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Interpretable machine learning 
models for predicting in‑hospital 
and 30 days adverse events 
in acute coronary syndrome 
patients in Kuwait
Moh A. Alkhamis 1*, Mohammad Al Jarallah 2, Sreeja Attur 3 & Mohammad Zubaid 3

The relationships between acute coronary syndromes (ACS) adverse events and the associated risk 
factors are typically complicated and nonlinear, which poses significant challenges to clinicians’ 
attempts at risk stratification. Here, we aim to explore the implementation of modern risk 
stratification tools to untangle how these complex factors shape the risk of adverse events in patients 
with ACS. We used an interpretable multi-algorithm machine learning (ML) approach and clinical 
features to fit predictive models to 1,976 patients with ACS in Kuwait. We demonstrated that random 
forest (RF) and extreme gradient boosting (XGB) algorithms, remarkably outperform traditional 
logistic regression model (AUCs = 0.84 & 0.79 for RF and XGB, respectively). Our in-hospital adverse 
events model identified left ventricular ejection fraction as the most important predictor with the 
highest interaction strength with other factors. However, using the 30-days adverse events model, we 
found that performing an urgent coronary artery bypass graft was the most important predictor, with 
creatinine levels having the strongest overall interaction with other related factors. Our ML models 
not only untangled the non-linear relationships that shape the clinical epidemiology of ACS adverse 
events but also elucidated their risk in individual patients based on their unique features.

Cardiovascular diseases (CVD) continue to be the leading cause of unprecedented global public health and 
economic implications1. In fact, CVD mortalities represent approximately one-third of all deaths worldwide 
annually2–4. This is particularly true for Acute coronary syndromes (ACS), which constitute most of the mortali-
ties caused by CVDs3. Cardiac catheterization, percutaneous coronary intervention (PCI), and angiography are 
considered the gold standards in ACS diagnosis and intervention among clinicians5. Among these tools, cardiac 
catheterization is the most common cardiac intervention approach used worldwide, with more than 1 million 
procedures being performed annually in the United States alone6. Yet, the complexity of the epidemiology of ACS 
poses a remarkable challenge to the intervention capacity of primary and secondary care clinicians, leading to 
patient-related and procedure-related complications. However, risk stratification tools developed in the past few 
decades remarkably helped clinicians improve their diagnostic and prognostic efforts. These risk stratification 
tools were derived from large population-based studies and traditional statistical methods designed to capture 
comparisons and insights into the risk factors that predict ACS adverse events resulting from patient clinical 
conditions and in-hospital procedures. Yet, most of these tools neglect complex interactions and non-linear 
relationships between such risk factors, which are the primary cause for hindering their prediction’s accuracy on 
the individual level and, hence, their epidemiological plausibility. Machine learning (ML) models do not assume 
linear relationships and flexibly accommodate higher-order interactions to make more robust individualized 
predictions7,8.

Accounting for interactions in clinical predictions is statistically and epidemiologically critical, as the range 
of complications is multifactorial, which, for example, depends on whether the procedure is diagnostic or inter-
ventional, patient demographics, comorbidities, clinical symptoms at the time of presentation, and experience 
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of the operating clinician6. Also, complications can be either minor, such as discomfort at the operating site or 
significant such as myocardial infarction or death. Patients with severe comorbidities such as congestive heart 
failure or chronic renal failure are at higher risk of complications9. Furthermore, the long-term benefits and 
complications from highly invasive interventions combined with the patient’s risk status, such as their age or 
comorbidities, need to be considered. Clinicians commonly resort to early risk stratification tools which are com-
monly used to classify patients’ susceptibility to different ACS events according to their individual risk profile at 
the time of presentation. Popular risk stratification includes thrombolysis in myocardial infarction (TIMI)10 or 
global registry of acute coronary events (GRACE)11, which provides an overall quantitative prognosis for patients 
with ACS. Further, most interventional cardiologists resort to the National Cardiovascular Data Registry (NCDR) 
for catheterization percutaneous coronary intervention (NCDR-CathPCI) contemporary mortality risk model 
to predict potential adverse events resulting from their intervention procedures12.

The intrinsic limitation of inferences derived from population-based data, such as registries or randomized 
clinical trials in terms of generalizability, may represent a critical challenge for improving cardiac intervention 
outcomes. For example, the emergency department’s patient population or those excluded from the clinical trials 
might be underrepresented in such data13,14. Similarly, susceptible populations from certain geographical regions 
with specific genetic and environmental risk factors might also be unrepresented. Furthermore, in emergency or 
busy clinical settings, the early risk stratification of ACS patients may make intervention-related decisions fallible, 
leading to serious in or out-hospital implications15. Standard risk stratification tools can be used to customize 
personalized clinical interventions based on individual patient-specific predictions, and they mostly rely on a 
scoring system derived from a traditional statistical framework. However, these statistical frameworks mainly 
comprise stepwise regression models with many fixed assumptions on the nature of the data, including random-
ness, independence, and linear relationships between the risk factors and the outcome. These assumptions may 
make their generalizability to external cohorts unreliable in some circumstances, particularly when they require 
a preselected set of variables in the development stage, resulting in potential critical loss of information16,17.

Additionally, traditional regression models are highly susceptible to overfitting due to collinearity issues that 
arise between the risk factors when their dimension is significantly large (e.g., large population-based registry 
data)18. In contrast, ML models are remarkably flexible because they depend on minimal statistical assumptions 
and can robustly explore large volumes of data and a variety of variables (e.g., medical images and signals). Addi-
tionally, in the recent decade, a variety of modern statistical methods have been introduced that safeguard ML 
models from overfitting (e.g., k-fold cross-validation and feature selection)19. Therefore, they are more capable 
of capturing multidimensional non-linear complex relationships within clinical data and, thus, able to produce 
data-driven generalizable predictions14,16,17. Also, because ML-driven risk stratification approaches outperformed 
traditional scoring scales7,8,14,16,17, and the United States Food and Drug Administration has already approved the 
use of a few learning algorithms for intervention and diagnostic cardiology20. Here, we use a multi-algorithm ML 
ensemble statistical framework on a multicenter registry of ACS patients to investigate the factors that shaped the 
risk of in-hospital and 30 days adverse events. We used patient demographic, clinical characteristics, and clini-
cians’ intervention data to build two interpretable predictive risk models for short and long-term ACS adverse 
events. Moreover, we integrated and evaluated our models in the context of individual patient-level prognosis 
to address the advantages and limitations of our data-driven ML models in contrast to using traditional risk 
approaches in a clinical setting.

Methods
Data source
We retrieved our data from a prospective, multicenter, cohort-based registry, formally known as the Kuwait 
catheterization laboratory project (Kuwait CLAP) registry. The data comprises 1,976 records of all ACS patients 
undergoing coronary angiograms in two central and high-volume hospitals in Kuwait enrolled between February 
16, 2020, and February 22, 2021. The first participating hospital has 500 beds and serves approximately 600,000 
patients on an annual basis. At the same time the second hospital has 700 beds and serves approximately 1 mil-
lion people. Patients were followed prospectively for the duration of their admission. A case report form was 
used to collect data that mainly included elements from the 2013 report of American College of Cardiology (i.e., 
ACCF/AHA key data elements and definitions for measuring the clinical management and outcomes of patients 
with acute coronary syndromes and coronary artery disease). The key data elements included definitions for 
measuring patients’ clinical management and outcomes with acute coronary syndrome21. The form also had 
information about patient demographics, medical history, home medications, clinical management, in-hospital 
course, discharge, and 30-day follow-up data. The included patients ’ follow-up data (mainly rehospitalization 
status) were collected via the hospital electronic records and telephone interviews after 30 days of discharge.

The Kuwait CLAP involving human subjects were reviewed and approved by each participating hospital’s 
Ministry of Health central ethics committee and conformed to the ethical guidelines of the 1975 Declaration 
of Helsinki. In accordance with ethical guidelines for medical and health research involving human subjects in 
Kuwait, the requirement for written informed consent from the participants was waived by the review committee.

Here, we refer to our selected variables as ‘features’. We selected features thought to be relevant with a direct 
link to risk to the study outcomes. Thus, we reduced our data dimensionality to remove redundant information 
and improve computational efficiency, classification precision, data visualization and interpretation22. The final 
set of features included patient demographics, past medical history, presenting symptoms on admission, medi-
cation administered in the first 24 h from admission, in-hospital Cath-lab procedures, laboratory values before 
and after the In-hospital procedure, and discharge characteristics (Supplementary Table 1). We used in-hospital 
and 30 days of discharge adverse events as our study outcomes (Table 1). However, because many adverse events 
were rare and observed in the patients simultaneously (i.e., more than 85% of the affected patients had more 
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than one adverse event), we aggregated them to compose our two defined outcomes. Thus, our first outcome is 
defined as patients who had one or more in-hospital adverse events post-catheterization/PCI, while the second 
outcome is defined as patients who were rehospitalized within 30 days after discharge due to an ACS event and/
or related conditions (Table 1). Also, we used in-hospital adverse events as an independent predictor of adverse 
events 30 days after discharge. Additionally, discharge characteristics were excluded from the 30-day model 
(Supplementary Table 1). In this dataset, the aggregated prevalence of in-hospital and 30-day adverse events 
were 13.6% and 7.7%, respectively (Table 1).

Data processing
We used R software environmental and multiple R statistical packages for all the subsequent statistical analyses. 
We used a multi-algorithm ML ensemble statistical framework8,23, that constructs predictive models by com-
paring the performance of five supervised algorithms, including random forest (RF), gradient boosting (GB), 
extreme gradient boosting (XGB), support vector machine (SVM), and logistic regression (LR). Features were 
included in the models using their original forms (i.e., continuous variables were not converted into a different 
form and included as they are). We reduced the data dimensionality by excluding features with the largest mean 
absolute correlation (ρ > 0.9). Then, we used the ‘Boruta’ R package to control for feature multicollinearity by 
reducing the features to a final set of variables relevant to the subsequent prediction to help improve the perfor-
mance of the ML models24. We used a down-sampling strategy to control for class imbalance which may bias 
the predictive performance of the algorithms toward the majority class (i.e., patients with no adverse events)25. 
Briefly, this strategy down-samples the majority class to match its frequency with the minority class (i.e., patients 
with adverse events). For example, for the in-hospital model, we randomly downsampled the majority class by a 
factor of 5 (i.e., 269 patients with adverse events to 341 patients with no adverse events). However, for the 30 day 

Table 1.   Summary profile of the observed adverse events in the patients’ cohort. Summary statistics presented 
as n (%). CATH Catheterization, ACS Acute Coronary Syndrome, LVEF Left Ventricular Ejection Fraction, 
MI Myocardial Infarction, PCI Percutaneous Coronary Intervention, CABG Coronary Artery Bypass Graft, 
CVA Cerebrovascular Accident, PCI Percutaneous Coronary Intervention, RBC Red Blood Cells, LVF Left 
Ventricular Failure. *n = total number of adverse events; ni = individual adverse event.

*ni (ni%)

Post CATH/PCI clinical events (*n = 269; 13.6%)

 Recurrent angina 59 (21.9%)

 Infarction/reinfarction 19 (7.1%)

 Cardiogenic shock 43 (16.0%)

 Pericarditis 10 (3.7%)

 Active endocarditis 1 (0.4%)

 Contrast induced nephropathy 75 (27.9%)

 Mechanical complications 4 (1.5%)

 Temporary pacemaker 12 (4.5%)

 Heart failure 86 (32.0%)

 Cardiac arrest 24 (8.9%)

 CVA/stroke 12 (4.5%)

 Atrial fibrillation 42 (15.6%)

 Ventricular tachycardia 28 (10.4%)

 Mechanical ventilation 44 (16.4%)

 New requirement for dialysis 11 (4.1%)

 Bleeding 14 (5.2%)

 RBC whole blood transfusion 12 (4.5%)

 Acute stent thrombosis 12 (4.5%)

30 days outcomes after discharge/rehospitalization (n = 148; 7.7%)

 ACS 27 (18.0%)

 LVF 21 (14.0%)

 PCI 20 (14.0%)

 CABG 81 (55.0%)

 Arrhythmia 1 (0.7%)

 Other cardiac events 7 (4.7%)

 Stroke 1 (0.7%)

 Bleeding 4 (2.7%)

 Other non-cardiac 16 (11.0%)

 Unknown 1 (0.7%)
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model we down sampled the major class by a factor of 10 (see Supplementary File 1 & 2) At the same time, we 
randomly partitioned the data into training (80%) and testing (20%) testing sets using the K-fold cross-validation 
(CV) method (K = 10) to train and evaluate the ML models. Using the K-fold CV approach, we further split our 
data into 10 subsets (or folds) and iteratively trained (80% of the fold) and tested (20% of the fold) the model on 
each fold. Unlike the common cross-validation approach, which divides the data into single training and testing 
sets, the K-fold CV procedure can guard against overfitting and artificial inflation of the validation parameters 
described below26.

Model training and evaluation
We trained and created ML predictive models for post-catheterization adverse events using the set of features 
summarized in Supplementary Table 1. We used the ‘Random Forest’ R package27 to run the RF algorithm while 
we ran the GB, XGB, SVM, and LR using the ‘Caret’ R package28. We used the tenfold cross-validation methods 
to estimate the validation parameters of each algorithm and evaluate their predictive performance. The valida-
tion parameters were estimated by averaging the confusion matrix across all of the 10 folds (described above) 
and included the receiver operator characteristic (ROC), accuracy (Acc), sensitivity (Se), specificity (Sp), and 
Matthew’s correlation coefficient (MCC). We used the for the training process of all models. The Caret R has 
been designed to accommodate the Tidyverse R coding structure and workflow (https://​www.​tidyv erse.org/), 
which is also the basis for our statistical framework implemented in this study (see Supplementary Files 1 & 2). 
The Tidymodels coding structure intuitively allows users to utilize a variety of data preprocessing steps, such as 
data imputation and dealing with imbalanced datasets (as described above). Also, the Caret package (based on 
the Tidymodels approach) provides a semi-automatic streamlined approach for tuning and optimizing models’ 
hyperparameters. Because it is difficult to determine priori the exact hyperparameter values29, for all of the 
selected ML algorithms, we used default grid parameter setting in the Tydimodels syntax to train and select the 
best-performing model automatically. More specifically, we used the “train” function, implemented in the Caret 
package, which extensively resamples the grid, to evaluate how the selected values of each tuning parameter, 
such as learning rate, can improve model prediction30. A comprehensive guide to the default hyperparameters 
used in our selected ML algorithms is provided at www.​tidym​odels.​org/​find/​parsn​ip/. We then selected the best 
predictive model for the probability of post-catheterization adverse events by comparing the estimated validation 
parameters of each algorithm using the testing dataset.

Model interpretation
We used the best-performing predictive model of each outcome to infer feature importance, partial dependence, 
interaction strength, and relationships between the features and the adverse events in randomly selected indi-
vidual patients. Feature importance was computed using Breiman’s method implemented in ‘iml’ R package31,32. 
We then calculated the global and individual effects of each feature on the outcome and each observation from 
the dataset for the top six important features. We plotted these effects using partial dependence (PD) plots and 
centered individual conditional expectation (cICE), respectively33. We used Friedman’s H-statistic to infer feature 
interaction strength34. Briefly, Friedman’s H-statistic utilizes the partial dependency decomposition to flexibly 
quantify feature interaction strength, which represents the proportion of the variance in the data explained by 
the interaction34. Finally, we computed Shapley values (φ) to estimate individual-level risk predictions for ran-
domly selected patients and the contribution of each feature to those predictions35, which are based on a game 
theory approach.

Results
For the in-hospital adverse events model, the RF algorithm outperformed (AUC = 0.84; Table 2) other algo-
rithms in terms of predictive performance (i.e., AUC, Acc, Se, Sp, MCC; Table 2) and correctly predicted 84% 
of the events (Acc = 0.81). However, the XGB algorithm outperformed other algorithms (AUC = 0.79; Table 2) 
in correctly predicting adverse events 30 days after discharge (Acc = 0.78; Table 2). Notably, while the LR model 
performance was fair for predicting in-hospital adverse events, it had the poorest predictive performance for 
the 30 days adverse events model (AUC = 0.58; Table 2).

Our ML statistical framework showed that left ventricular ejection fraction (LVEF), followed by furosemide 
administrated in the first 24 h after catheterization, heart failure, right ventricular systolic pressure (RVSP), 
systolic blood pressure, and age were the top six important features for predicting in-hospital adverse events 
(Fig. 1A). Nevertheless, the 30 days adverse events model revealed that urgent coronary artery bypass graft 
(CABD) followed by the type of culprit artery, percutaneous coronary intervention (PCI) with stents places, 
RVSP, the post-catheterization platelets lowest concentration, and the occurrence of an in-hospital adverse event 
were the most important predictors for the 30 days model (Fig. 1B).

PD plots revealed that the risk of in-hospital adverse events increased when patients had an approximate 
LVEF value of less than 40% (Fig. 2A), furosemide in the first 24 h after catheterization (Fig. 2B), heart failure 
at presentation (Fig. 2C), an RVSP value greater than 40 mmHg (Fig. 2D), systolic blood pressure less than 100 
and greater than 200 mmHg (Fig. 2E), and aged above 60 years old (Fig. 2F). However, patients who had urgent 
CABG (Fig. 2G), multiple culprit arteries (Fig. 2H), PCI with stents placed (Fig. 2I), RVSP value greater than 
40 mmHg (Fig. 2J), lowest post catheterization platelets concentrations greater than 400 × 109/L (Fig. 2K) and 
an ACS post catheterization in-hospital adverse event (Fig. 2L) are more likely to experience a 30 days adverse 
event after discharge.

We inferred that LVEF on admission had the strongest overall interactions with other features in shaping 
the risk of in-hospital post-catheterization adverse events (Fig. 3A). Also, we found that medications admin-
istrated in the first 24 h after catheterization, such as furosemide (Fig. 3B,C) and aldosterone (Fig. 3B,C) were 

https://www.tidyv
http://www.tidymodels.org/find/parsnip/
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the top two interacting predictors with LVEF. This is followed by age, in which patients above 60 years old with 
LVEF values below 40% aggravate the risk of in-hospital adverse events (Fig. 3E). Additionally, our in-hospital 
adverse events model showed that interactions between patients’ prior history of heart failure, chronic renal 
failure, and diabetes, on one side and LVEF on other, are significant in increasing the risk of in-hospital adverse 
events (Fig. 3F–H). Nevertheless, the 30-days adverse events model indicated that the prior median creatinine 
concentration has the strongest overall interactions with other features (Fig. 4A). Top six most important inter-
acting features are illustrated in Fig. 4B. The model shows that patients undergoing urgent CABG with a prior 
median blood creatinine concentration greater than 100 µmol/L slightly elevated their risk of 30-day adverse 
events (Fig. 4C). While the interaction between creatinine concentration and receiving angiotensin-converting 
enzyme inhibitor (ACEI) on discharge was important (Fig. 4D), the difference in the risk of adverse events for 
patients receiving it and not receiving was inconclusive (i.e., had no distinct trends). However, patients with 
prior creatinine greater than 100 µmol/L and on angiotensin receptor blocker (ARB) and insulin injection were 
more likely to experience an adverse event 30 days after discharge (Fig. 4E,F). Further, our model captured a 
significant interaction between prior creatinine and post-catheterization lowest platelet concentrations (Fig. 4G). 

Table 2.   Comparative cross-validation performance parameters for the machine learning models of each 
outcome. MCC = Matthew’s correlation coefficient. Model highlighted in gray is the best performing model. 
AUC​ Area Under the Curve, SE Standard Error, RF Random Forest, GM Gradient Boosting, XGB Extreme 
Gradient Boosting, SVM Support Vector Machine, LR Logistic Regression.

Model AUC ± SE Accuracy (%) ± SE Specificity (%) ± SE Sensitivity (%) ± SE MCC ± SE

In-hospital adverse events

 RF 0.84 ± 0.16 80.92 ± 1.27 81.29 ± 1.31 66.86 ± 1.56 0.40 ± 0.00

 GB 0.71 ± 0.01 71.15 ± 2.16 64.12 ± 2.25 64.12 ± 3.88 0.28 ± 0.00

 XGB 0.65 ± 1.01 67.19 ± 1.46 68.67 ± 1.49 67.70 ± 0.49 0.23 ± 0.00

 SVM 0.78 ± 0.03 73.83 ± 1.76 73.90 ± 1.82 69.62 ± 1.74 0.37 ± 0.00

 LR 0.72 ± 0.40 74.80 ± 2.33 75.97 ± 2.38 66.71 ± 1.55 0.19 ± 0.00

30 Days adverse events

 RF 0.68 ± 0.00 62.24 ± 1.39 62.18 ± 1.42 65.92 ± 1.25 0.33 ± 0.00

 GBM 0.77 ± 0.01 68.76 ± 1.69 69.67 ± 1.74 70.66 ± 1.71 0.36 ± 0.00

 XGB 0.79 ± 1.06 78.01 ± 1.80 74.06 ± 1.83 71.7 ± 1.98 0.38 ± 0.00

 SVM 0.71 ± 0.02 62.55 ± 1.76 62.46 ± 1.82 67.50 ± 1.59 0.34 ± 0.00

 LR 0.58 ± 0.10 63.89 ± 2.66 61.79 ± 1.34 58.15 ± 1.88 0.32 ± 0.00

Figure 1.   Relative importance of the features in their contribution to the study outcomes. (A) In-hospital 
adverse events. (B) 30 days adverse events. ce = classification error loss function (“ce”) used to compute feature 
importance. Black dots indicate median “ce”. CATH Catheterization, CAD Coronary Artery Disease, ACS 
Acute Coronary Syndrome, CCS Canadian Cardiovascular Society, LVEF Left Ventricular Ejection Fraction, 
RVSP Right Ventricular Systolic Pressure, AF Atrial Fibrillation, MI Myocardial Infarction, PCI Percutaneous 
Coronary Intervention, CABG Coronary Artery Bypass Graft, TIA Transient Ischemic Attack, CVA 
Cerebrovascular Accident, STEMI ST-segment Elevated Myocardial Infarction, NSTE-ACS Non ST-segment 
Elevation Acute Coronary Syndrome, ACEI Angiotensin Converting Enzyme Inhibitor, ARB Angiotensin 
Receptor Blocker, Coronary Artery, CABG Coronary Artery Bypass Graft, Hb Hemoglobin, BMI body mass 
index.
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Here, we found that the risk is remarkably increased at prior creatinine greater than 100 µmol/L with either 
platelet concentrations above 18 × 109/L and less than 8 × 109/L. Also, like the in-hospital adverse events model, 
the 30-days model suggests significant interaction between creatinine concentration and receiving furosemide 
within 24 h after catheterization (Fig. 4H).

Our Shapley value estimates by our final models suggest that a patient is more likely to experience several 
in-hospital adverse events simultaneously, including contrast-induced nephropathy, heart failure, arterial fibril-
lation, new requirement for dialysis, and RBC whole blood transfusion (probability = 0.79), when their RVSP is 
equal to 55 mmHg, with chronic renal failure, aged 75 (Fig. 5A). While a patient observed with in-hospital acute 
thrombosis (probability = 0.28), was characterized by the RVSP is equal to 35 mmHg, with prior CVA and PCI 
performed (Fig. 5B). In contrast, in an observed patient with LVEF equal to 58% at presentation, no PCI was 
performed, aged 52 is less likely to experience in-hospital adverse events (probability = 0.04) after catheterization 
(Fig. 5C). Also, we inferred that patient had urgent CABG with multiple culprit arteries and stent placed are most 
likely to be re-hospitalized 30 days after discharge, due to reoccurring ACS event, that require another CABG, 
(probability = 0.72; Fig. 6A). However, if an observed patient had no need for urgent CABG, but performed a 
PCI with stents placed is less likely to experience adverse events after discharge (probability = 0.09; Fig. 6B).

Discussion
We used an interpretable ML statistical framework and the Kuwait CLAP registry data to reveal deeper insights 
into the risk factors that shape the outcomes of admitted patients with ACS during hospital stay and at 30 days 
from discharge. Also, we demonstrated how our ML analytical pipeline could untangle the unique and complex 
relationships between the different risk factors related to patient characteristics and in-hospital clinical proce-
dures. Also, we showed that our most important predicting features had remarkable non-linear relationships 
with other baseline characteristics in shaping the risk of clinical outcomes. These findings not only support and 
improve clinical practice but assist with alleviating the public health and economic implications of ACSs.

Our in-hospital adverse events ML model identified LVEF as the most important risk factor (Fig. 1) with 
the highest interaction strength with other features (Fig. 3). This is unsurprising since many past studies high-
lighted the critical role of low LVEF values in influencing the risk of post-catheterization in-hospital adverse 
events36–39. Here, our cICE plot demonstrated that LVEF values on the admission of less than 40% increase the 
risk of post-catheterization in-hospital events (Fig. 2A). However, this risk is aggravated particularly in older 
patients (Figs. 2F and 3E) with heart failure (Figs. 2C and 3F), high RVSP (Fig. 2D) and irregular systolic blood 

Figure 2.   Centered Individual Conditional Expectation (cICE) summary plots for the top six important 
features that contributed to predicted risk of each outcome. (A–F) In-hospital adverse events. (G–L) 30 days 
adverse events. CATH Catheterization, LVEF Left Ventricular Ejection Fraction, RVSP Right Ventricular Systolic 
Pressure, CABG Coronary Artery Bypass Graft, PCI Percutaneous Coronary Intervention.
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pressure (Fig. 2E). All these features represent severe cardiac insufficiency leading to poor long-term prognosis, 
and thus, need to be taken into consideration when performing any catheterization procedure in ACS patients39. 
Further, our results showed that patients receiving furosemide within 24 h of admission are at elevated risk of 
in-hospital adverse events (Fig. 2B).

Also, interaction plots illustrated a significant non-linear relationship between low LVEF values and receiving 
furosemide in amplifying the risk of adverse events (Fig. 3C)40. Furosemide is commonly used as a loop diuretic 
for patients with heart failure. Therefore, our results reflect that patients with severe cardiac outcomes (such 
as low LVEF) requiring a high dose of furosemide may have a poor prognosis41. The same may also be implied 
in patients receiving high doses of aldosterone within 24 h of their admission, as shown in Fig. 3D. Moreover, 
adverse events may also result from the rare side effect of these medications, thus combining them with other 
medications may improve their therapeutic outcomes42. Additionally, our model not only demonstrated that 
patients with chronic renal failure and diabetes are at high risk of adverse events as suggested elsewhere38,43–45, 
but revealed significant interactions with low LVEF values (Fig. 3G,H). These findings agree with the notion that 
the combination of hyperglycemia and renal insufficiency associated with low LVEF values is the leading cause 
of in-hospital adverse events, particularly in patients who have undergone a PCI operation38. Also, these poor 
outcomes might reflect the low cardiac output, hemodynamic instability, and reduced renal blood flow, which 
leads to hypoxia and the generation of reactive oxygen species46.

Nevertheless, the 30-days adverse event model inferred that highly invasive intervention procedures, such 
as performing urgent CABG, having multiple culprit arteries, with stents placed during PCI, are significant 

Figure 3.   Plots showing important feature interactions that shape the risk of in-hospital adverse events after 
catheterization are calculated using Friedman’s H-statistic. (A) Ranks the overall strength of interaction of each 
feature with other features; (B) Ranks the overall strength of interaction of each feature with % left ventricular 
ejection fraction (LVEF); (C–H) Partial dependence plots at the right represent the top six interactions 
that shaped the risk of in-hospital adverse events. (C) interaction between 24 h furosemide and LVEF; (D) 
interaction between 24 h aldosterone and LVEF; (E) interaction between Age and LVEF; the heat matrix 
corresponds to the risk of in-hospital adverse effects, in which lighter shades of red indicate lower risks, and 
darker shades of reds indicate higher risks; (F) interaction between prior history of heart failure and LVEF; (G) 
interaction between chronic renal failure and LVEF; (H) interaction between diabetes and LVEF. (C–H) tick 
marks on the x-axis show the observed individual values of the patients enrolled in the study. CAD Coronary 
Artery Disease, ACS Acute Coronary Syndrome, CCS Canadian Cardiovascular Society, LVEF Left Ventricular 
Ejection Fraction, RVSP Right Ventricular Systolic Pressure, AF Atrial Fibrillation, MI Myocardial Infarction, 
PCI Percutaneous Coronary Intervention, CABG Coronary Artery Bypass Graft, TIA Transient Ischemic 
Attack, CVA Cerebrovascular Accident, STEMI ST-segment Elevated Myocardial Infarction, ACEI Angiotensin 
Converting Enzyme Inhibitor, ARB Angiotensin Receptor Blocker, Coronary Artery, Hb Hemoglobin, BMI 
body mass index.
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predictors of poor outcomes after discharge (Fig. 2G–I). These findings confirm the results of past studies in 
terms of reflecting the severity of the patient’s ACS condition16,47. Also, this is evidenced by the importance of 
the cardiological and hematological indicators such as RVSP and platelets, respectively (Fig. 2J,K), as well as 
having an in-hospital adverse event (Fig. 2L). However, unlike previous inferences3,6,47, our model uncovered 
the strong non-linear relationships between admission creatinine levels (Fig. 4A) and other features (Fig. 4B) 
in shaping the risk of adverse events after discharge (Fig. 4A). Here, our inferences demonstrate that patients 
requiring urgent CABG with creatinine levels less than 50 µmol/L or greater than 100 µmol/L are more likely to 
experience a poor post-operative prognosis (Fig. 3C). This result is expected since abnormal serum creatinine 
levels correspond to other comorbidities, particularly chronic kidney disease, exacerbating the long-term risk 
of postoperative adverse events48. Similarly, serum creatinine had a strong non-linear relationship with ACEI 
and ARB intake after discharge (Fig. 4D,E) in hypertensive patients.

Nonetheless, our results show minor discrimination in the risk between patients discharged with and without 
ACEI (Fig. 4D). In contrast, remarkable discrimination was inferred between patients discharged with and with-
out ARB medication (Fig. 4E). These findings quantify the notion that ARB may increase the risk of myocardial 
infarction (MI) in hypertensive patients, and therefore, dispensing ACEI to control their blood pressure may 
be more appropriate, particularly for acute MI patients, as suggested elsewhere49. Also, our model was able to 

Figure 4.   Plots showing important feature interactions that shape the 30-day adverse events after discharge 
calculated using Friedman’s H-statistic. (A) Ranks the overall strength of interaction of each feature with other 
features; (B) Ranks the overall strength of interaction of each feature with prior creatinine median; (C–H) 
Partial dependence plots at the right represent the top six interactions that shaped the risk of the 30-days 
adverse events. (C) interaction between urgent CABG and prior creatinine median; (D) interaction between 
discharge ACEI and prior creatinine median; (E) interaction between discharge ARB and prior creatinine 
median; (F) interaction between discharge type of antidiabetic medication and prior creatinine median; (G) 
interaction between post platelets lowest and prior creatinine median; the heat matrix corresponds to the risk 
of 30-days adverse effects, in which lighter shades of red indicate lower risks and darker shades of reds indicate 
higher risks. (H) interaction between 24 h furosemide and prior creatinine median. (C–H) tick marks on the 
x-axis show the observed individual values of the patients enrolled in the study. CATH Catheterization, CAD 
Coronary Artery Disease, ACS Acute Coronary Syndrome, CCS Canadian Cardiovascular Society, LVEF Left 
Ventricular Ejection Fraction, RVSP Right Ventricular Systolic Pressure, AF Atrial Fibrillation, MI Myocardial 
Infarction, PCI Percutaneous Coronary Intervention, CABG Coronary Artery Bypass Graft, TIA Transient 
Ischemic Attack, CVA Cerebrovascular Accident, STEMI ST-segment Elevated Myocardial Infarction, NSTE-
ACS Non ST-segment Elevation Acute Coronary Syndrome, ACEI Angiotensin Converting Enzyme Inhibitor, 
ARB Angiotensin Receptor Blocker, LAD Left Anterior Descending, LCX Left Circumflex, RCA​ Right Coronary 
Artery, LIMA Left Internal Mammary Artery, RIMA Right Internal Mammary Artery, Hb = Hemoglobin.
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discriminate the broad spectrum of risk of poor outcomes among diabetic patients with abnormal serum cre-
atinine levels (Fig. 4F). These results suggest that severely diabetic patients (i.e., who are under insulin injection 
as a proxy) are more likely to experience adverse events than moderately diabetic patients (i.e., who are under 
oral medication). Indeed, the complex angiographic pattern extending between the mid and distal arteries of 
ACS patients with severe diabetes is characterized by a multivessel diffuse plaque, making revascularization 
quite challenging for clinicians50. Thus, interventional cardiologists and cardiothoracic surgeons might need 
to implement an individualized approach with a multidisciplinary heart team on severely diabetic patients to 
minimize poor outcomes after discharge50.

One limitation of this study is the aggregation of positive outcomes into one category in our cohort. Yet, the 
rarity, complexity and broad spectrum of outcomes (Table 1) made it difficult for us to generate a representa-
tive model for each adverse event. However, the aggregation of the adverse events increased our computational 
efficiency, substantially improved the predictive performance of our ML algorithms, and facilitated the practi-
cal interpretation of our models. A second limitation of the Kuwait CLAP registry is the population size, and 
therefore generalizability of our inferences might be biased toward the population that comprised our analyses. 
That said, many of our findings agree with past studies regarding short- and long-term adverse events resulting 
from post-catheterization. Furthermore, our analysis mainly focuses on revealing complex relationships in the 
available data that might be useful for improving clinical decision-making related to the diagnostic and prog-
nostic efforts in the same population where the data were retrieved. This is in addition to the fact that data is 
being collected from only sites that provide cardiological services in the country, as described above, making it 
representative of the whole population of Kuwait. Also, our k-fold cross-validation procedure lessens the chances 
of overfitting, increasing the robustness of its subsequent inferences. Nevertheless, future studies will be aimed 
at applying our analytical pipeline on a larger sample size and will be focused on building specific models for 
the most prevalent adverse events.

The complexity of ACSs epidemiology, the growing volume of cardiac intervention procedures with their 
related data, and the highly non-linear relationships between patient baseline characteristics, clinical procedures, 
and interventions highlight the utility and robustness of our ML statistical framework. One important highlight 
of our analytical pipeline is the ability to flexibly explore heterogeneous treatment effects (i.e., effect modification 
and beyond) comprising multiple features simultaneously rather than overall average intervention effects using 
one-way or more interaction terms as in traditional regression models51. Due to the tedious task of modelling 
and interpreting all possible interaction terms, rigorous evaluation of heterogeneous treatment effects has yet to 
be widely explored in clinical epidemiology52. As shown in Figs. 3 and 4, investigators can intuitively interrogate 

Figure 5.   Feature value contributions for the respective risk of in-hospital adverse events based on Shapley 
Values (φ) for three individual patients. (A) a patient who had multiple severe in-hospital adverse events; (B) 
a patient who had moderate in-hospital adverse events; (C) a patient who did not have an in-hospital adverse 
event after catheterization; Red bars represent positive Shapley values and indicate that this feature increased the 
risk of the outcome, while blue bars represent negative Shapley values and suggest that this feature decreased the 
risk of the outcome. The values next to each feature represent the observed value of that feature for that patient. 
CCS Canadian Cardiovascular Society, LVEF Left Ventricular Ejection Fraction, RVSP Right Ventricular Systolic 
Pressure, AF Atrial Fibrillation, MI Myocardial Infarction, PCI Percutaneous Coronary Intervention, TIA 
Transient Ischemic Attack, CVA Cerebrovascular Accident, STEMI ST-segment Elevated Myocardial Infarction, 
NSTE-ACS Non ST-segment Elevation Acute Coronary Syndrome, ACEI Angiotensin Converting Enzyme 
Inhibitor, ARB Angiotensin Receptor Blocker, CABG Coronary Artery Bypass Graft, Hb Hemoglobin, BMI body 
mass index.
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multiple interactions to capture clusters of subgroups showing different feature-outcome effects. For example, 
Fig. 3G simultaneously shows how the risk of adverse in-hospital events has distinct patterns of over six signifi-
cant interactions. In these interactions, the highest risk of adverse events notably peaks over certain clusters of 
patients with specific interrelated features (Fig. 3C–H). This allows clinicians to assess the effectiveness of their 
interventions and formulation of targeted approaches for reducing cardiovascular adverse events for individual 
clusters of patients. Wiemken and Kelley., 2020 extensively discussed the advantage of the ML algorithmic 
approach in dealing with interactions, as well as how traditional stratified regression models and the inclusion 
of interaction terms can lead epidemiologists to the issue of multiple testing bias51.

Here, our ML models had good and similar predictive performance compared to past studies in terms of 
evaluation parameters (e.g., AUCs = 0.84 & 0.79 for the in-hospital and 30-day adverse events models, respec-
tively, Table 2)7,14,53–55. Further, we showed how RF and XGM algorithms can remarkably outperform traditional 
models such as logistic regression (Table 2). Subsequently, many studies also demonstrated that our statistical 
approach outperforms standard risk stratification tools such as TIMI and GRACE7,17,54. However, many of these 
ML studies mainly focused on their models’ predictive power (i.e., using a black-box approach), which they did 
not embrace their interpretability in a clinical setting. Hence, a readily interpretable model will provide new 
insights into the complex epidemiology of adverse events and be easily adopted by cardiologists to be imple-
mented in their practice. Given that the Middle East has the highest incidence of CADs on a global scale4, our 
study represents the first attempt to utilize an interpretable ML statistical framework focused on uncovering 
complex relationships to improve clinicians’ intervention efforts.

Besides the inherent limitations of the statistical framework used to build standard risk stratification tools, the 
generalizability of their inferences might also be restricted to specific populations. Indeed, the environmental, 
genetic, and clinical settings and resources might differ substantially between countries and regions worldwide. 

Figure 6.   Feature value contributions for the respective risk of 30-days adverse events based on Shapley Values 
(φ) for two individual patients. (A) a patient who had an adverse event 30 days after discharge; (B) a patient who 
did not have an adverse event 30 days after discharge. Red bars represent positive Shapley values and indicate 
that this feature increased the risk of the outcome, while blue bars represent negative Shapley values and suggest 
that this feature decreased the risk of the outcome. The values next to each feature represent the observed value 
of that feature for that patient. CCS Canadian Cardiovascular Society, LVEF Left Ventricular Ejection Fraction, 
RVSP Right Ventricular Systolic Pressure, AF Atrial Fibrillation, MI Myocardial Infarction, PCI Percutaneous 
Coronary Intervention, TIA Transient Ischemic Attack, CVA Cerebrovascular Accident, STEMI ST-segment 
Elevated Myocardial Infarction, NSTE-ACS Non ST-segment Elevation Acute Coronary Syndrome, ACEI 
Angiotensin Converting Enzyme Inhibitor, ARB Angiotensin Receptor Blocker, CABG Coronary Artery Bypass 
Graft, Hb Hemoglobin, BMI body mass index.



11

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1243  | https://doi.org/10.1038/s41598-024-51604-8

www.nature.com/scientificreports/

Thus, a customized risk stratification tool based on local data will provide more plausible and generalizable infer-
ences for its source population than global-based tools. Therefore, we further elucidate the remarkable applicabil-
ity of Shapley values, a game theoretic approximation, to interrogate in finer scales what each model represents 
regarding the predicted risk of adverse events (e.g., why a particular patient had a poor post-catheterization 
outcome, while the other did not?). For example, the in-hospital model inferred remarkably different magnitudes 
of risk for different types of adverse events in individual patients instead of averaging over the risk profiles of these 
patients (Fig. 5). Here, our model predicted high probabilities for specific adverse events (P = 0.79; Fig. 5A), such 
as in-hospital heart failure and contrast-induced nephropathy in older patients with chronic renal failure who 
had an urgent CABG. However, midrange probabilities were predicted for other adverse events, such as acute 
thrombosis (P = 0.28; Fig. 5B), in younger patients with prior CVA and who had a basic PCI. Thus, both types 
of patients had notably distinct demographics and clinical features with different requirements for in-hospital 
procedures. Additionally, for a randomly selected patient who had an adverse event 30 days after discharge, 
having an urgent CABG with multiple culprit arteries and stents placed during PCI put that patient at high risk 
of having a poor outcome (i.e., 72% chance; Fig. 6A). In contrast, under the same predictive model, the other 
selected patient who had no adverse events 30 days after discharge, entirely lacks such risk profile (Fig. 6B).

Finally, the Shapely statistical procedure assigns positive and negative values for the features that increased 
and/or decreased the probability of adverse events in individual patients, respectively (Figs. 5 and 6). Hence, using 
such an intuitive approach can provide additional guidance to the clinician’s diagnostic and prognostic efforts 
and aid in allocating intervention resources to patients at higher risk, whether in-hospital or after discharge. Yet, 
additional evaluation of the technical feasibility and clinical plausibility are crucial steps before integrating such 
predictive models into the standard healthcare systems15.

Conclusion
The incidence of ACS has startlingly doubled over the past few years, and thus, the unparalleled rising demand 
for cardiological interventions is increasingly prompting healthcare professionals to seek novel methods of 
anticipating adverse events and accordingly better allocate their limited resources to enhance patient outcomes 
and decrease long-term public health and economic implications. Further applications of our interpretable ML 
statistical framework to guide interventions will help improve the quality of life for both health professionals 
and their patients. In this study, we generally found that presenting symptoms on admission and catheterization 
procedures were the important variables shaping the risk of in-hospital and 30-day adverse events, respectively. 
While worth noting that these two sets of features are considered proxies for the severity of the patient’s condition. 
We illustrated how our models outperformed traditional statistical and risk stratification methods due to their 
minimal statistical assumptions, ability to quantify complex non-linear relationships and elucidate individual 
patient-predicted risk based on their unique characteristics in finer scales. To our knowledge, fully interpretable 
ML models have not been widely used in the Middle East. Thus, our ML-based risk stratification approach can 
improve clinicians’ intervention efforts by providing precise epidemiological insights into ACS adverse events.

Data availability
All of the data relevant to this study were summarized in the body of the manuscript, figures and tables. 
Original raw data can be provided upon a reasonable request by the corresponding author Moh A. Alkhamis 
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