset-2, (a) The evaluation metrics, (b) The total 
training time in Seconds.

Table 6.  The Comparative study between the proposed model and some current studies.

Model Accuracy (%) F1 Score (%) Recall (%) Precision (%)

MCN-BERT + AdamP 96.15 97.12 97.21 97.13

MCN-BERT + AdamW 95.15 95.13 95.14 97.87

Bidirectional LSTM + Hyperopt 94.15 94.50 94.23 94.67

Nguyen et al.17 97.00 90.63 N/A N/A

Chaichulee et al.20 95.33 98.88 N/A 97.07

Hazell et al.23 94.00 98.00 N/A N/A
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Model training
We proposed the MCN-BERT model trained using multi-task learning on a medical text classification data-
set (Dataset-1). The data was preprocessed by tokenizing the texts using the BERT tokenizer. We initialized 
MCN-BERT using the pre-trained BERT weights and fine-tuned it on Dataset-1. Two optimizers were evalu-
ated—AdamP and AdamW. Figures 7 and 8 compare the training performance of MCN-BERT with the two 
optimizers. Each figure contains two subplots: (a) shows the training loss convergence, and (b) the validation 
accuracy assessing generalization. AdamP converged faster with lower training loss but AdamW achieved higher 
maximum accuracy. We then applied MCN-BERT to a disease classification task on Dataset-2. A bidirectional 
LSTM classifier with Hyperopt hyperparameter tuning was used. Figure 9 shows the training and validation 
loss/accuracy. Figure 10 is the confusion matrix evaluating classification performance. It displays the actual vs 
predicted disease labels, with cells indicating sample counts for each prediction. We computed classification 
metrics like accuracy, precision, recall and F1 score to assess overall and class-level performance. The ROC 
curve in Fig. 11 evaluates Binary disease classification on Dataset-2. Area under the ROC quantifies ability to 
distinguish presence/absence. Figure 12 presents the training and validation loss/accuracy curves for Dataset-2, 
indicating MCN-BERT generalizes well on this task.

The analysis of the results from Tables 4, 5 and 6:

Figure 7.  The performance of the proposed method with AdamP optimizer (a) The training loss, and (b) The 
validation accuracy for Dataset-1.

Figure 8.  The performance of the proposed method with AdamW optimizer. (a) The training loss, and (b) The 
validation accuracy for Dataset-1.
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• Across both datasets, MCN-BERT + AdamP consistently achieves the highest performance in terms of accu-
racy, F1 score, recall and precision compared to other models. This suggests it is the most effective approach 
for clinical named entity recognition.

• MCN-BERT + AdamW generally performs second best, indicating incorporating task-specific word embed-
dings like AdamW also improves upon the baseline MCN-BERT.

Figure 9.  The performance of the proposed Bidirectional LSTM + Hyperopt model, (a) The training and 
validation loss, and (b) The training and validation accuracy for Dataset-1.

Figure 10.  The confusion matrix for disease prediction for Dataset-1.
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Figure 11.  The ROC Curve for disease prediction for Dataset-2.

Figure 12.  The learning Curve for twitter drug dataset for Dataset-2. (a) The training loss, and (b) The 
validation accuracy for Dataset-2.

Table 7.  The hyperparameters values of BERT.

Hyperparameter Value

batch_size 32

Epochs 50

learning_rate 2e-5

num_labels len(label_encoder.classes_)

max_length 128

Device ’cuda’ if torch.cuda.is_available() else ’cpu’

Layer BERT BertForSequenceClassification

Optimizer AdamP, AdamW model.parameters(), lr = learning_rate, betas = (0.9, 0.999), weight_decay = 1e-6
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• BiLSTM + Hyperopt delivers lower but still strong performance, showing hybrid deep learning architectures 
can work well with hyperparameter optimization.

• Training times increase significantly for larger Dataset 2, as expected due to more training examples.
• Compared to prior work on Dataset 2, MCN-BERT + AdamP outperforms or matches SOTA models of 

Nguyen et al. and Hazell and Shakir according to available metrics.
• Only Chaichulee et al. achieve a slightly higher F1 score despite providing fewer performance metrics.

The proposed MCN-BERT models, particularly with AdamP, demonstrate state-of-the-art performance in 
clinical NER, highlighting the benefits of domain-specific pre-training and hyperparameter selection.

The performance of deep learning models depends heavily on selecting optimal hyperparameters. Tables 7 
and 8 detail the hyperparameters optimized in this study for clinical named entity recognition using MCN-BERT 
and BiLSTM architectures, respectively. For MCN-BERT models, standard hyperparameters like batch size, 
epochs, learning rate, and device were applied based on best practices in the BERT literature. The Transformer-
based model used the pretrained BERT layers with a classification head. Optimizers AdamP and AdamW were 
employed to fine-tune the model layers. Meanwhile, a broader hyperparameter search space was defined for 
the BiLSTM model to leverage the Hyperopt optimization algorithm. This included varied dimensions for the 
embedding layer, LSTM units, dropout rate, learning rate, and optimizer. Hyperopt efficiently searched this 
space to identify top-performing values for key recurrent network parameters.Specifying these hyperparameters 
systematically enabled fair comparisons between the deep learning approaches. Their selection based on prior 
work and automated tuning aimed to produce the best-performing configurations of each model for clinical data.

Comparative study
In 14 studies, symptom-related information emerged as a key focus presented by Koleck et al.38. Electronic Health 
Record (EHR) narratives spanned various clinical specialties, including general, cardiology, and mental health, 
with general occurrences being the most frequent. The symptoms covered in these studies were diverse, encom-
passing issues such as shortness of breath, pain, nausea, dizziness, disturbed sleep, constipation, and depressed 
mood. The Natural Language Processing (NLP) approaches employed comprised previously developed tools, 
classification methods, and manually curated rule-based processing. However, only one-third of the studies 
(n = 9) provided information on patient demographic characteristics. The strategies used in these studies involved 
combinations of existing NLP tools, classification methods, and manually curated rule-based processing. Among 
the pre-existing NLP tools, the Medical Language Extraction and Encoding system and Text Analysis System were 
utilized. In terms of performance, the NLP system using SNOMED–CT for extraction demonstrated a sensitiv-
ity of 0.62 and specificity of 0.63 for any chest pain, sensitivity of 0.71 and specificity of 0.60 for exertional chest 
pain, and sensitivity of 0.88 and specificity of 0.58 for definitive Rose angina.

Putra et al.26 proposed a NLP system to enhance the Clinical Decision Support (CDS) process by identifying 
symptoms associated with digestive diseases. Named Entity Recognition (NER) was employed as the meth-
odology to discern tokens indicative of the disease’s symptoms. The model, trained over 50 epochs, achieved 
an f1-score accuracy of 0.79. Experimental findings indicate that incorporating stemming and the removal of 
stopwords in the pre-processing stage enhances the accuracy of the system.

Yu39 introduced a data mining framework focused on symptoms and diseases, aiming to construct a semantic 
linked knowledge graph for prevalent health conditions. The study demonstrated the capacity of machines to 
possess self-learning capabilities through a predefined knowledge graph schema, leveraging data retrieval from 
the web. Currently, they have generated 22,431 triple links associated with 212 health conditions, establishing 
relationships between symptoms and diseases, as well as between different diseases. These triples serve as valuable 
inputs for causal reasoning techniques, aiding in the filtration of potential diseases. A thorough literature search 
spanning 1964 articles from PubMed and EMBASE was meticulously narrowed down to 21 eligible articles. 
Pertinent data, encompassing the purpose of the studies, text sources utilized, the number of users and/or posts 
involved, evaluation metrics employed, and quality indicators, were systematically documented by Dreisbach 
et al.40. The clinical content categories most frequently under evaluation were pain (n = 18) and fatigue and sleep 
disturbance (n = 18). The studies accessed electronic Patient-Reported Outcome (ePAT) data from diverse sources 
such as Twitter, online community forums, or patient portals, with a focus on diseases including diabetes, cancer, 

Table 8.  The hyperparameters values of Bi-LSTM + Hyperopt.

Hyperparameter Values

embedding_dim 50, 100

lstm_units 64, 128

dropout_rate Uniform distribution [0.2, 0.5]

learning_rate Log-uniform distribution [0.00001, 0.1]

Optimizer Adam

Hidden layers 1 Bidirectional LSTM layer

Loss function Sparse categorical crossentropy

Batch size 16

Epochs 50
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and depression. Notably, 15 studies prominently featured Natural Language Processing (NLP) as a primary 
methodology. Evaluation metrics reported across studies included precision, recall, and F-measure, particularly 
for addressing symptom-specific research questions. A chatbot service, designated for the Covenant University 
Doctor (CUDoctor) telehealth system, has been crafted employing fuzzy logic rules and fuzzy inference pre-
sented by Omoregbe et al.,  202041. This specialized service is designed to evaluate symptoms associated with 
tropical diseases prevalent in Nigeria. The Telegram Bot Application Programming Interface (API) establishes 
the connection between the chatbot and the system, while the Twilio API facilitates connectivity between the 
system and Short Messaging Service (SMS) subscribers. The service draws upon a knowledge base enriched with 
established facts about diseases and symptoms derived from medical ontologies. To predict diseases effectively 
based on inputted symptoms, a fuzzy support vector machine (SVM) is employed. The user inputs are recognized 
through Natural Language Processing (NLP) and conveyed to CUDoctor for decision support. Subsequently, a 
notification message signaling the completion of the diagnosis process is dispatched to the user. The outcome is 
a medical diagnosis system offering personalized diagnostic insights, utilizing self-input from users for effective 
disease identification. To gauge the system’s usability, an evaluation was conducted using the System Usability 
Scale (SUS), yielding a mean SUS score of 80.4. This score indicates an overall positive evaluation, affirming the 
efficacy and user-friendly nature of the developed system.

Koleck et al.42 presented synonym lists for each pilot symptom concept using the Unified Medical Lan-
guage System. Subsequently, they leveraged two extensive text sources, comprising 5,483,777 clinical notes 
from Columbia University Irving Medical Center and 94,017 PubMed abstracts with Medical Subject Headings 
or relevant keywords related to the pilot symptoms, to further enrich their initial pool of synonyms for each 
symptom concept. For these tasks, they employed NimbleMiner, an open-source Natural Language Processing 
(NLP) tool. To assess the performance of NimbleMiner in symptom identification, they compared its results to 
a manually annotated set of 449 nurse- and physician-authored common Electronic Health Record (EHR) note 
types. In comparison to the baseline Unified Medical Language System synonym lists, their approach revealed 
up to 11 times more additional synonym words or expressions, including abbreviations, misspellings, and unique 
multi-word combinations, for each symptom concept. The NLP system demonstrated outstanding symptom 
identification performance, with F-measure scores ranging from 0.80 to 0.96. In the realm of user-generated 
text, particularly on platforms like social media and online forums, individuals often employ disease or symp-
tom terms for purposes beyond describing their health status. The health mention classification (HMC) task in 
data-driven public health surveillance endeavors to distinguish posts where users discuss health conditions from 
instances where disease and symptom terms are used for other reasons. Current computational research primarily 
focuses on health mentions in Twitter, exhibiting limited coverage of disease or symptom terms and neglecting 
user behavior information and alternative uses of such terms. To propel HMC research forward, Naseem et al.43 
introduces the Reddit Health Mention Dataset (RHMD), a novel dataset derived from multi-domain Reddit data 
designed for HMC. RHMD comprises 10,015 manually labeled Reddit posts referencing 15 common disease or 
symptom terms, categorized into four labels: personal health mentions, non-personal health mentions, figurative 
health mentions, and hyperbolic health mentions. Leveraging RHMD, we propose HMCNET, a methodology 
that integrates target keyword identification (disease or symptom term) and user behavior hierarchically to 
enhance HMC. Experimental results showcase that our approach surpasses state-of-the-art methods, achieving 
an F1-Score of 0.75, marking an 11% improvement over existing methodologies. Additionally, our new dataset, 

Table 9.  The comparative study between the recent approaches with the proposed model.

Author Data used Methodology Results Comments

Koleck et al.,  201938 Electronic Health Record (EHR) 
narratives

NLP approaches (previously devel-
oped tools, classification methods, 
and manually curated rule-based 
processing)

Various symptoms covered, NLP 
system performance reported

Patient demographic characteristics 
only provided in one-third of the 
studies

Putra et al.,  2019262 Not specified Named Entity Recognition (NER) NLP system achieved an f1-score 
accuracy of 0.79

Pre-processing enhancements 
improved system accuracy

Yu,  201939 Not specified Data mining framework, self-learn-
ing knowledge graph construction

Knowledge graph with 22,431 triple 
links generated

Graph used for causal reasoning 
techniques

Dreisbach et al.,  201940 PubMed and EMBASE articles Literature search, NLP methods Pain and fatigue/sleep disturbance 
were most frequently evaluated

NLP used in 15 studies, evaluation 
metrics included precision, recall, 
and F-measure

Koleck et al.,  202142 Clinical notes and PubMed abstracts NimbleMiner NLP tool NLP system achieved outstanding 
symptom identification performance

Improved synonym lists generated 
for symptom concepts

Naseem et al.,  202243 Reddit data HMCNET methodology for health 
mention classification

RHMD dataset created, HMCNET 
outperformed existing methods

RHMD dataset poses a challenge to 
current HMC methods

Eikelboom et al.,  202344 Amsterdam UMC and Erasmus MC 
cohorts

Generalized linear classifiers, NPS 
prevalence estimation

Excellent performance in internal 
validation, variability in external 
validation

Prevalence estimates for various 
Neuropsychiatric Symptoms (NPS) 
reported

Proposed Model Dataset1 and 2

MCN-BERT + AdamP Accuracy: 96.15 MCN-BERT models designed for 
clinical Named Entity Recognition 
(NER), showcasing their superior 
performance. The models, particu-
larly effective when coupled with the 
AdamP optimizer, surpass alternative 
approaches in the domain

MCN-BERT + AdamW Accuracy:95.15

Bidirectional LSTM + Hyperopt Accuracy:94.15
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RHMD, presents a robust challenge to current HMC methods. Two distinct academic memory clinic cohorts, 
comprising the Amsterdam UMC cohort (n = 3001) and the Erasmus MC cohort (n = 646), were utilized in the 
study presented by Eikelboom et al.44. The patient pool in these cohorts encompassed individuals with Mild Cog-
nitive Impairment (MCI), Alzheimer’s Disease (AD) dementia, or mixed AD/Vascular Dementia (VaD). A total 
of ten trained clinicians annotated 13 types of Neuropsychiatric Symptoms (NPS) in a randomly selected training 
set of n = 500 Electronic Health Records (EHRs) from the Amsterdam UMC cohort and a test set of n = 250 EHRs 
from the Erasmus MC cohort. For each NPS, a generalized linear classifier was trained and subjected to internal 
and external validation. Prevalence estimates of NPS were adjusted to account for the imperfect sensitivity and 
specificity of each classifier. In a subsample (59%), an intra-individual comparison of the NPS classified in EHRs 
and NPS reported on the Neuropsychiatric Inventory (NPI) was conducted. Internal validation demonstrated 
excellent performance for the classifiers, with an Area Under the Curve (AUC) range of 0.81–0.91. However, 
external validation performance exhibited some variability, with an AUC range of 0.51–0.93. NPS were found to 
be prevalent in EHRs from the Amsterdam UMC cohort, particularly apathy (adjusted prevalence = 69.4%), anxi-
ety (adjusted prevalence = 53.7%), aberrant motor behavior (adjusted prevalence = 47.5%), irritability (adjusted 
prevalence = 42.6%), and depression (adjusted prevalence = 38.5%). A similar ranking of NPS prevalence was 
observed for EHRs from the Erasmus MC cohort, although some classifiers faced challenges in obtaining valid 
prevalence estimates due to low specificity. In both cohorts, minimal agreement was identified between NPS 
classified in the EHRs and those reported on the NPI assessments, with all kappa coefficients being less than 
0.28. Notably, there were considerably more reports of NPS in EHRs than in NPI assessments. Comparative study 
between the proposed model and the existing approaches is shown in Table 9.

Discussion
The study demonstrates the potential of leveraging advances in language models and deep learning for automat-
ing disease prediction from symptoms. The use of MCN-BERT models, optimized with AdamP and AdamW 
optimizers, and a BiLSTM model, optimized with Hyperopt, resulted in strong performance in predicting diseases 
from symptom descriptions. The MCN-BERT model with AdamP optimizer achieved the best performance, 
with an accuracy of 99.58%, F1 score of 99.13%, recall of 99.28%, and precision of 99.18%, while the MCN-
BERT model with AdamW optimizer performed well with an accuracy of 98.33%, F1 score of 98.18%, recall of 
98.23%, and precision of 98.39%. The BiLSTM model achieved an accuracy of 97.08%, F1 score of 97.05%, recall 
of 97.08%, and precision of 97.37%. The results of the study demonstrate the potential of language models and 
hyperparameter optimization for accurately predicting diseases from symptoms.

The use of MCN-BERT models and BiLSTM model showed promising results, with strong performance in 
predicting diseases from symptom descriptions. The study also highlights the importance of hyperparameter 
optimization in improving the performance of language models for disease prediction. The study has several 
implications for healthcare. Firstly, the use of language models and deep learning for disease prediction has the 
potential to revolutionize healthcare by supporting earlier detection, more prompt treatment, and expanding 
remote diagnostic capabilities. This could lead to improved patient outcomes and better management of diseases. 
Secondly, the study demonstrates the potential of automating disease prediction from symptoms, which could 
reduce the workload of healthcare professionals and improve the efficiency of healthcare systems. The study 
highlights the need for further research in this area, including the exploration of other models and approaches, 
to fully realize the potential of language models and deep learning for disease prediction. The results not only 
emphasize how tweaking certain parameters significantly boosts the language model’s ability to predict dis-
eases based on symptoms but also suggest significant potential benefits for the healthcare sector. The idea that 
healthcare could undergo a transformation, marked by earlier detection, quicker treatment, and more extensive 
remote diagnostic capabilities, is promising for achieving better patient outcomes and more effective disease 
management. The study also points out the potential for increased efficiency by automating disease prediction 
from symptoms, which could reduce the workload for healthcare professionals and improve overall healthcare 
system efficiency. However, the study is aware of its limitations, particularly the fact that the dataset is limited to 
a specific population. This limitation prompts considerations about how well the findings might apply to broader 
populations or different clinical settings, emphasizing the need for more exploration and validation. However, 
there are also some limitations to the study that need to be addressed in future research. The dataset used in 
the study was limited to a specific population and may not generalize to other populations or clinical settings.

The study recognizes the importance of interpretability in medical applications and emphasizes ethical con-
siderations, particularly addressing biases in data and their potential impact on model predictions. By address-
ing these ethical concerns, the research aims to contribute to the development of reliable and ethically sound 
language models for disease prediction, ultimately improving patient care and outcomes.

The interpretability of the developed language models, MCN-BERT + AdamP and MCN-BERT + AdamW 
architectures, is crucial in the context of medical applications for clinical decision-making. The ability to under-
stand and interpret the decisions made by these models is essential for healthcare professionals to trust the 
predictions and integrate them into the diagnostic process. Interpretability ensures transparency in the model’s 
decision-making process, allowing clinicians to comprehend how specific symptoms contribute to disease pre-
dictions. This transparency is vital for building confidence in the model’s recommendations and fostering col-
laboration between the automated system and medical practitioners.

The ethical considerations of the current study includes:

1. Biases in data The study acknowledges the potential biases present in medical data, emphasizing the impor-
tance of mitigating these biases. Biased training data can lead to unfair or inaccurate predictions, dispropor-
tionately affecting certain patient demographics. The research should explicitly detail strategies employed 
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to identify, understand, and address biases in the training data, ensuring that the models deliver equitable 
and unbiased predictions across diverse patient populations.

2. Impact of biases on predictions An ethical consideration involves a thorough exploration of how biases in 
the data might impact model predictions. The study should address the potential consequences of biased 
predictions on different patient groups, emphasizing the need for fairness and equity in disease predictions. 
Transparent reporting on potential disparities ensures that healthcare professionals are aware of the limita-
tions and potential ethical implications associated with the model’s outputs.

3. Model transparency and accountability The research should explicitly discuss measures taken to enhance 
model transparency, making the decision-making process interpretable for clinicians. Ensuring account-
ability in the model’s predictions is essential for ethical deployment in real-world healthcare scenarios. By 
providing a clear understanding of the model’s inner workings, the study contributes to ethical AI practices 
in healthcare.

4. Real‑world validation Ethical considerations should extend to the validation of the models in real-world 
healthcare settings. The study should discuss plans for evaluating the models’ performance in diverse clini-
cal scenarios, addressing the challenges and ethical implications of implementing these models in actual 
patient care. Real-world validation ensures that the models align with ethical standards and demonstrate 
effectiveness in practical healthcare applications.

Limitations
Despite the promising results of the study, there are several limitations that need to be addressed in future 
research:

Data quality and representation The dataset used in the study was limited to a specific population and may not 
be generalizable to other populations or clinical settings. The dataset also relied on self-reported symptoms, 
which may be subject to biases and inaccuracies.
Model interpretability The study used complex machine learning models, such as MCN-BERT and BiLSTM, 
which can be difficult to interpret and understand. This lack of interpretability may limit the clinical usefulness 
of the models, as healthcare professionals may struggle to understand the reasoning behind the predictions.
Training time The study found that training the MCN-BERT models with AdamP optimizer and AdamW 
optimizer took significant amounts of time, which may be a limitation for clinical settings where fast and 
accurate predictions are crucial.
Limited domain knowledge The study focused on a limited number of diseases and symptoms, which may not 
capture the full range of diseases and symptoms that can occur in clinical practice.
Lack of domain expertise The study did not involve domain experts in the field of medicine, which may have 
limited the understanding of the clinical relevance of the predictions and the accuracy of the models.
Limited testing The study did not perform extensive testing to evaluate the performance of the models in dif-
ferent clinical settings and populations, which may limit the generalizability of the findings.
Lack of integration with clinical systems The study did not explore the integration of the language models with 
clinical systems, such as electronic health records or clinical decision support systems, which may limit their 
utility in real-world clinical settings.
Need for further research The study highlights the promise of language models and hyperparameter optimi-
zation for accurately predicting diseases from symptoms, but further research is needed to overcome the 
limitations of the study and to explore the full potential of this approach.

Conclusion and future work
This study investigated the use of state-of-the-art natural language processing and deep learning techniques 
for clinical named entity recognition from electronic health records and biomedical literature. Specifically, we 
compared two MCN-BERT models optimized with AdamP and AdamW against a BiLSTM model tuned with 
Hyperopt. Using two largebenchmark datasets, we aimed to automatically identify and classify medical entities 
like diseases, symptoms and adverse drug reactions from unstructured text. The experimental results demonstrate 
that the MCN-BERT approach optimized with AdamP achieved the best performance overall, attaining accura-
cies of 99.58% and 96.15% on Datasets 1 and 2 respectively. The MCN-BERT model with AdamW optimization 
also delivered strong results, outperforming the BiLSTM baseline. Overall, our proposed domain-adapted trans-
former architectures yielded superior clinical named entity recognition compared to prior work. These findings 
have important implications. By effectively extracting structured information from unstructured notes, clinical 
language models can support clinical decision making, drug safety surveillance, and knowledge discovery. Auto-
matic identification of diseases and adverse events also paves the way for improved computational Phenotyping 
and pharmacovigilance. Looking ahead, further advances in model architectures and leveraging larger healthcare 
datasets hold promise to advance the state-of-the-art in medical natural language processing. The accuracy levels 
observed also suggest clinical language models are reaching maturity for real-world applications. Overall, our 
study underscores the growing potential of artificial intelligence to transform healthcare by unlocking insights 
from the tremendous amounts of textual patient data. This study demonstrated promising results for clinical 
named entity recognition using MCN-BERT models, however future research is still needed to advance these 
techniques for real-world clinical applications. Larger and more diverse healthcare datasets could be utilized to 
validate the generalizability of these models, particularly on underrepresented patient populations. Incorporating 
additional context like demographics, medical history and temporal trends can improve performance by provid-
ing a more holistic view of the patient. Multi-task learning approaches that jointly solve related problems such as 
relationship extraction and coding assignment could generate a more comprehensive understanding compared 
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to single-task models. Leveraging self-supervised pre-training strategies has the potential to make better use 
of unlabeled clinical data. Integrating these models into clinical decision support systems and evaluating their 
impact on downstream tasks from diagnosis to treatment planning would help establish their clinical value. In 
the future work, we further plan to use another recent predictors such as pAtbP-EnC45, AIPs-SnTCN46, AFP-
CMBPred47, cACP-DeepGram48, iACP-GAEnsC49, and Target-ensC_NP. Furthermore, we intended to used the 
CD-HIT tool was utilized to eliminate redundant peptide samples with  homology50.

Continued development of explainable AI is also important for gaining user trust in model-driven health-
care. Further optimizing model architectures and expanding available data sources holds promise to consolidate 
medical language processing as a key enabling technology for advancing precision medicine through insights 
from patient narratives.

Data availability
The data that support the findings of this study are available as follows. Dataset 1: https:// www. kaggle. com/ datas 
ets/ niyar rbarm an/ sympt om2di sease/. Dataset 2: https:// data. mende ley. com/ datas ets/ f7mrc zj83k/1. Source of 
Dataset-2: https:// www. kaggle. com/ datas ets/ pawan 2905/ tweet- class ifica tion? select= Data. csv.
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