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Crowdsourced human‑based 
computational approach 
for tagging peripheral blood smear 
sample images from Sickle Cell 
Disease patients using non‑expert 
users
José María Buades Rubio 1, Gabriel Moyà‑Alcover 1,2, Antoni Jaume‑i‑Capó 1,2* & 
Nataša Petrović 1

In this paper, we present a human‑based computation approach for the analysis of peripheral blood 
smear (PBS) images images in patients with Sickle Cell Disease (SCD). We used the Mechanical 
Turk microtask market to crowdsource the labeling of PBS images. We then use the expert‑tagged 
erythrocytesIDB dataset to assess the accuracy and reliability of our proposal. Our results showed 
that when a robust consensus is achieved among the Mechanical Turk workers, probability of error is 
very low, based on comparison with expert analysis. This suggests that our proposed approach can 
be used to annotate datasets of PBS images, which can then be used to train automated methods for 
the diagnosis of SCD. In future work, we plan to explore the potential integration of our findings with 
outcomes obtained through automated methodologies. This could lead to the development of more 
accurate and reliable methods for the diagnosis of SCD.

Supervised machine learning methods rely on tagged training  data1. The more tagged training data that is avail-
able, the more accurately the model can learn to recognize patterns and generalize to unseen data.

Crowdsourcing and Human-Based Computation (HBC) has become an increasingly popular approach for 
acquiring training labels in machine learning classification tasks, as it can be a cost-effective way to share the 
labeling effort among a large number of annotators. This approach can be particularly useful in cases where 
expert labeling is expensive or not feasible, or where a large amount of labeled data is needed to train a machine 
learning  model2. There exist various tactics for human users to contribute their problem-solving  skills3:

Altruistic contribution This strategy involves appealing to the altruistic nature of individuals willing to con-
tribute their time and skills to solve problems for the common  good4–6.
Gamification This strategy involves creating engaging and fun video games incorporating problem-solving 
 tasks7–9.
Forced labor This strategy involves forcing website users to perform a task if they want to use its  services10,11.
Microtask markets This strategy involves breaking down complex tasks into smaller, simpler tasks and then 
outsourcing them to a large group of  people12,13.

Sickle Cell Disease (SCD) is a serious inherited blood disorder that affects millions of people worldwide. 
The disease is caused by a mutation in the HBB gene, which codes for one of the components of the hemoglobin 
protein, which produces abnormal hemoglobin molecules that can cause the Red Blood Cells (RBCs) to have the 
shape of a sickle or half-moon instead of the smooth, circular shape as normal RBCs  have14. According to data 
from the World Health Organization (WHO)15, it is estimated that approximately 5% of the global population 
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possesses the genetic traits associated with haemoglobin disorders, primarily SCD and thalassaemia. Further-
more, more than 300,000 infants born annually are afflicted with severe haemoglobin disorders. Globally, SCD 
resulted in 112,900 fatalities in 1990, 176,200 fatalities in 2013, and 55,3000 fatalities in 2016, as reported in 
previous  studies16,17.

Morphological analysis of Peripheral Blood Smear (PBS) is a vital diagnostic aid for SCD. PBS cannot be 
used for diagnosing newborns (due to sickling of cells not occurring until the baby is a bit older and switches 
from producing hemoglobin F to hemoglobin A), which is actually the optimal time of diagnosing SCD. It is 
thus only suitable for diagnosing older babies/children and adults, but also useful for monitoring treatment 
outcomes of already diagnosed patients. However, it is a labor-intensive and time-consuming process, which can 
lead to delays in diagnosis and treatment. To address this issue, automated methods for analyzing blood samples 
are developed, which use image analysis and machine learning algorithms to detect and count sickle  cells18–20. 
Due to this demanding and prolonged process, there is limited public availability of tagged PBS datasets from 
patients with  SCD14,18,21–23.

We performed a systematic literature  review24 about the use of crowdsourcing HBC systems for the analysis 
of medical images. From the findings of this systematic literature review, we derived guidelines for practition-
ers and scientists to help them improve their research on the topic. Non-expert HBC for RBC analysis showed 
promising results to detect malaria parasites in digitized blood sample  images8,9 and a first attempt for  SCD25. 
In the literature, we also found non-expert HBC approaches used for labeling various types of medical  images24, 
including tomographs, MRIs, retinal images, breast cancer images, endoscopic images, microscopy images, 
polyps, and biomarkers. Mitry et al.26 showed encouriging results of crowdsourcing in retinal image analysis. 
They achieved sensitivity of 96% in normal versus severely abnormal detections, even without any restriction on 
eligible participants. Lung nodule detection with sensitivity of over 90% for 20 patient CT datasets 27 showed that 
crowdsourcing can provide highly accurate training data for computer-aided algorithms. Analysing biomedical 
images in Gurari et al. 28, Gurari et al. found that after experts, non-experts performed better than algorithms 
and that fusing those results together yielded improved final results.

In this paper, we present an approach for the analysis of PBS images in patients affected by SCD through 
crowdsourcing HBC with non-expert individuals using the Mechanical Turk (MTurk) that is an online crowd-
sourcing platform that allows individuals and businesses to outsource small tasks or “Human Intelligence Tasks” 
to a global network of workers. The design and experimental framework of our approach strictly adhered to the 
guidelines recommended by Petrovic et al.24 in the context of crowdsourcing methodologies. Additionally, we 
leveraged the expert-tagged erythrocytesIDB dataset, provided by Gonzalez et al.18, to establish the accuracy and 
reliability of our analysis. We utilized the predefined categories by the dataset: circular, elongated, and other cell 
classifications to facilitate SCD diagnosis, as meticulously curated and labeled by medical experts, to maintain 
consistency with the dataset’s structure, crucial for accurate analysis and cross-study comparisons.

The aim of our research was not to substitute automated procedures utilized for diagnostic assistance in the 
context of patients afflicted with SCD. Instead, the main objective was to investigate the feasibility of using HBC 
to help label large datasets to facilitate the training of automated methods, particularly in situations where expert 
assistance is not possible. In such instances, we were chiefly interested in determining the circumstances under 
which we can place almost complete confidence in the labels provided by non-expert users via HBC.

Methods and experiments
In this section, we propose the utilization of MTurk as a valuable tool for the analysis of PBS images obtained 
from patients with SCD. The dataset employed for this research comprised a comprehensive collection of PBS 
images derived from individuals diagnosed with SCD, obtained from a reputable medical institution. Prior to 
conducting the analysis, a preprocessing stage was executed to segment individual cells from full images. Sub-
sequently, the preprocessed images were uploaded to the MTurk  platform29, where a group of trained workers, 
who perform a wide range of tasks in exchange for payment, known as MTurkers, were assigned the task of 
examining and annotating various properties of the PBS within the images. The responses collected from the 
MTurkers were then subjected to a quantitative measure.

Dataset
We used  erythrocytesIDB18, available at http:// eryth rocyt esidb. uib. es/, which is a database of prepared blood 
samples from patients with SCD. The samples were obtained from voluntary donors by pricking their thumbs and 
collecting a drop of blood on a sheet. The blood was spread and fixed with a May-Grünwald methanol solution, 
and the images were acquired using a Leica microscope and a Kodak EasyShare V803 camera. Each image was 
labeled by a medical expert from “Dr. Juan Bruno Zayas” Hospital General in Santiago de Cuba, and the images 
were classified based on the specialist’s criteria for circular, elongated, and other cells. Examination of PBS by 
experienced individuals looking for features of SCD can be a sensitive  test30.

Image preprocessing
Individual cells were extracted from full images of erythrocytesIDB. The Chan-Vese active contour  model31 was 
employed for image segmentation. This model was chosen due to its exceptional performance in achieving a 
broader range of convergence and effectively handling topological changes.

The Chan-Vese method was employed without prior preprocessing steps. The application of this method 
resulted in the generation of a binarized image, after eliminating small objects that could potentially disrupt the 
subsequent classification process. We used a regularization parameter ( µ ) value of 0.2 and a maximum iteration 
limit of 1000. However, it is noteworthy that the specified maximum iteration value was nominal, as convergence 
was achieved much earlier for the images under investigation.

http://erythrocytesidb.uib.es/
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MTurk task design for PBS image analysis of patients with SCD
The proposed approach’s design and experimental framework closely followed the guidelines proposed by Petro-
vic et al.24 regarding crowdsourcing methodologies. We defined a task on MTurk titled: “Sicklemia: Classify Red 
Blood Cells”, with a description that prompts MTurkers to determine the type of RBC: Circular, Elongated, or 
Other. This task was clearly visible to MTurkers, ensuring their comprehension. It was appropriately labeled as 
“image, classify, red blood cells” to facilitate search and filtering based on MTurker interests.

In order to ensure a comprehensive understanding of the tasks that needed to be performed by the MTurker, 
a set of detailed crafted instructions was meticulously prepared. These instructions were thoughtfully designed to 
not only provide clear guidance but also incorporate illustrative examples for each specific task type (see Fig. 1).

Each MTurker was tasked with reviewing images in pairs (Fig. 2). For each image pair, MTurkers were 
required to indicate the type of cell (Circular, Elongated, or Other). They received a reward of 0.01$ for every 
classified image pair. It is important to note that not all registered MTurkers were eligible to perform these tasks, 
as two conditions were imposed:

• Additional Requirement: Require that MTurkers be Masters to do their tasks. Master Workers on MTurk 
have a high success rate, holding the Masters Qualification for quality, experience, and a variety of tasks, 
determined through statistical analysis.

• HIT Approval Rate (%) for all Requesters’ HITs greater than 90%.

These conditions were imposed as a means of selectively filtering external MTurkers, thereby incurring a 
nominal cost of 0.01 $ per processed image. Consequently, the overall cost amounts to 0.02 $ per classified image, 

Figure 1.  Instructions for cell classification.

Figure 2.  Cell classification task.
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accounting for the multiple layers of scrutiny and assessment involved in the classification process. The require-
ment for each image to undergo processing by a total of five distinct MTurkers ensured a robust and reliable 
outcome through a collective endeavor. This multi-worker approach not only aimed to promote the reliability 
and accuracy of the classification results but also sought to mitigate potential biases or errors that may arise from 
relying solely on the judgment of a single worker. By harnessing the collective efforts of multiple MTurkers, the 
aim was to leverage diverse perspectives and expertise, thereby enhancing the overall quality and credibility of 
the classification process. This inclusive and collaborative approach aligns with the principles of scientific rigor 
and objectivity, providing a comprehensive and dependable foundation for the research findings presented in 
this study.

MTurk parameters
The parameters of the task were configured in order to obtain the quality of the responses needed to ensure a 
valid analysis and minimize the economic spending:

• Reward per assignment: 0.01$.
• Number of assignments per task: 5.
• Time allotted per assignment: 1 h.
• Task expiration period: 3 days.
• Auto-approval and payment of MTurkers: 7 days.

MTurkers requirements:

• Require MTurkers to be Masters to perform tasks: Yes.
• Additional qualifications for MTurkers: HIT Approval Rate (%) for all Requester’s HIT greater than 90%.
• Task Visibility: Hidden (Only MTurkers who meet my qualification requirements can see and preview my 

tasks).

Measurements
Given a MTurker, their accuracy can be determined by comparing their responses to the Ground Truth (GT) for 
each image, where GT is the correct and known label or category of the image. To assess the classification perfor-
mance, we generated the confusion matrix, which is a summary of the model’s predictions versus the actual GT 
values, and is typically a square table with rows and columns representing the actual classes or categories and the 
predicted classes, respectively. We also provided raw data and calculated the Accuracy Rate and F-measure32,33. 
We also utilized the Sickle Cell Disease Diagnosis Support score (SDS-score) as a measure proposed in Delgado-
Font et al.21 to assess the classification of three classes of RBCs investigated in this study: circular, elongated cell, 
and other deformations. The SDS-score was designed to aid in the evaluation of SCD analysis. It was determined 
by calculating the ratio of the sum of true positives for all three classes to the number of sickle cells classified as 
other deformations and vice versa, divided by the sum of the aforementioned numerator and the sum of incor-
rect classifications associated with circular cells. The SDS-score indicates the usefulness of the method’s results 
in supporting the analysis of the studied disease.

Moreover, the classification task involves imbalanced classes due to the larger quantity of circular cells com-
pared to elongated or deformed cells. To address this issue and evaluate the overall process, we employed two 
measures: Class Balance Accuracy (CBA)21,34 and Matthews Correlation Coefficient (MCC)21,35. These measures 
provide valuable insights into the performance and effectiveness of our approach.

Regarding Accuracy Rate, for each image there were responses from k = 5 MTurkers. If three or more 
responses coincided, there was a consensus and the response determined by the MTurkers was considered. The 
response configurations that yielded a valid response were: 5 (complete consensus), 4-1 (four out of the five 
MTurkers agreed on one class, while the remaining MTurker selected a different one, 3-1-1 (three out of the 
five MTurkers agreed on one category, while each of the remaining two MTurkers selected a different one from 
the remaining categories), and 3-2 (three out of the five MTurkers agreed on one class, while the remaining two 
MTurkers selected a different one). Otherwise, N/A (not answer) response was considered. The response con-
figuration that did not yield a valid response was 2-2-1 (two out of the five MTurkers agreed on one class, another 
two MTurkers agreed on a different class, and the remaining MTurker selected yet another class). MTurkers were 
deemed correct if their response matched the ground truth classification.

Finally, in this study, we elucidated the methodology for computing the Accuracy Rate under the assumption 
of independence. Specifically, we considered the classification proficiency of a particular cell type among the 
MTurkers, denoting the average accuracy for this type as α . Subsequently, we estimated accuracy (X) through 
the following procedure:

where first term is the case 5 MTurkers classify correctly, second term 4 classify correctly and the other one 
mistakes, and last term 3 MTurkers classify correctly and 2 misclassify.

(1)PX{success} = Accestimated =
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Results and discussion
The accuracies for each cell type and each MTurker are detailed in Table 1. The circular cell type demonstrated 
an accuracy of 86.74% , while the elongated and other cell types exhibited an accuracy of 67.58% and 61.20% 
respectively. Notably, when the elongated and other classes were combined into a unified category, an overall 
accuracy of 92.99% was attained. These results highlighted the distinct accuracies associated with different cell 
types and underscored the enhanced performance achieved by consolidating specific categories.

The adoption of a consensus-based cell type selection method, wherein a consensus was reached when 3 or 
more MTurkers selected the same class, produced a improved accuracy as shown in Table 2. In 20 cases there 
was not consensus, so the responses were considered as N/A. Notably, this approach demonstrated an overall 
improvement in accuracy. The results highlighted the effectiveness of leveraging consensus among multiple 
MTurkers to enhance the accuracy of cell type classification.

Assuming independence among the classifications, the following levels of accuracy should be obtained using 
the individual accuracy of 5 MTurkers, see Table 3. The estimated outcomes exhibited superior performance com-
pared to the observed results. This disparity challenges the assumption of independence, indicating a propensity 
for MTurkers to commit similar errors. These findings substantiated the inadequacy of assuming independence 
within the realm of MTurker behavior, underscoring the presence of correlated errors among MTurkers. The 
implications of these results highlighted the need for a deeper understanding of the underlying factors influencing 
MTurker judgments and the importance of considering inter-rater agreement in future studies.

In Fig. 3, we present a collection of images showcasing instances where the MTurkers exhibit errors. The 
classification process employed a voting-based system, where the first row pertains to circular cell types, the 
second row corresponds to elongated cells, and the last row represents other cell types. The visual analysis clearly 
indicates the presence of challenging cases that pose difficulties for accurate classification. These observations 
shed light on the intricacies involved in effectively categorizing certain cell types and emphasize the importance 
of addressing classification uncertainties in MTurker-based studies.

Unlike computational methods, the results obtained by MTurkers provided additional information on the 
reliability of the decision made. This reliability was determined by the number of consensus in determining the 
cell’s class. We separately analyzed three cases: when all 5 MTurkers agreed (463 cases), when 4 MTurkers agreed 
(226 cases), and when 3 MTurkers agreed (135 cases). In Tables 4 and 5 we show the metrics we obtained in 
these cases and compared them with the state-of-art of automated methods for analyzing blood  samples14,18,21–23. 
Elongated and other cells can be consolidated because the misclassification of the normal cells as the elongated 
or other cells will cause the alert to the medical specialist that the patient’s condition has worsened and that the 
therapy should be  changed21. Then, it is up to the specialist to review the diagnosis and to decide whether the 
more drastic treatment should be prescribed. This type of error is not so serious because the treatment usually 
has no side effects. More dangerous scenario would be to classify deformed cells (elongated or other) as normal. 
In this case, the specialist could decide that the patient is not at risk of a vaso-occlusive crisis, and the necessary 

Table 1.  Results of classification of each cell by each MTurker. GT stands for Ground Truth.

GT

Prediction

Circular Elongated Other Total Accuracy (%)

Circular 2676 58 351 3058 86.74

Elongated 48 614 243 905 67.58

Other 69 28 153 250 61.20

Table 2.  Results of consensus-based cell type selection method. Consensus was reached when 3 or more 
MTurkers classify a cell with the same label.

Consensus Correct Total Accuracy (%)

Circular 566 617 91.73

Elongated 128 181 70.72

Other 32 50 64.00

Table 3.  Comparison between the estimated accuracy, using Eq. (1), and the obtained accuracy using a 
consensus-based cell type selection method.

Total Accestimated (%) Accuracy (%)

Circular 98.11 91.73

Elongated 80.73 70.72

Other 70.31 64.00
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Figure 3.  MTurk miss-classifications. The top row shows circular cells, the middle row shows elongated 
cells, and the bottom row shows other cell types. Each label shows the class that the MTurkers have classified 
them, the numbers in parenthesis show the votes: circular, elongated and other. These miss-classifications are 
indicative of the difficulty of accurately classifying cells.

Table 4.  Metrics obtained in the classification with 3 classes and comparison with the state-of-art. Individual, 
refers to results obtained from individual MTurkers. 5 MTurkers aggregated means that we consider the 
votes of 5 MTurkers even if the response is N/A. Consensus means that three or more MTurkers agreed on 
the classification. 5 agree means that all MTurkers agreed. 4 agree means that four MTurkers agreed and one 
disagreed. 3 agree means that three MTurkers agreed and the other two classified differently.

Method

Measure

SDS-Score F-Measure CBA MCC

Delgado et al.21 0.95 0.9483 0.80 0.82

Petrovic et al.14 GB 0.9518 0.9350 0.8839 0.8843

Petrovic et al.14 RF 0.9505 0.9336 0.8806 0.8820

Asakura et al.22 0.6180 0.4533 0.3748 0.3543

Our proposal Individual 0.8759 0.7802 0.7193 0.6748

Our proposal 5 MTurkers aggregated 0.9009 0.8838 0.7435 0.7485

Consensus 0.9272 0.8982 0.7435 0.7492

Our proposal 5 agree 0.9957 0.9887 0.8571 0.9537

Our proposal 4 agree 0.9204 0.8715 0.7529 0.7338

Our proposal 3 agree 0.7037 0.6115 0.6108 0.4699
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treatment would not be applied. To support the diagnosis in a good way, classifiers need to minimize the mis-
classification rate of elongated cells and cells with other deformations as normal cells, and the misclassification 
of normal cells as elongated and cells with other deformations. On the one hand, we can observe that if there 
was absolute consensus (55% of the cases) or if 4 out of 5 MTurkers agreed (26% of the cases), the probability 
of error was very low. On the other hand, we can observe that there were only 24 cases without a consensus and 
135 cases where there was consensus among 3 MTurkers, meaning these cases should be reviewed by a specialist, 
out of a total of 848 (19% of the cases).

The objective of our research is not to replace automated procedures utilized for diagnostic assistance in the 
context of patients afflicted with SCD. Instead, our focus is on investigating the feasibility of employing HBC to 
tag large datasets, thereby facilitating the training of automated methods, especially in situations where expert 
assistance is not feasible. The results demonstrate that in cases where there is a strong consensus among the 
MTurkers, the outcomes are comparable to the state-of-the-art automated methods. As a result, our proposed 
approach proves to be effective in annotating large datasets. The more tagged training data that is available, the 
more accurately the model can learn to recognize patterns and generalize to unseen data.

In our investigation of individual MTurkers, a notable observation emerged: an increase in the number of 
classifications did not yield an improvement in accuracy. This finding is visually represented in Fig. 4. The results 
challenge the prevailing assumption that increased participation levels invariably lead to enhanced performance. 
These findings prompt a reevaluation of the role of quantity versus quality in the context of MTurker contribu-
tions, raising important considerations for optimizing crowd-based classification tasks.

Conclusions
This research paper introduced an approach for the analysis of Red Blood Cell images in patients afflicted by 
Sickle Cell Disease. The proposed method leverages crowdsourcing Human-based Computation by engaging 
non-expert individuals through the Mechanical Turk microtask market, especially in situations where expert 
assistance is not feasible.

The findings of this study indicate that when a robust consensus is achieved among the Mechanical Turk 
micro-task market workers, the results exhibit that probability of error is very low, based on comparison with 
expert analysis. Consequently, our proposed approach could be employed for dataset annotation.

The present study incorporates the confusion matrices, along with the raw data, within the results to facilitate 
researchers in computing additional metrics. The dataset utilized in this research can be accessed at http:// eryth 
rocyt esidb. uib. es/. In the interest of advancing scientific knowledge, it is advantageous for authors to share their 
raw data and image datasets used in their investigations.

The morphological analysis of PBS as a diagnostic tool for SCD are still used by some health systems and 
hospitals, even so we acknowledge recent developments in SCD point-of care  diagnostics36. In this work we veri-
fied that non-expert users had good results in labeling tasks for circular, elongated and other, with the aim that 
as further work we can tag large PBS datasets from patients with SCD with non-expert users to feed automated 
methods. Moreover, we consider that our method could be transferable to new cells  morphologies37 for other 
hemoglobinopathies that can be detected/analyzed/diagnosed by visual inspection methods. For this reason, as 
a further work we are interested in validating our proposal with other hemoglobinopathies.

Moreover, this research endeavors to establish the fundamental principles for the effective labeling of exten-
sive datasets, particularly in scenarios where expert involvement is unfeasible. As part of future work, it foresees 
explorations aimed at investigating the potential integration of these findings with outcomes obtained through 
automated methodologies. Within the context of extensive dataset labeling, the incorporation of human-decided, 

Table 5.  Metrics obtained in the classification with 2 classes (mixing elongated and others in one class) and 
comparison with the state-of-art. Individual, refers to results obtained from individual MTurkers. 5 MTurkers 
aggregated means that we considered the votes of 5 MTurkers even if the response is N/A. Consensus means 
that three or more MTurkers agreed on the classification. 5 agree means that all MTurkers agreed. 4 agree 
means that four MTurkers agreed and one disagreed. 3 agree means that three MTurkers agreed and the other 
two classified differently.

Method

Measure

SDS-Score F-Measure CBA MCC

Delgado et al.21 0.95 0.9506 0.89 0.84

Petrovic et al.14 GB 0.9468 0.9467 0.9398 0.8872

Petrovic et al.14 RF 0.9444 0.9442 0.9366 0.8819

Acharya et al.23 0.7849 0.7876 0.8116 0.6080

González et al.18 0.4932 0.4897 0.5281 0.0570

Our proposal Individual 0.8759 0.8721 0.8831 0.7194

Our proposal 5 MTurkers aggregated 0.9009 0.9083 0.8700 0.7571

Our proposal Consensus 0.9272 0.9202 0.8971 0.8204

Our proposal 5 agree 0.9957 0.9957 0.9868 0.9842

Our proposal 4 agree 0.9204 0.9213 0.9050 0.8286

Our proposal 3 agree 0.7037 0.7012 0.7131 0.4189

http://erythrocytesidb.uib.es/
http://erythrocytesidb.uib.es/
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reliable labels in conjunction with those obtained through automated methods holds notable significance. This 
dual-input approach has the potential to mitigate the risk of preserving errors and biases inherent in automated 
methods during the final labeling process. Consequently, this methodology could lead to a reduction in the 
transfer of such biases during the training of subsequent models, ultimately enhancing the quality of derived 
insights and predictive outcomes.

Data availability
erythrocytesIDB http:// eryth rocyt esidb. uib. es/.

Received: 9 October 2023; Accepted: 7 January 2024
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