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Enhancing foveal avascular zone 
analysis for Alzheimer’s diagnosis 
with AI segmentation and machine 
learning using multiple radiomic 
features
Je Moon Yoon 1,13, Chae Yeon Lim 2,13, Hoon Noh 3, Seung Wan Nam 3,4, Sung Yeon Jun 1, 
Min Ji Kim 1, Mi Yeon Song 1, Hyemin Jang 5,6,7,8, Hee Jin Kim 5,6, Sang Won Seo 5,6,7, 
Duk L. Na 5,6,9, Myung Jin Chung 11,12, Don‑Il Ham 1,13* & Kyungsu Kim 10,11,13*

We propose a hybrid technique that employs artificial intelligence (AI)-based segmentation and 
machine learning classification using multiple features extracted from the foveal avascular zone 
(FAZ)—a retinal biomarker for Alzheimer’s disease—to improve the disease diagnostic performance. 
Imaging data of optical coherence tomography angiography from 37 patients with Alzheimer’s disease 
and 48 healthy controls were investigated. The presence or absence of brain amyloids was confirmed 
using amyloid positron emission tomography. In the superficial capillary plexus of the angiography 
scans, the FAZ was automatically segmented using an AI method to extract multiple biomarkers 
(area, solidity, compactness, roundness, and eccentricity), which were paired with clinical data 
(age and sex) as common correction variables. We used a light-gradient boosting machine (a light-
gradient boosting machine is a machine learning algorithm based on trees utilizing gradient boosting) 
to diagnose Alzheimer’s disease by integrating the corresponding multiple radiomic biomarkers. 
Fivefold cross-validation was applied for analysis, and the diagnostic performance for Alzheimer’s 
disease was determined by the area under the curve. The proposed hybrid technique achieved an area 
under the curve of 72.2± 4.2 %, outperforming the existing single-feature (area) criteria by over 13%. 
Furthermore, in the holdout test set, the proposed technique exhibited a 14% improvement compared 
to single features, achieving an area under the curve of 72.0± 4.8%. Based on these facts, we have 
demonstrated the effectiveness of our technology in achieving significant performance improvements 
in FAZ-based Alzheimer’s diagnosis research through the use of multiple radiomic biomarkers (area, 
solidity, compactness, roundness, and eccentricity).
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Alzheimer’s disease (AD) is the most common type of dementia, affecting an estimated 5.4 million people in the 
United States1. With an estimated 13.8 million people affected by AD by 2050, health and societal expenses are 
predicted to notably increase2. The identification of biomarkers for early diagnosis and recruitment in interven-
tional clinical trials has become a priority given the increasing prevalence of AD and lack of efficient therapeutic 
options. Current AD diagnosis is constrained by its expensive equipment (e.g., magnetic resonance imaging, 
positron emission tomography [PET]), invasiveness (e.g., extraction of cerebrospinal fluid [CSF]), insufficient 
specificity and sensitivity (e.g., genetic markers, serum amyloid), length of examination, accessibility to special-
ists, and neuropsychological testing3. For effective risk screening, the demand for faster, more accessible, and 
less invasive diagnostic tests is largely unmet.

AD is characterized by neuronal death, brain atrophy, extracellular deposition of beta-amyloid plaques, and 
intracellular accumulation of neurofibrillary tangles4,5. In addition, changes to the cerebral vasculature, such 
as cerebral amyloid angiopathy, atherosclerosis, and arteriosclerosis, reduced capillary density, and changed 
capillary morphology, have also been observed6–9. However, current in vivo imaging modalities fail to detect 
cerebral microvascular alterations.

The retina is considered an extension of the central nervous system, because the retina originates as outgrowth 
of the developing brain10. Hence, the retina may be a mirror of the brain. As sources of biomarkers for AD, retinal 
imaging modalities such as optical coherence tomography and fundus photography have been the subject of 
systematic reviews and meta-analyses11,12. Furthermore, unlike in vivo imaging of cerebral microvasculature, 
retinal microvasculature can be detected by optical coherence tomography angiography (OCTA), which provides 
high-resolution images of the retinal microvasculature and choroid13.

The foveal avascular zone (FAZ) is a region surrounding the fovea and devoid of retinal capillaries, and it 
can be imaged using OCTA. Although a meta-analysis has revealed an increase in the FAZ area in AD14, het-
erogeneity and conflicting results have been observed among studies. Recent research has shown that the FAZ 
shape in OCTA images is a reliable indicator of retinal disorders. For instance, the FAZ circularity and axial 
ratio are considerably different in eyes with diabetic retinopathy and normal eyes15,16, and the FAZ circularity 
is significantly lower in eyes with glaucoma presenting central visual field deficits than in eyes with peripheral 
visual field defects17. However, previous studies on AD using OCTA have mainly focused on the FAZ area, but 
its shape has mostly been neglected14.

In this study, we analyzed multiple FAZ features using radiomics-based machine learning (ML) for AD 
diagnosis. In addition, we investigated the diagnostic ability of other features when combined with the FAZ 
area. Finally, we developed a diagnosis method for AD that combines artificial-intelligence (AI)-based FAZ 
segmentation and an ML model for processing multiple radiomic features.

Our contributions are summarized as follows:

•	 The validity of existing representative techniques for AD diagnosis considering the FAZ area is verified with 
data from Korean patients collected at our hospital, showing an area under the curve (AUC) of 60%.

•	 Existing techniques do not use features other than the FAZ area, but our technique includes other key FAZ 
features, thus improving the AD diagnostic performance by more than 10% in AUC up to 72%.

•	 Unlike existing techniques that require manual annotations from specialists to extract the FAZ region, we 
apply automatic AI-based segmentation that can promote the diagnostic performance. Hence, a fully automatic 
technique for AD diagnosis from OCTA scans is obtained.

•	 We demonstrate that the proposed technique outperforms representative AI models for the differentiation 
of AD using OCTA scans as input. This demonstrates the usefulness of our hybrid diagnosis technique that 
combines AI-based segmentation and ML-based classification for Alzheimer’s using multiple radiomic fea-
tures.

Materials and methods
Ethical approval
All authors of this study confirm that all methods or experiments were performed in accordance with the Dec-
laration of Helsinki and the relevant guidelines and regulations provided by the policies of the Nature Portfolio 
journals. This study was approved by the Institutional Review Board of the Samsung Medical Center (IRB num-
ber: SMC 2021-05-073). Written informed consent from the patients was waived by the Institutional Review 
Board (Samsung Medical Center, Seoul, Republic of Korea) because we used anonymized retrospective data.

Study participants
All participants underwent amyloid PET and brain MRI at the memory clinic in the Department of Neurology 
at SMC in Seoul, South Korea18. As previously described19, all participants underwent comprehensive dementia 
evaluation, including a standardized neuropsychological test (Seoul Neuropsychological Screening Battery, 2nd 
edition20), blood tests including APOE genotyping, and brain MRI. We excluded participants who had any of the 
following conditions: (1) white matter hyperintensities due to etiologies other than vascular pathology, includ-
ing radiation injury, multiple sclerosis, leukodystrophy, or metabolic/toxic disorders; (2) traumatic brain injury; 
(3) normal pressure hydrocephalus; (4) territorial infarction; (5) neurodegenerative disorders other than AD or 
ischemic etiologies such as progressive supranuclear palsy, corticobasal syndrome, frontotemporal dementia, 
or Lewy body/Parkinson disease dementias; or (6) rapidly progressive dementias and treatable dementias. All 
participants with normal controls (NCs) fulfilled the following criteria: (1) subjective memory complaints by 
participants or caregivers; (2) no objective cognitive dysfunction, as assessed by scores from evaluations on any 
cognitive domain; (3) no history of medical diseases likely to affect cognitive function; and (4) no significant 
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impairment in activities of daily living. All patients diagnosed with MCI fulfilled Petersen criteria for MCI21. 
Patients with dementia satisfied diagnostic criteria for dementia according to the DSM-IV22.

Optical coherence tomography angiography acquisition and clinical data
All participants underwent OCTA scans25 of the superficial capillary plexus layer26 at Samsung Medical Center, 
Gangnam-Gu, Seoul, South Korea, between November 2021 and February 2023. OCTA was performed by an 
expert technician. The OCTA scanning protocol used was a 3 × 3 mm2 volume scan centered on the fovea (DRI 
OCT Triton, Topcon, Japan). During data collection, we acquired clinical information of patients including age, 
sex, presence of hypertension or diabetes, education level, mini-mental state examination score23, and clinical 
dementia rating24, as specified in Table 1. From the clinical information, we used age and sex, which can affect 
the FAZ shape27 and measured without any additional cost, along with OCTA scans as inputs for the proposed 
diagnosis technique. We obtained a total of 170 OCTA scan sets from 85 participants, as shown in Fig. 1. In addi-
tion, the 170 OCTA scans are divided into the training set and the holdout test set. From the scan sets, 25 scans 
were excluded from the training set, and 15 were excluded from the holdout test set. The exclusion criterion was 
considerable noise or low image quality, depending on the scanning environment28. Hence, the OCTA training 
set includes a total of 85 scans, with 31 scans from AD cases and 54 scans from NC cases, while the holdout 
test set consists of 45 scans, with 29 scans from AD cases and 16 scans from NC cases. In addition, we aimed to 
maximize the separation between the training dataset and the holdout dataset by collecting them at different 
times, although both were from a single institution.

Dataset split
The dataset was divided into training and holdout test sets for each image before model selection. The training 
set was divided on a per-image basis for the fivefold cross-validation experiment, and the holdout test set was 

Table 1.   Characteristics of data sets.

Data type Patient-wise training set (n = 55) Patient-wise holdout test set (n = 30)

Data collection period November 2021–September 2022 July 2022–February 2023

Disease type AD (n = 20) NC (n = 35) P-value AD (n = 17) NC (n = 13) P-value

Age (years) 65.7± 7.9 69.8± 7.1 0.186 66.8± 4.9 73.7± 5.5 < 0.005

Sex (Male, %) 45% (n = 9) 28.5% (n = 10) 0.185 58.8% (n = 10) 46.1% (n = 6) 0.164

Mini-mental state examination score23 18.4± 5.5 28.7± 1.6 < 0.005 20.1± 1.3 28.0± 2.4 < 0.005

Study period (months) 12.0± 3.7 12.0± 5.0 0.996 13.5± 4.7 11.0± 4.9 0.107

Clinical dementia rating24 0.9± 0.9 0.1± 0.3 < 0.005 0.6± 0.2 0.5 < 0.005

Patients w/hypertension (%) 30% (n = 6) 37.1% (n = 13) 0.789 29.4% (n = 5) 35.7% (n = 5) 0.218

Patients w/diabetes (%) 15% (n = 3) 20% (n = 7) 0.787 29.4% (n = 5) 7.1% (n = 1) 0.139

Superficial Capillary Plexus

FAZOCTA FAZOCTA
Superficial Capillary Plexus

AD NC

Superficial Capillary Plexus Superficial Capillary Plexus

Figure 1.   OCTA scans in superficial capillary plexus layer for AD and NC. We aim to determine whether 
various FAZ features extracted from these scans contribute to AD diagnosis.
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used exclusively for holdout testing without overlap with the training set. A summary of the data splitting used 
in the fivefold cross-validation and the holdout test is shown in Table 2.

Existing and proposed techniques for AD diagnosis
In this section, we describe the inference of current AD diagnosis techniques by FAZ analysis using OCTA 
scans and compare these techniques with our proposal, as shown in Fig. 2. Existing AD diagnosis techniques 
using FAZ features include deep learning classification using OCTA scans (baseline 1) and radiomics based on 
a single FAZ feature (baseline 2).

Baseline 1: OCTA AI‑based classifier
As shown in Fig. 2a, baseline 129 receives an OCTA scan as input for AI-based classification and learns to diagnose 
AD by binary classification between AD and NC. We use convolutional neural networks (CNNs)30, which are 
the gold standard models, for classification and design of a multimodal AI network that uses clinical and image 
information by expanding the input vector to receive two additional clinical datapoints in a fully connected 
network within the target CNN.

Baseline 1 learns to classify AD and NC through a CNN classifier using OCTA scan O and two clinical 
datapoints as follows:

where CNN represents the CNN (e.g., ResNet31, DenseNet32, EfficientNet33, Inception34), and C ∈ R
2 denotes 

two clinical datapoints (i.e., age and sex), which are commonly used for AD diagnosis. We concatenate infor-
mation C to the fully connected network input vector obtained from global average pooling. The CNN output 
is a two-dimensional probability vector, and the CNN is trained using the cross-entropy loss to determine the 
diagnostic probabilities for AD and NC.

(1)Baseline1(O,C) = CNN(O,C) ∈ {AD,NC}

Table 2.   Summary of fivefold cross-validation and holdout test the data distribution of FAZ binary mask 
images.

Method

Fivefold 
cross-
validation Holdout test

Data type
Training set 
(n = 85) Holdout test set (n = 45)

Split Train Test Test

Fold 1 70 15

45 (64%)

Fold 2 68 17

Fold 3 69 16

Fold 4 67 18

Fold 5 66 19

AI-based
segmentation model

Area

OCTA scan

Manual
segmentation

FAZ binary
mask

OCTA scan

(a) Baseline1 diagnosis system

(OCTA scan-based AI classifier)

(b) Baseline2 diagnosis system

(Single radiomic feature-based
ML classifier)

(c) Proposed diagnosis system

(Multiple radiomic feature-based &
AI-hybrid ML classifier)

Area
Roundness
Eccentricity
Compactness
Solidity

AD
NC

Trained
ML model

Prediction

OCTA scan

Trained
CNN classificaion

model

Trained
ML model

Feature
extraction

Clinical data
(age, sex)

Clinical data
(age, sex)

Clinical data
(age, sex)

Feature
extraction

FAZ binary
mask

AD
NC

Prediction

AD
NC

Prediction

Figure 2.   Comparison of AD diagnosis techniques using FAZ analysis on OCTA scans. (a) Baseline 1—AI 
classifier with OCTA input, (b) baseline 2—ML classifier using single radiomic FAZ feature with manual FAZ 
segmentation, and (c) proposed technique—ML classifier with AI-based automatic FAZ segmentation using 
multiple radiomic FAZ features.
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Baseline 2: ML classifier using single radiomic feature
Baseline 235 uses the FAZ area extracted from OCTA scans to diagnose AD. This is a radiomic method36 that 
uses only the FAZ area, which is only one of the available radiomic features. Consequently, baseline 2 uses a 
single radiomic feature, as illustrated in Fig. 2b. We train an ML model for binary classification of AD and NC, 
with the output using a 5D vector integrating the FAZ area and two clinical datapoints into the input vector for 
the ML model.

When using baseline 2, ophthalmologists should perform manual segmentation of the FAZ region on OCTA 
scan O to obtain FAZ binary mask Sma

O  ∈ {0, 1}h×w (i.e., 0 and 1 for the outer and inner FAZ, respectively). The 
FAZ area is obtained by multiplying the number of nonzero pixels in SO (i.e., pixels located insider the FAZ) by 
constant c for the area per pixel as follows:

Then, baseline 2 is trained to classify AD and NC through an ML algorithm using the FAZ area and two clinical 
datapoints as follows:

where ML(·) represents an ML model (e.g., XGBoost37, random forest38, LGBM39).

Proposed technique (AI‑based segmentation with ML classifier using multiple radiomic features)
In contrast to baseline 2, as shown in Fig. 2c, the proposed technique simultaneously uses five representative 
radiomic features40 (i.e., area, roundness, eccentricity, compactness, and solidity) rather than simply considering 
the FAZ area. We experimentally demonstrate that multiple radiomic features increase the classifier diversity, 
thereby improving the AD diagnostic performance. In addition, unlike baseline 1, the proposed technique does 
not use an AI-based classifier but AI-based FAZ area segmentation. To obtain the binary mask for the FAZ 
area from an OCTA scan, AI-based segmentation is applied rather than the manual segmentation required for 
baseline 2. Hence, the proposed technique performs automatic AD diagnosis without pretreatment of OCTA 
scans, like in baseline 1. Moreover, AI-based FAZ segmentation mitigates annotation errors that may occur 
during manual FAZ segmentation, thereby increasing the accuracy of extracted radiomic features. Table 3 lists 
the characteristics of the evaluated techniques. Our proposal has a hybrid structure by combining AI and ML 
through the sequential execution of AI-based FAZ area segmentation and ML-based AD diagnosis based on 
multiple radiomic features extracted from the FAZ.

Extraction of additional multiple radiomic features. For comparison with baselines 1 and 2, four radiomic 
features were added to our technique, as defined below and illustrated in Fig. 3. Let S ∈ {0, 1}h×w be the FAZ 
binary segmentation mask.

•	 Solidity. The solidity measures the degree of curvature of the FAZ interface as the ratio of the FAZ inner area 
to its convex hull region: 

 where Area(S) is the FAZ area (area in which S is 1) and Areacvh(S) is the FAZ convex hull area.
•	 Compactness. The compactness measures the degree of curvature of the FAZ interface as the ratio of the FAZ 

inner area to its perimeter: 

 where p(S) is the FAZ perimeter.
•	 Roundness. The roundness is similar to the compactness but uses the perimeter of the convex hull rather 

than the perimeter of the FAZ: 

 where pcvh(S) is the perimeter of the FAZ convex hull.

(2)Area(Sma
O ) =

∑

ij

c × Sma
O [i, j]

(3)Baseline2(O,C) = ML(Area(Sma
O ),C) ∈ {AD,NC}

(4)Solidity(S) =
Area(S)

Areacvh(S)

(5)Compact(S) =
4π · Area(S)

p(S)2

(6)Round(S) =
4π · Area(S)

pcvh(S)2

Table 3.   Factor-specific differences between proposed and existing techniques.

Method Segmentation Feature Classification Comp model

Baseline 1 None Automatically extracted AI AI

Baseline 2 Manual Only area ML ML

Proposed AI Area + other features ML AI + ML
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•	 Eccentricity. The eccentricity is obtained as the ratio of the longest (a(S)) to the shortest (b(S)) straight-line 
length within the FAZ, S. It allows to measure the FAZ closeness to an ellipse as follows: 

AI-based FAZ segmentation. Baseline 2 requires ophthalmologists to perform manual segmentation of the 
FAZ on OCTA scan O to obtain FAZ binary mask Sma

O  ∈ {0, 1}h×w . In contrast to baseline 2 with manual FAZ 
segmentation, the proposed technique uses an AI model to automatically segment the FAZ. Thus, the input is 
OCTA scan O, and the output is the extracted FAZ. For training, we used a public dataset, whereas our hospital 
data were used for evaluating FAZ segmentation and comparison with manual annotations in baseline 2. We 
denote the automatically segmented binary mask as SAIO  ∈ {0, 1}h×w , with 0 and 1 indicating the outer and inner 
parts of the FAZ, respectively.

Inference. Using multiple radiomic features and automatic FAZ segmentation, the proposed technique per-
forms inference as shown in Eq. (8), which is different from inference for the baselines given by Eqs. (1) and (3). 
In addition, the proposed technique learns to classify AD and NC through an ML model using the FAZ area, 
like in baseline 2, in addition to other four FAZ features.

where ML(·) represents the same ML model used in baseline 2, SAIO  is the FAZ binary mask automatically extracted 
from OCTA scan O, and C represents the two clinical datapoints commonly used for all the techniques evalu-
ated in this study.

Evaluation metrics
To evaluate the proposed FAZ multiple radiomic features of Alzheimer’s diagnosis (binary classification of NC 
and AD), we used the area under the curve (AUC), accuracy, sensitivity, and specificity of the receiver operating 
characteristic (ROC) curve. For the ROC curve, we chose the most commonly used decision threshold of 0.5 
and calculated the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) rates based 
on this threshold. We then calculated the accuracy, sensitivity, and specificity values as follows:

(7)Eccent(S) =

√

1−
b(S)2

a(S)2
(a(S) ≥ b(S))

(8)
Proposed(O,C) = ML(Area(SAIO ), Solidity(SAIO ),Compact(SAIO ),Round(SAIO ),Eccent(SAIO ),C) ∈ {AD,NC}

(9)Accuracy =
(TN + TP)

(TN + TP + FN + FP)
,

(10)Sensitivity =
(TP)

(TP + FN)
,

FAZ binary maskOCTA scan

AI-based
segmentation

Complete AI-based segmentation

Feature
extraction

PerimeterArea Convex hull
area

Convex hull
perimeter

L_major
L_minor

Compactness

Multiple
radiomic features

AD
NC

Prediction

Manual
segmentation

Feature
extraction
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Single

radiomic feature

Clinical data
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(b) Proposed AD diagnosis system
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Figure 3.   Feature extraction from FAZ segmented on OCTA scan. Multiple radiomic features are used for 
training in the proposed technique.
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Results
Fivefold cross‑validation results on the training set
We compared the diagnostic performance of the proposed technique and the baseline technique for AD diagnosis 
on the training set. We divided the training set into 85 OCTA scans, which were divided into five sets to apply 
fivefold cross-validation. Each diagnosis technique was trained five times, and the mean validation performance 
was considered as the final diagnostic performance. The training details for each technique are detailed below.

Training details
Training for baseline 1
As the CNN backbone used in baseline 1, we tested four representative models: ResNet31, DenseNet32, 
EfficientNet33, and Inception34. Each model was trained with fivefold cross-validation using the pretraining 
parameters on the ImageNet dataset for initialization. Each training procedure proceeded for 50 epochs by apply-
ing the cross-entropy loss41 to a two-dimensional output probability vector for binary classification of positive 
(AD) and negative (NC) samples. The optimal learning rates were 1e−2 for EfficientNet33, 1e−2 for ResNet31, 1e−5 
for Inception34, and 1e−2 for DenseNet32.

Training for baseline 2
Baseline 2 required manual extraction of FAZ binary mask Sma

O  from an OCTA scan. Thus, ophthalmologists 
extracted the FAZ binary masks from the 85 OCTA scans used in this study. In baseline 2, given the FAZ binary 
mask Sma

O  provided by the ophthalmologists, the area was calculated, and the ML model was applied to learn and 
evaluate the AD diagnosis by fivefold cross-validation. We used the LGBM39 as the ML model.

Training for proposed technique
Unlike baseline 2, the proposed technique performs AI-based segmentation. It receives an OCTA scan as input 
and predicts the FAZ binary mask as the output. To train the segmentation model, we used 2000 OCTA scan–FAZ 
mask pairs42 based on nnUNet43. As the learning objective function, the conventional pixel-based cross-entropy 
loss was used for training over 100 epochs under Adam optimization44 with a learning rate of 0.01. Thus, 85 
FAZ mask prediction results for the 85 evaluation OCTA scans were obtained from the learned segmentation 
model, and multiple radiomic features were extracted. Then, the ML model (LGBM39 for a fair comparison 
with baseline 2) was applied for AD diagnosis in fivefold cross-validation. Training of the proposed technique 
is illustrated in Fig. 4.

Diagnostic performance
The diagnostic performance results (AUC) per fold and across folds of the evaluated techniques are listed in 
Table 4. The AUC of the proposed technique was at least 13% higher than that of the baselines. The baselines did 
not provide clinically meaningful results because all the AUC values were below 60%. In contrast, the proposed 
technique could achieve clinical significance with AUC values above 70%. Furthermore, the proposed method 
also demonstrates statistical significance with very low p-values when compared to the baselines, providing 
evidence of its statistical significance ( p < 0.05 ). Hence, this is the first technique demonstrating that multiple 
radiomic FAZ features are meaningful biomarkers for AD diagnosis.

Figure 5 shows the receiver operating characteristic curves of each technique for the aggregate AUC values 
derived from the cross-fold mean. In all the areas, regardless of the threshold, the proposed technique demon-
strated higher sensitivity than the baselines, confirming its superiority.

(11)Specificity =
(TN)

(TN + FP)
,

OCTA image Prediction
Segmentation loss

Actual label

Deep-learning Method

Feature extraction

Trained
ML model

AD
NC

Prediction

Clinical information 
(age, sex)

Amyloid PETAD
NC

Actual class
Classification loss

Machine-learning Method

AI-based
segmentation model

Area
Roundness
Eccentricity
Compactness
Solidity

Figure 4.   Training overview of proposed diagnosis technique. The proposed technique comprises AI-based 
FAZ segmentation and ML-based AD diagnosis using multiple radiomic FAZ features. Segmentation and 
classification loss functions are used as training losses for the AI and ML models, respectively. Data from our 
hospital are used for training and evaluation with fivefold cross-validation.
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Analysis of proposed technique and its elements
Performance of different ML models
The proposed technique diagnosed AD by feeding multiple radiomic FAZ features into an ML classifier. The 
results using LGBM39 as a representative ML model are listed in Table 4, and the performance comparison of 
other ML models (i.e., XGBoost37 and random forest38) is presented in Table 5. LGBM showed the highest per-
formance, thus being selected as the ML model for the proposed technique. For models other than LGBM, the 
mean diagnostic performance was at least 60%. Thus, the proposed technique showed higher performance than 
the baselines (AUC of 60% or less), as shown in Table 4. This demonstrates that the proposed method is superior 
to the baselines regardless of the underlying ML model.

Ablation study for proposed technique
The proposed technique uses multiple radiomic FAZ features (i.e., area, compactness, eccentricity, roundness, and 
solidity) instead of only one feature (i.e., area used in baseline 2). Table 6 shows that the diagnostic performance 
gradually improved when each of these features was added to the proposed technique. Hence, the diagnostic 
performance was improved by adding the four features to the area, justifying their inclusion in the technique.

Table 4.   AUC of differential diagnosis between AD and NC. The mean and standard deviation are calculated 
from fivefold cross-validation.

Technique Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean (%) p-value

Baseline 1 (ResNet)31 50 47 58 45 55 50.6± 4.4 0.0001

Baseline 1 (DenseNet)32 51 49 60 52 50 52.4± 3.9 0.0001

Baseline 1 (EfficientNet)33 36 51 37 57 59 48± 9.7 0.0020

Baseline 1 (Inception)34 51 50 38 56 61 51.2± 7.6 0.0014

Baseline 2 51 64 49 60 68 59.1± 7.1 0.0126

Proposed 76 76 65 70 72 72.2± 4.2 −

Figure 5.   Receiver operating characteristic curves of differential diagnosis between AD and NC. The AUC 
values are 72.2± 4.2 ( 95% confidence interval, 66.7− 75.5 ), 52.4± 3.9 ( 95% confidence interval, 49− 55.8 ), 
and 59.1± 6.2 ( 95% confidence interval, 52.9− 65.3 ) for the proposed technique, baseline 1 with DenseNet, and 
baseline 2, respectively.

Table 5.   Performance of differential diagnosis between AD and NC using different ML models in the 
proposed technique. The mean and standard deviation are obtained from fivefold cross-validation.

Model Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean (%) p-value

XGBoost37 65 72 62 68 59 65.5± 6.0 0.0346

Random forest38 64 72 53 64 56 62.3± 4.0 0.0632

LGBM39 76 76 65 70 72 72.2± 4.2 −
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Validity of AI‑based segmentation in proposed technique
The proposed approach automatically extracts the FAZ by AI-based segmentation. Table 7 lists the diagnostic 
performance when the proposed technique uses the binary masks manually annotated by an ophthalmolo-
gist, as in baseline 2, instead of the automatically segmented FAZ. The AUC of AD diagnosis was enhanced by 
10.3% when AI-based automatic segmentation was used compared with manual segmentation. This performance 
improvement followed from the more accurate and precise AI-based FAZ extraction compared with manual 
annotations. We explain this performance improvement in section Discussion.

Comparison of diagnostic performance of proposed methods on holdout test set
We conducted a holdout test using a set of 45 OCTA scan holdout datasets. The holdout test was compared and 
verified by baseline35(i.e., baseline 2 method only area feature) and ophthalmologists, respectively. accuracy, 
sensitivity, specificity, and AUC measured the evaluation of each diagnostic technique.

Comparison diagnostic performance between baseline and proposed method
The diagnostic performance results for the baseline35 method (i.e., the baseline 2 method uses only a single area 
feature) and the proposed method (multiple radiomic features) are detailed in Table 8.

FAZ binary masks were obtained manually and automatically (i.e., AI-based segmentation) for a holdout 
dataset for both the baseline and the proposed method. The FAZ binary masks were then used to test pre-trained 
models through a fivefold cross-validation process. In the holdout test, the proposed method showed a significant 
improvement in AUC compared to the baseline, with an improvement of 14% (baseline AUC 58.0% vs proposed 
AUC 72.0%). Furthermore, when compared to the baseline, the proposed method showed a 14.1% increase in 
accuracy (baseline accuracy 50.7% vs proposed accuracy 64.8%), a 5.0% increase in specificity (baseline specific-
ity 78.7% vs proposed specificity 83.7%), and a 19.2% increase in sensitivity (baseline sensitivity 35.2% vs pro-
posed sensitivity 54.4%). These results demonstrate the robustness of the proposed method in the holdout test, 
demonstrating superior performance in all evaluation metrics compared to the baseline ( p < 0.05 ). Therefore, 
the proposed method demonstrates excellent diagnostic performance for the diagnosis of Alzheimer’s disease 
based on FAZ.

Table 6.   Comparison of AD diagnostic performance by including radiomic features. A, compactness; B, 
eccentricity; C, roundness; D, solidity. The mean and standard deviation are obtained from fivefold cross-
validation. *Baseline 2 method (i.e., Using only area feature). **Proposed method (i.e., Using five multiple 
radiomic features).

Features Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean (%)

*Area 54 69 62 60 69 63.2± 5.0

Area + A 57 71 60 61 69 64.0± 5.4 (+ 0.8)

Area + A + B 71 72 63 64 64 67.2± 3.7 (+ 4.0)

Area + A + B + C 67 74 63 69 68 68.8± 3.3 (+ 5.6)

**Area + A + B + C + D 76 76 65 70 72 72.2± 4.2 (+9.0)

Table 7.   AD diagnostic performance for manual and automatic segmentation. The mean and standard 
deviation are obtained from fivefold cross-validation. *p < 0.05.

Segmentation Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean (%)

Manual 65 67 55 68 52 61.9± 6.5

Automatic 76 76 65 70 72 72.2±4.2∗ (+ 10.3)

Table 8.   Diagnostic performance comparison between proposed and baseline method. Accuracy, sensitivity, 
specificity, and AUC score obtained from the holdout test set. Values in parentheses represent improvements 
in performance between the proposed and baseline method diagnoses. The mean and standard deviation are 
obtained from the holdout test. * p < 0.05.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Baseline 50.7±5.5 35.2±15.6 78.7±13.5 58.0±0.9

Proposed 64.8±4.3∗ (+ 14.1) 54.4±5.0∗ (+ 19.2) 83.7±6.3∗ (+ 5.0) 72.0±4.8∗ (+ 14)
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Comparison diagnostic performance between the ophthalmologist and proposed method
diagnosis of humans was conducted with the evaluation of three experienced ophthalmologists who did not par-
ticipate in the collection of the OCTA holdout test dataset. For the diagnosis of humans, training was performed 
using the FAZ binary mask of 85 labeled training sets, and subsequently, an evaluation was performed using 
the FAZ binary mask of 45 unlabeled holdout datasets. The results of comparing the proposed method with the 
ophthalmologists are presented in Table 9.

The proposed method showed superior performance in all metrics (sensitivity, specificity, accuracy, and 
AUC) compared to ophthalmologists, particularly showing a significant improvement of over 30% in specificity 
( p < 0.05 ). This suggests that the proposed method is more sensitive in reducing false positives compared to 
ophthalmologists (humans’ specificity 53.7% vs proposed specificity 83.7%). In other words, it can significantly 
reduce the rate of false positive predictions for normal patients, which is cost-effective by saving on additional 
testing expenses (humans’ specificity 53.7% vs proposed specificity 83.7%). Furthermore, the proposed technique 
demonstrated higher sensitivity compared to ophthalmologists (humans’ sensitivity 52.8% vs proposed sensitiv-
ity 54.4%) and showed strong discriminative power for false negatives (humans’ AUC 53.2% vs proposed AUC 
72.0%). Consequently, the proposed method shows potential utility as a clinical support tool for Alzheimer’s 
diagnoses based on FAZ in the future.

Figure 6 shows the AUC results for the binary classification of AD and NC using the proposed method and 
three ophthalmologists. The proposed method yields results that are 18.8% higher than the average AUC of the 
three ophthalmologists (humans’ AUC 53.2% vs proposed AUC 72.0%). In addition, the AUC of the proposed 
method showed a 14% improvement compared to the baseline (baseline AUC 58.0% vs proposed AUC 72.0%). 
This confirms that the proposed method (i.e., using multiple radiomics features including area) exhibited a 
significant performance improvement by considering multiple radiomics features, in contrast to the baseline 
method that relied on a single feature (i.e., using only area) for Alzheimer’s diagnosis (baseline AUC 58.0% vs 
proposed AUC 72.0%). Notably, a significant performance improvement was achieved even when compared 
to ophthalmologists (humans’ AUC 53.2% vs proposed AUC 72.0%). This indicates the potential of multiple 
radiomics features as a novel biomarker in FAZ-based Alzheimer’s diagnosis.

Discussion
We showed that multiple radiomic FAZ features can be extracted by an AI model to support AD diagnosis. To 
the best of our knowledge, this is the first report using multiple radiomic FAZ features for diagnosis in patients 

Table 9.   Diagnostic performance comparison between proposed method and ophthalmologist. Accuracy, 
sensitivity, specificity, and AUC score obtained from the holdout test set. Values in parentheses represent 
improvements in performance between the proposed method and ophthalmologist diagnoses. The mean and 
standard deviation are obtained from the holdout test. * p < 0.05.

Method Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Humans 53.1±15 52.8±14.1 53.7±18.8 53.2±21.0

Proposed 64.8±4.3∗ (+ 11.7) 54.4±5.0∗ (+ 1.6) 83.7±6.3∗ (+ 30.0) 72.0±4.8∗ (+ 18.8)

Figure 6.   Comparison diagnostic performance of the proposed method and average of AUCs for three 
ophthalmologists on holdout test. The AUC values are 72.0± 4.8 ( 95% confidence interval, 67.7− 76.2 ), 
58.0± 0.009 ( 95% confidence interval, 57.9− 58.0 ), and 53.2± 21.0% ( 95% confidence interval, 32.0− 69.5 ) 
for the proposed technique, baseline, and average of AUCs for three ophthalmologists.
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with AD. We developed an automatic AD diagnosis technique comprising AI-based FAZ segmentation and 
ML-based AD diagnosis using the automatically extracted FAZ features.

Clinical implications of multiple radiomic FAZ features
Early detection of AD is of paramount importance, as it allows intervention prior to the onset of irreversible 
brain degeneration. Nevertheless, the current gold-standard diagnostic methods for AD, such as amyloid PET 
scans or CSF analysis, are insufficient as early screening tools. The retina, due to its embryological similari-
ties with the brain and its easily and safely examined anatomical features, presents a promising avenue for the 
early detection of AD. The FAZ is a potential retinal biomarker for AD. The FAZ can be extracted from OCTA, 
which is a noninvasive retinal imaging modality. A recent meta-analysis revealed an enlargement of the FAZ 
in AD14. Another meta-analysis reported an enlarged FAZ in patients with mild cognitive impairment but no 
significant enlargement in AD45, while another meta-analysis showed no significant enlargement of the FAZ in 
AD46. Although limitations included the heterogeneity of OCTA equipment, diverse scanning protocols, and 
unmeasured confounders, previous studies only investigated the FAZ area, neglecting the FAZ shape, which may 
be a reliable indicator of retinal disorders15,17,47.

While area is frequently utilized as a primary metric for characterizing the FAZ, it is essential to recognize 
the substantial normal variation in FAZ size48. This variability may potentially constrain its utility as a patho-
logical indicator in cross-sectional screening applications49. Evaluating the regularity of the FAZ’s overall shape, 
measured in terms of roundness or circularity, may offer a more precise indication of disease due to reduced 
variability within the healthy population50. Consequently, it is imperative to investigate whether biomarkers 
related to the shape of the FAZ possess diagnostic capabilities in individuals with AD. Recently, not only have 
there been reports of studies using ophthalmic imaging and AI for the diagnosis of ophthalmic diseases, but 
there have also been reports on their use for diagnosing AD29,51–53. In this study, we first revealed that multiple 
radiomic FAZ features, including roundness, eccentricity, compactness, and solidity, can improve the AD diag-
nostic performance compared with the FAZ area alone. Therefore, multiple radiomic FAZ features are useful for 
diagnosis and should be considered when evaluating the FAZ as new biomarkers for AD.

While our advanced AI-based methodology demonstrated a successful diagnosis of AD with a favorable 
diagnostic accuracy of “ 72.2± 4.2% ,” it is important to acknowledge that this figure falls short of direct com-
parison with current gold standard diagnostic methods. Notably, our diagnosis was solely based on retinal 
imaging, without the utilization of traditionally established diagnostic tools for AD, such as amyloid PET scans, 
CSF tapping, brain imaging, and even the Mini-Mental State Examination. Nevertheless, the findings from our 
study have significant clinical implications. They bridge a well-recognized diagnostic gap by providing a non-
invasive and cost-effective means for screening AD, circumventing the need for invasive and expensive tests 
like PET, CSF tapping, and brain MRI. This innovative approach not only offers potential clinical utility but also 
signals a promising avenue for further refinement. Moreover, our study’s results indicate the potential for further 
refinement of AI-based diagnostic techniques, which holds promise for future research endeavors focused on 
enhancing the early detection of AD. This work not only contributes to the field’s knowledge but also paves the 
way for continued exploration and development in the realm of AD diagnosis.

Possible mechanisms for FAZ changes in AD
Vascular dysfunction in patients with AD likely leads to cerebral hypoperfusion during AD development54–58. 
In vivo and autopsy data have revealed that AD is associated with the deposition of amyloid and collagen within 
the cerebral capillaries, which can result in cellular apoptosis and vessel dropout59–62. In addition, various studies 
have found the accumulation of beta-amyloid plaques in the inner retina of postmortem tissue extracted from 
patients with AD63–66. Therefore, FAZ changes in patients with AD may be secondary to retinal degeneration 
owing to beta-amyloid accumulation within the retina.

Performance improvement by AI‑based FAZ segmentation
To evaluate the effectiveness of AI-based FAZ segmentation integrated into the proposed technique, we compared 
it with manual FAZ segmentation, obtaining the results listed in Table 7. Manual segmentation was the same 
as that in baseline 2. Compared with manual segmentation, AI-based segmentation improved the diagnostic 
performance in terms of AUC from 61.9 to 72.2 (improvement of 10.3% ). As shown in Fig. 7, the performance 
improvement was due to AI-based FAZ segmentation overcoming problems and errors in manual annotation, 
which showed some inaccurate or mistaken results. Nguyen et al.67 reported the high performance of AI-based 
FAZ segmentation. We observed that the AI-based FAZ segmentation extracted the FAZ more precisely. Thus, 
the multiple radiomic FAZ features were more precisely determined, thereby improving AD diagnosis.

Performance improvement by multiple radiomic features
Different from previous studies35, we considered multiple FAZ features (i.e., area, roundness, eccentricity, com-
pactness, and solidity) to diagnose AD. Existing techniques relied only on the FAZ area, and their AD diagnostic 
performance was not high. We demonstrated that various FAZ features contributed to further improving AD 
diagnosis, as indicated in Table 10. Every feature considered in this study (i.e., roundness, eccentricity, com-
pactness, and solidity) contributed to the diagnosis, individually leading to comparable performance to that of 
the area. This individual validation may indicate the diagnostic performance improvement achieved by feature 
combination, as shown in Table 5, with the performance gradually improving as more features were added.
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Technical implications
Our hybrid technique achieved an AUC of 72.2%, thus improving the AD diagnostic performance using FAZ 
biomarkers by 13.1% compared with existing techniques. This result holds notable clinical significance because 
it confirms that the FAZ is a suitable biomarker for AD, even though it was previously overlooked due to its low 
diagnostic performance in AD diagnosis. Hence, high AD diagnostic performance may be achieved by using FAZ 
biomarkers along with well-known biomarkers (e.g., global retinal nerve fiber layer, retinal thickness, vascular 
density, and FAZ area) that have been used for noninvasive AD diagnosis.

Promising performance of additional features in isolated feature analysis
We conducted comparative experiments by individually diagnosing isolated features, including the previously 
reported area35 feature and the four additional multiple features introduced in this study (i.e., solidity, compact-
ness, eccentricity, roundness). The results for each of these isolated single features are detailed in Table 10.

Compared to the area, which was previously reported in FAZ-based Alzheimer’s diagnosis, the additional 
multiple features demonstrated their diagnostic potential, with solidity at 64.6% (+ 1.4%), roundness at 59.9% 
( − 3.3%), compactness at 66.0% (+ 2.8%) and eccentricity at 63.5% (+ 0.3%) in the single feature comparison 
experiments. This confirms the excellent performance of the majority of these features. Furthermore, it suggests 
that these multiple features (i.e., solidity, compactness, eccentricity, roundness) have significant correlations with 
structural changes in FAZ caused by Alzheimer’s disease, beyond only area. This research not only contributes to 
the significant impact of FAZ-based Alzheimer’s diagnosis but also provides the first study presenting meaningful 
biomarkers for detecting structural changes due to other ocular diseases.

Instrumental applicability of the proposed method in real clinical settings
The proposed method showed a high-specificity model, but it was possible to derive a model with high sensitiv-
ity by adjusting the thresholds. Threshold adjustment resulted in a sensitivity of 90% and a specificity of 33%. 
This means that it can identify 90% of Alzheimer’s patients while detecting around 30% of the normal control 
group. Specifically, it excels at accurately detecting 90% of Alzheimer’s patients, enabling them to be referred for 
secondary testing such as amyloid PET scans and CSF analysis. At the same time, it provides a basis for reduc-
ing the cost of secondary testing in around 30% of normal patients. This is because, unlike ophthalmologists, 
the proposed technique uses AI technology to achieve a model with high sensitivity through various threshold 

OCTA scan Manual segmentation AI-based 
segmentation

(a) (b) (c)

Figure 7.   Comparison between FAZ segmentation methods. (a) Original OCTA scan and results from (b) 
manual and (c) AI-based segmentation.

Table 10.   AD diagnostic performance obtained from every radiomic feature. The mean and standard 
deviation are obtained from fivefold cross-validation.

Feature Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean (%)

Area 54 69 62 60 69 63.2± 5.0

Solidity 59 75 50 66 71 64.6± 8.0

Roundness 54 68 47 62 66 59.9± 7.0

Compactness 60 67 58 72 71 66.0± 5.0

Eccentricity 63 78 61 53 60 63.5± 8.0

All features 76 76 65 70 72 72.2± 4.2
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adjustments. As a result, we can provide a model that, for the first time, detects up to 90% of actual Alzheimer’s 
patients while providing a false positive rate of less than 10%.

Comparison between proposed and existing techniques
We compared and analyzed the differences between the proposed and existing techniques regarding various 
aspects, as summarized in Table 11.

OCTA provides scans in a short time, enabling efficient noninvasive FAZ analysis. In only one other study, 
OCTA was used for AD diagnosis (third column of Table 11)35. However, that study used only the FAZ area, 
discarding other radiomic features. We demonstrated the importance of using multiple FAZ features for AD 
diagnosis by improving the diagnostic performance when using the proposed technique compared with con-
ventional techniques that use a single feature (i.e., baseline 2).

Among existing studies using OCTA, Chan et al.68 and Mirshahi et al.50 used AI-based segmentation to extract 
the FAZ (fourth column of Table 11). They reported that using AI enabled the extraction of FAZ boundaries 
with better accuracy than existing signal processing methods, thereby validating the use of AI-based FAZ seg-
mentation in our technique. However, the contribution of the extracted FAZ to diagnosis was not confirmed 
in those studies. Our study has both technical and clinical significance because we showed that AI-based FAZ 
segmentation can improve the diagnostic performance for AD.

Shiihara et al.69 and Philip et al.70 extracted multiple FAZ features like in our study (fifth column of Table 11). 
However, they did not develop an ML model for diagnosing a specific disease using multiple FAZ features (sixth 
column of Table 11). Shiihara et al.69 found a small difference between individuals in other FAZ features in 
addition to the area for healthy subjects, thereby suggesting their potential as biomarkers. However, their study 
was limited to healthy subjects, without confirming the possibility of using multiple biomarkers for diagnos-
ing specific diseases. In contrast, we demonstrated that features other than the FAZ area are useful biomarkers 
for AD and developed an ML model for diagnosis. Philip et al.70 analyzed whether multiple FAZ features were 
individually correlated with primary open-angle glaucoma or exfoliation glaucoma, but they did not observe 
a correlation with a specific disease by combining multiple features. Therefore, they did not validate feature 
combinations. In addition, they did not implement a technique for disease diagnosis taking those features as 
inputs. Our study provides clinical and technical significance by overcoming existing limitations in AD diagno-
sis by implementing an ML model that receives multiple radiomic FAZ features as inputs and provides the AD 
diagnosis result as output.

Limitations
A major limitation of our study was the small sample size, which consisted solely of Asian individuals. Nev-
ertheless, to overcome this limitation, a fivefold cross-validation and a holdout test were applied in the paper. 
The limitation of this holdout test is that it relies on data from a single institution and lacks external validation. 
However, in our study, we tried to collect data for the fivefold cross-validation experiment and the holdout test 
at different periods, attempting to separate the data as effectively as possible. Furthermore, the exclusion of 
patients with known vascular disease from our study was another limitation. We could not evaluate whether 
these results are applicable to individuals who may have retinal microvascular alterations by other causes. In 
addition, the inclusion of participants with cognitive changes and positive biomarkers for AD limited compari-
sons with subjects with preclinical and positive biomarkers, such as mild cognitive impairment. Nevertheless, 
we demonstrated the diagnostic ability of FAZ with AI for AD and all individuals in this study, including those 
in the AD and NC groups, were screened by amyloid PET. In future work, a comparison between patients with 
mild cognitive impairment and NCs and longitudinal changes in FAZ in AD will be considered.

Conclusion
Employing an advanced AI-based methodology, we successfully automated FAZ segmentation and extracted 
a comprehensive array of radiomic FAZ features. The integration of FAZ area with these additional features 
presents a promising avenue for the development of robust and potentially transformative biomarkers for AD. 
Furthermore, our AI-driven FAZ analysis, encompassing automatic segmentation and multi-feature extraction, 

Table 11.   Characteristic of proposed and existing techniques. Unlike previous studies, our study covers all the 
listed aspects.

Study OCTA scans as input Target disease AI-based segmentation? Multiple FAZ features
Diagnosis considering multiple FAZ 
features

Werner et al.71 O Retinal vein occlusion. X X X

Shiihara et al.69 O NC X O X

Philip et al.70 O Exfoliation glaucoma
Primary open-angle glaucoma X O X

Chan et al.68 O Diabetic retinopathy O X X

Mirshahi et al.50 O Diabetic retinopathy O X X

O’Bryhim et al.35 O AD X X X

This study O AD O O O
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not only holds substantial promise for AD diagnosis but also extends its utility to the broader spectrum of retinal 
disorders, underlining its pivotal role in advancing clinical ophthalmology and neurology.

Data availability
The main data supporting the results of this study are available within the paper. The raw datasets from Samsung 
Medical Center are protected to preserve patient privacy, but they can be made available upon reasonable request 
if approval is obtained from the corresponding Institutional Review Board. For the request, please contact Don-Il 
Ham (di.ham@samsung.com).

Code availability
The code used in this study is available at https://​github.​com/​kskim-​phd/​Hybrid-​FAZ, which will be disclosed 
upon the publication or second/revised submission.
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