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Modeling based on machine 
learning to investigate flue gas 
desulfurization performance 
by calcium silicate absorbent 
in a sand bed reactor
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Fatemeh Bahmanzadegan 1, Ahad Ghaemi 1* & Mohammad Reza Mosavi 2

Flue gas desulfurization (FGD) is a critical process for reducing sulfur dioxide (SO2) emissions 
from industrial sources, particularly power plants. This research uses calcium silicate absorbent in 
combination with machine learning (ML) to predict SO2 concentration within an FGD process. The 
collected dataset encompasses four input parameters, specifically relative humidity, absorbent 
weight, temperature, and time, and incorporates one output parameter, which pertains to the 
concentration of SO2. Six ML models were developed to estimate the output parameters. Statistical 
metrics such as the coefficient of determination (R2) and mean squared error (MSE) were employed 
to identify the most suitable model and assess its fitting effectiveness. The random forest (RF) model 
emerged as the top-performing model, boasting an R2 of 0.9902 and an MSE of 0.0008. The model’s 
predictions aligned closely with experimental results, confirming its high accuracy. The most suitable 
hyperparameter values for RF model were found to be 74 for n_estimators, 41 for max_depth, false 
for bootstrap, sqrt for max_features, 1 for min_samples_leaf, absolute_error for criterion, and 3 for 
min_samples_split. Three-dimensional surface plots were generated to explore the impact of input 
variables on SO2 concentration. Global sensitivity analysis (GSA) revealed absorbent weight and time 
significantly influence SO2 concentration. The integration of ML into FGD modeling offers a novel 
approach to optimizing the efficiency and effectiveness of this environmentally crucial process.

List of symbols
αi :	� Weight for feature vector
b	� Bias (–)
ci	� Center points (–)
f	� Function
Fk	� Nonlinear activation transfer functions
g	� Output vector (–)
G	� Gaussian function
i	� Subscripts refer to the initial condition
i	� Number of neurons in the hidden layer
k	� Position vector
K	� Kernel function
K	� Number of trees
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N	� Number of datasets for training (–)
R2	� Coefficient of determination
t	� Time (min)
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Ti	� The result from each tree
w	� Weight factor (–)
W	� Absorbent weight
Wij	� Weight related to each hidden neuron (–)
x	� Input variable (–)
xi	� The ith feature vector (–)
xi

k	� Reference vector (–)

Greek letters
βjk :	� Bias weight for neuron j in layer k
γjk :	� Neuron j’s output from k’s layer
θ :	� Threshold limit (–)
ξ	� Slack variable
σ	� Width of Radial Basis Function Neural Network (RBFNN) kernel (–)
σi	� Spread of Gaussian function (–)

Abbreviations
ANN	� Artificial neural network
CFF	� Cascaded forward neural network
CNN	� Convolutional neural networks
DFGD	� Dry flue gas desulfurization
DNN	� Deep neural network
ELM	� Extreme machine learning
ETR	� Extra trees regression
FGD	� Flue gas desulfurization
GSA	� Global sensitivity analysis
LSTM	� Long short-term memory
LSSVM	� Least squared support vector machine
MAE	� Mean absolute error
MAPE	� Mean absolute percentage error
ML	� Machine learning
MLP	� Multilayered perceptron
MSE	� Mean squared error
NAS	� Neural architecture search
RBFNN	� Radial basis function neural network
RF	� Random forest
RMSE	� Root mean square error
RNN	� Recurrent neural network
STD	� Standard deviation
SVR	� Support vector regression
WFGD	� Wet flue gas desulfurization

Terminology
Activation function	� The activation function is a mathematical function between the input feeding the cur-

rent neuron and its output going to the next layer
Bias	� Bias is a constant that helps the model in a way that can fit best for the given data
Epoch	� In the training process, the inputs enter each training step and give outputs compared 

with the target to calculate an error. With this process, weights and biases are calculated 
and modified in each epoch

Neurons	� Neurons are the basic units of the large neural network
Weight	� Represents the importance and strengths of the feature/input to the Neurons

Sulfur dioxide (SO2) is a prominent atmospheric contaminant that plays a substantial role in the degradation of 
air quality. This pollutant notably influences the natural environment and the global climate system1,2. Indus-
trial processes, especially those involving fossil fuel combustion, are recognized as significant sources of SO2 
emissions3. Power plants and industries contribute to over 70% of the total anthropogenic SO2 emissions, mak-
ing them the primary contributors to this environmental concern4. Various technologies have been developed 
to mitigate SO2 emissions, such as fuel switching5, catalytic converters6, coal preparation7, low-sulfur fuels8, 
boiler modernization9, fluidized bed combustion10, and flue gas desulfurization11. When choosing a method 
for removing or lowering the emission of SO2 from flue gases, it is necessary to consider a range of criteria. The 
ideal approach should encompass safety, environmental sustainability, and cost-effectiveness while minimizing 
potential losses and eliminating the issue of fouling12.

Flue gas desulfurization (FGD) is one of the most effective emission control technologies used in power 
plants, and it plays a pivotal role in reducing SO2 emissions13. Several FGD systems have been developed, and 
the selection process involves considering technical factors and making an economic decision. Notable concerns 
encompass the extent of desulfurization achievable by the technique and its adaptability. The majority of FGD 
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systems employ an alkali sorbent, such as limestone (calcium carbonate), quicklime (calcium oxide), hydrated 
lime (calcium hydroxide), or occasionally sodium and magnesium carbonate and ammonia, to trap the acidic 
sulfur compounds present in the flue gas. Regardless of the circumstances, the alkalis chemically interact with 
SO2 in the presence of water (such as a mist of slurry containing the sorbent) to generate a combination of sulfite 
and sulfate salts. This reaction might occur either inside the entire solution or on the moistened surface of the 
solid alkali particles14. FGD technologies are frequently categorized into wet, semi-dry, or dry processes15.

The ADVACATE process was created as an alternative way to clean the flue gas in coal-fired power plants by 
duct injection. It offers a smaller physical size and lower initial cost than wet desulfurization systems, making it 
a practical option for upgrading existing plants to meet stricter flue gas cleaning standards16. The ADVACATE 
process involves the introduction of ADVACATE solids into the cool-side duct to mitigate the presence of 
SO2, NOx, and several other pollutants within the flue gas. The removal process occurs in the gas duct, and the 
bag filter particle control device exhibits greater significance. Solid ADVACATE materials are formed through 
the chemical reaction between hydrated lime and recycled fly ash derived from power plants. The chemical as 
mentioned above process results in the formation of a calcium silicate hydrate solid with a significant degree 
of porosity, enabling it to retain a considerable quantity of water (~ 50 wt.%) while maintaining the handling 
characteristics of a powder, as shown by Eqs. 1–3. A substantial quantity of water and alkalinity facilitates the 
elimination of acid gases and the efficient conversion of solids17.

Figure 1 depicts the stages of preparation. Depending on the size of the starting silica particles, the first step is 
grinding. The silica undergoes a high-temperature reaction with lime and other additions in an aqueous medium. 
After the sludge has been dewatered and dried, it can be sent to the source sites. The gas–solid contact can be 
achieved using a duct-injection/baghouse filter configuration. The gas can also be utilized as a filter medium in 
a fixed bed medium.

The FGD process has shown promising potential for efficient SO2 removal. Dzhonova et al.18 studied the 
Wellman-Lord method for removing SO2 from flue gases in combustion systems. The method uses sodium sulfite 
to absorb SO2 and produce sodium bisulfite. The regenerated solution can be reused in the absorber. The authors 
found the method more cost-effective than other FGD methods and suggested techniques to enhance it. They 
introduced a new technology with lower steam consumption, heat utilization for heating district heating water, 
and lower capital costs. The study by Özyuğuran and Meriçboyu19 compared the desulfurization efficiencies of 
hydrated lime and dolomite absorbents from flue gases. They subjected them to sulfation at 338K and measured 
their weight increase during the SO2 reaction. The researchers found that the total sulfation capacities increased 
with increased surface areas and decreased mean pore radius, indicating that the physical properties of absorbents 
significantly influence their sulfation properties. A study developed by Xu et al.20 integrated the FGD-CABR 
system to remove NOx and SO2 from flue gas, achieving 100% removal efficiency. The primary sulfur compound 
was sulfide, with the spray scrubber partially facilitating NOx removal through sulfide-oxidizing and nitrate-
reducing bacteria enrichment. Most NOx was converted into harmless N2 in the expanded granular sludge bed 
reactor. Stanienda-Pilecki21 explored the use of limestone sorbents with increased magnesium content in FGD 

(1)Ca(OH)2 ↔ Ca
2+ + 2(OH)−

(2)(SiO2)x + 2H2O+ (OH)− ↔ (SiO2)x−1 + Si(OH)−5

(3)Ca
2+ + ySi(OH)−5 +

(

2− y
)

(OH)− + (z − 2y − 1)H2O → (CaO)(SiO2)y(H2O)z

Figure 1.   Small source ADVACATE process.



4

Vol:.(1234567890)

Scientific Reports |          (2024) 14:954  | https://doi.org/10.1038/s41598-024-51586-7

www.nature.com/scientificreports/

processes in power stations. Triassic limestones in Poland, consisting of low magnesium calcite, high magnesium 
calcite, dolomite, and huntite, have various magnesium contents. The increased magnesium content in the sorb-
ent positively impacted the dry method of desulfurization, especially when using fluidized bed reactors. Because 
magnesium ions are unstable, they made it easier to remove carbon from carbonate phases at temperatures similar 
to those used to remove carbon from dolomite. This results in a faster and more effective desulfurization process.

Over the past few years, numerous methods have been proposed to predict SO2 and other emissions from 
power plants. Among these approaches, mathematical models, and machine learning (ML) models have gener-
ated significant scientific interest. However, accurately modeling the concentration of SO2 is a challenging task 
mathematically. Some studies simplify this system by incorporating assumptions, leading to errors in predictions. 
Furthermore, the calculations utilized in these mathematical models require substantial computing resources22. 
ML approaches are extensively considered due to their accuracy, fast speed, and capability to do nonlinear cal-
culations, diagnosis, and learning. Additionally, recent advancements in predictive modeling techniques, such as 
adaptive sampling based surrogate modeling, have gained popularity 23. So far, extensive studies have been carried 
out in the field of FGD by ML approach. Zhu et al. 24 developed a highly effective ML approach for estimating 
SO2 absorption capacity in deep eutectic solvents (DESs). Based on critical parameters like molecular weight, 
water content, pressure, and temperature, the model was the most accurate in forecasting 480 DES-SO2 phase 
equilibria, ensuring its dependability and generalizability. Grimaccia et al.’s 25 study aimed to create a model for 
a proprietary SO2 removal technology at the Eni oil and gas treatment plant in southern Italy. The goal was to 
develop an ML algorithm for unit description, independent of the licensor and more flexible. The model used 
ANNs to predict three targets: SO2 flow rate to the Claus unit, SO2 emissions, and steam flow rate to the regen-
erator reboiler. The data-driven technique accurately predicted targets, allowing optimal control strategies and 
plant productivity maximization. Xie et al.26 introduced a long short-term memory (LSTM) neural network to 
improve the WFGD process in thermal power plants. The model achieved a high prediction accuracy of 97.7%, 
surpassing other models. The modified LSTM model was rigorously tested and validated, demonstrating good 
prediction effect and high stability. Yu et al.27 developed a dynamic model to predict SO2-NOx emission concen-
tration in fluidized bed units, aiming to meet emission standards and create an environmentally friendly pollut-
ant removal mode. The model used Pearson coefficients, an extreme learning machine, and a quantum genetic 
algorithm to optimize connection weights, accurately imitating actual data trends. Yin et al.28 developed a hybrid 
deep learning model integrating a convolutional neural network (CNN) and LSTM to improve the accuracy of 
predicting SO2 emissions and removal in limestone-gypsum WFGD systems. The model captures local and global 
dynamics and temporal characteristics and introduces an attention mechanism (AM) to allocate weights to the 
outlet SO2 sequence at different time points. The model outperforms alternative methodologies in predictive 
accuracy. Makomere et al.’s29 research examined the effectiveness of ANN in modeling desulfurization reactions 
using Bayesian regularization and Levenberg–Marquardt training algorithms. The shrinking core model was 
used, revealing the chemical reaction as the rate-controlling step. Bayesian regularization was preferred due to its 
flexibility and overfitting minimization capabilities. The hyperbolic tangent activation function showed the best 
forecasting ability. An investigation by Uddin et al.30 on the limestone-forced oxidation (LSFO) FGD system in a 
supercritical coal-fired power plant. Monte Carlo experiments showed that optimal operation could reduce SO2 
emissions by 35% at initial concentrations of 1500 mg/m3 and 24% at initial 1800 mg/m3 concentrations. These 
findings were crucial for reducing emissions in coal power plants and developing effective operational strategies 
for the LSFO FGD system. Fedorchenko et al.22 presented an optimization strategy for FGD using data mining. 
A modified genetic method based on ANNs was developed, allowing for better prediction of time series charac-
teristics and efficiency. The method used adaptive mutation, allowing less important genes to mutate more likely 
than high suitability genes. Comparing this method with other methods, the new method showed the smallest 
predictive error and reduced prediction time, thereby increasing efficiency and reducing SO2 emissions. Adams 
et al.31 developed a deep neural network (DNN) and least squares support vector machine (LSSVM) to predict 
SOx and NOx emissions from coal conversion in energy production. The models were trained on commercial 
plant data and examined the impact of dynamic coal and limestone properties on prediction accuracy. The results 
show that training without assumptions improved testing accuracy by 10% and 40%, respectively. Interactive and 
pairwise correlation features reduced computational time by 46.67% for NOx emission prediction. A summary 
of the studies conducted in the field of ML for FGD and their results are given in Table 1.

Considering the prevailing research landscape focused on traditional modeling approaches in the realm of 
FGD, this study strategically addresses critical research gaps. Specifically, our work pioneers the application 
of ML techniques to model and predict the performance of calcium silicate absorbents within the context of a 
sand bed reactor. Additionally, using ML in sand bed reactors in FGD is a new idea that goes against traditional 
ways of doing things and shows how advanced modeling techniques can be used to get the best results in this 
reactor. This study, therefore, endeavors to fill existing research gaps and advance the state of knowledge in the 
field. The study used data from experiments on FGD with a calcium silicate absorbent in a sand bed reactor as 
both input and output for the ML method. This research aims to utilize ML models to estimate the concentra-
tion of SO2 accurately and quickly in flue gas. For implementing the proposed models, 323 experimental data 
points collected from this work were considered. A statistical evaluation and comparison of the accuracy of the 
constructed ML models was conducted based on the coefficient of determination (R2) and mean squared error 
(MSE), and the best model was chosen. The results of this study can be used in power plants, environmental 
regulations, engineering and design, research, and development in the future.
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Input variables Type of sorbent
Number of 
datasets ML models

Evaluation measures

ReferencesR2 MSE RMSE nRMSE MAE EMAE (%) MAPE (%)

Molecular weight, 
water content of 
DES, pressure, and 
temperature

DES 480

MLP (Levenberg–
Marquardt) 0.979 0.001 – – – – 4.76 24

CFF (Levenberg–
Marquardt) 0.979 0.001 – – – – 4.40

RBF 0.809 0.009 – – – – 14.79

RNN (Scaled Con-
jugate Gradient) 0.909 0.005 – – – – 9.36

CFF (Bayesian 
Regularization) 0.988 0.001 – – – – 5.73

ELM (Whale 
optimization 
algorithm)

0.926 0.008 – – – – 20.87

RBF (Whale 
optimization 
algorithm)

0.934 0.007 – – – – 18.44

Concentration, 
mass flow, tempera-
ture, pressure, level

A proprietary 
solvent 35 MLP (Levenberg–

Marquardt) 0.981 – 2.06 0.031 – 8.62 – 25

Slurry pH, slurry 
flow, slurry density, 
temperature

Slurry 22,000 LSTM 0.977 0.006 – – – – – 26

Limestone flow, 
coal flow rate, unit 
load, total airflow, 
primary airflow, 
secondary airflow, 
oxygen measuring 
point A, oxygen 
measuring point B

Lime 16,000

Genetic algorithm 0.942 – 161.697 – 408.183 – 6.6 27

MLP – – 2.901 – 2.325 – – 28

SVM – – 3.123 – 2.380 – –

Power, the inlet 
SO2 concentration 
of flue gas in the 
booster fan, the 
inlet temperature 
of the original flue 
gas entering the 
booster fan, input 
motor current of 
circulation pump 
C, pH value of the 
limestone slurry, 
input motor current 
of circulation pump 
B, original flue gas 
flow, motor current 
of oxidation fan A, 
converted output 
motor current of 
circulation pump C

Limestone 4320

LSTM – – 1.919 – 1.536 – –

CNN-LSTM – – 1.603 – 1.208 – –

CNN-LSTM-AM – – 1.436 – 0.973 – –

Diatomite/
Ca(OH)2, hydration 
time, hydration 
temperature, inlet 
SO2, sulfation 
temperature

Diatomite/ 
Hydrated lime 50

MLP (Levenberg–
Marquardt) 0.985 0.134 – – – – – 29

MLP (Bayesian 
Regularization) 0.997 0.023 – – – – –

pH, inlet SO2, inlet 
temperature, inlet 
NOx, inlet O2, oxi-
dation air, absorber 
slurry density, inlet 
humidity, inlet dust

Slurry 65,000

MLP 0.8295 – – – – – – 30

Linear regression – 9103 – – 79.24 – – 22

Polynomial regres-
sion – 9031 – – 77.84 – –

Logistic regression – 9041 – – 78.56 – –

Nearest neighbour 
algorithm – 7421 – – 75.76 – –

SO2 inlet, water 
consumption in 
an absorber, lime 
consumption, 
secondary reagent 
consumption

Lime 5330

RF 7201 – – 74.15 – –

Ant colony optimi-
zation algorithm – 7523 – – 73.89 – –

MLP with one hid-
den layer – 6785 – – 59.85 – –

MLP with two hid-
den layers – 5795 – – 40.98 – –

MLP with two hid-
den layers and the 
developed genetic 
algorithm

– 3253 – – 24.95 – –

Continued
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Theoretical background
Setup description
The reaction between SO2 and solid absorbents was studied in Arthur’s sand bed reactor system17 and shown in 
Fig. 2. Compressed SO2/N2 (~ 0.5%) was diluted with either nitrogen or air, depending on the desired oxygen 
content, to create a simplified flue gas. The flow rates of all gases were controlled using mass flow meters and a 

Table 1.   A summary of some studies used ML to model FGD.

Input variables Type of sorbent
Number of 
datasets ML models

Evaluation measures

ReferencesR2 MSE RMSE nRMSE MAE EMAE (%) MAPE (%)

Boiler capacity, fuel 
spoon air flow rate, 
fuel feeding front 
flow rate, combus-
tion airflow rate, 
primary airflow 
rate, primary 
air temperature, 
upper secondary 
airflow rate, lower 
secondary airflow 
rate, secondary air 
temperature, bed 
pressure, Furnace 
temperature

Limestone 24,000

DNN 0.9380 – 2.304 – – – – 31

LSSVM 0.9525 – 2.014 – – – –

Figure 2.   A schematic of the sand bed reactor system.
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controller box. Water was supplied to a helical Pyrex evaporator through an Infusion Pump, which humidified the 
flue gas. The temperature in the furnace was regulated using a voltage controller. The flow rate of water from the 
syringe pump was measured by monitoring the weight of the water output over time. The sand bed reactor used 
in the experiment was made of glass and had dimensions of 7.5 inches in length and 1.5 inches in diameter. A 
2-mm coarse glass frit was placed at the bottom of the reactor to support the mixture of sand and absorbent. The 
reactor was sealed using a ground glass fitting secured with a metal clamp and rubber bands. It was positioned 
upright in a water bath, which was temperature-controlled using a dedicated controller. The concentration of 
SO2 was measured using an SO2 analyzer, and the output from the analyzer was automatically collected using a 
digitizer and PC for data analysis. A bypass line was incorporated within the temperature-controlled water bath 
to establish a stable operational state for the synthesized flue gas and the analytical system before the onset of 
the chemical reaction. The flue gas, characterized by concentrations spanning from 0 to 2000 parts per million 
(ppm), underwent substantial dilution with ambient air from the facility to attain concentrations within the 
0 to 50 ppm range, a requisite for the analyzer. This dilution process concurrently addressed issues related to 
gas condensation within the analytical system by reducing the relative humidity of the gas. The predominant 
portion of the effluent gas stream was directed through a sodium hydroxide (NaOH) scrubbing system, which 
typically operated under a pH level of 13. A small vacuum pump integrated into the SO2 analyzer extracted a 
small portion of the gas.

Data collection
Since the concentration of SO2 can be affected by different operating conditions, there is a need to investigate 
the relationship between the outlet concentration and the parameters affecting the outlet concentration. Relative 
humidity, absorbent weight, temperature, and time play an essential role in the concentration of SO2. Therefore, 
relative humidity, absorbent weight, temperature, and time were included among the input variables. The SO2 
concentration was also considered as output. Hence, this study incorporates the input variables of maximum 
level (max), minimum level (min), average level (mean), and standard deviation (STD), as presented in Table 2. 
The training and testing data for the models were acquired from Arthur17, yielding a dataset comprising 323 
data points. The Pearson correlation coefficient matrix is the covariance of the two mentioned features and the 
product of their standard deviation. The correlation among the selected variables is analyzed and presented in 
the heatmap in Fig. 3.

Model selection
In this study, all ML analyses were conducted using the Python programming language. Various ML methods 
and models are available to solve clustering, classification, and regression problems. However, the challenge lies 
in determining which model and combination of hyperparameters would work best for a specific dataset. The 
optimization algorithm in this case, involves multiple learning algorithms (models) and hyperparameters. It is 
necessary to explore numerous combinations to maximize predictive accuracy and find the optimal set of hyper-
parameters. In this study, six models are used: artificial neural network (ANN), multilayer perceptron (MLP), 
radial basis function neural network (RBFNN), random forest (RF), extra trees regression (ETR), and support 
vector regression (SVR). The procedure to reach the best ML model is shown in Fig. 4.

Artificial neural network
An ANN is a computational model inspired by the workings of the human brain. It comprises many individual 
units, like artificial neurons, which are connected by coefficients known as weights. These weights together 
form the network structure and enable it to process information. Each of these processing units, often called 
processing elements (PE), has inputs with different weights, a transfer function, and produces a single output. 
Think of PE as an equation that balances its inputs and outputs. ANNs are often called connectionist models 
because the connection weights effectively serve as the network’s memory32. While a single neuron can handle 
simple information-processing tasks, the true power of neural computation comes to light when these neurons 
are interconnected within a network. Whether ANNs possess accurate intelligence remains a topic of debate. 
Notably, ANNs typically consist of only a few hundred to a few thousand PEs, whereas the human brain contains 
about 100 billion neurons. So, artificial networks with the complexity of the human brain are still far beyond our 
current computational capabilities. The human brain is much more intricate, and many intellectual functions 
remain unknown. However, ANNs excel at processing large amounts of data and can make surprisingly accurate 
predictions. Nonetheless, they do not possess the kind of intelligence that humans do. Therefore, it might be more 

Table 2.   Statistical properties of the variables.

Variables

70% Train–20% Validation–10% test

Min Max Mean STD

Relative humidity (%) 0 88 48.421 28.023

Absorbent weight (g) 0.025 0.1 0.087 0.028

Temperature (˚C) 36.5 50 47.84 4.949

Time (min) 1 60 22.51 13.968

SO2 concentration (ppm) 35.6 1036.9 808.961 266.975
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appropriate to refer to them as examples of computer intelligence. In the field of neural networks, various types 
of networks have been developed over time, and new ones continue to emerge regularly. However, they can all 
be categorized based on the functions of their neurons, the rules they use to learn, and the formulas governing 
their connections33.

Multi‑layer perceptron
The perceptron algorithm, initially proposed by Rosenblatt in the late 1950s, has gained significant recognition 
as a prevalent and regularly utilized model in supervised ML34. Compared to more intricate models, the MLP 
offers higher model quality, simplicity of implementation, and shorter training duration35. In the MLP network, 
the input layer receives information and transmits it to the output layer, reflecting the final findings. Meanwhile, 
the hidden layers within the network do the initial processing of the received data. The hidden layers of the neural 

Figure 3.   Pearson correlation matrix between each variable.

Figure 4.   Procedure of the current ML-based modeling.
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network receive the weights and biases and subsequently propagate the values to the output layer through the 
utilization of activation functions36. Figure 5 illustrates the primary architecture of the MLP. The Eq. (4) comes 
from the MLP feature approach. In this equation, the output vector is denoted as g, the weight vector of factors 
is given by w, xi

k indicates the reference vector, and θ denotes the threshold limit37.

The output of the MLP neural network can be derived in the following manner:

where γjk stands for the influence exerted by neuron j in layer k, while βjk signifies the bias weight associated 
with neuron j within layer k. The term Fk denotes the nonlinear activation transfer function about layer k, and 
wij represents the connection weights.

Radial basis function neural network
The RBFNN possess a robust mathematical basis deeply based on regularization theory, which is employed 
to address ill-conditioned problems38. The RBFNN model’s versatility stems from its outstanding efficiency, 
simplicity, and speed, making it suitable for various applications39. An RBFNN is structured with three distinct 
layers: the input, hidden, and output layers. Each layer is assigned distinct tasks40. The transfer function within 
RBFNN exhibits nonlinearity when mapping inputs to hidden layers, but it demonstrates linearity when map-
ping hidden layers to output layers41. Equation (6) displays the Gaussian transfer function used by the RBFNN 
for processing inputs42.

where the input variable is denoted as x, the center point is represented by ci, the bias is symbolized as b, and 
the spread of the Gaussian function is indicated by σi. Figure 6 illustrates an essential schematic representation 
of the RBFNN.

Random forest
The RF algorithm is widely recognized in the field of ML for its ability to construct predictive models, and it was 
initially proposed by Breiman43 in 2001. This supervised learning technique is a composite model consisting of 
several tree predictors. Each tree predictor is constructed based on the values of an independent random vector, 
and all vectors are created with the same configuration. This method is applicable for solving classification and 
regression issues44,45. The functioning of the RF model is depicted in Fig. 7. Each regression tree’s output was 
added together to get the result shown in Eq. (7) below46:

(4)g = f (wxki + θ)

(5)γjk = Fk





NK−1
�

i=1

wijγi(k−1) + βjk





(6)G(�x − ci� ∗ b) = exp

(

−
1

2σ 2
i

(�x − ci� ∗ b)
2

)

Figure 5.   The architecture of the MLP model.
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Figure 6.   The architecture of the RBFNN model.

Figure 7.   Schematic diagram of RF procedure.
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where Ti(x), x, and K represent an individual regression tree that is constructed using a subset of input variables 
and bootstrapped samples, a vector input variable, and the number of trees, respectively.

RF can assess the significance of input features, improving model’s performance when dealing with datasets 
with many dimensions. The process entails quantifying the average reduction in predictive accuracy resulting 
from altering a single input variable while holding all other variables constant. This process entails assigning 
a score that represents the relative relevance of each variable, which then aids in selecting the most impactful 
features for the ultimate model47.

Extra trees regression
Geurts et al.48 proposed the ETR method, a developed method derived from the RF model. This approach is a 
recent advancement in ML, an enlargement of the well-known RF algorithm. It was made to prevent overfitting. 
Training each base estimator with a random subset of features is fundamental to the ETR algorithm’s success, 
just as in the RF47. ETR uses the whole training dataset to train each regression tree. On the other hand, RF uses 
a bootstrap replica to train the model49.

Support vector machine
Previously, supervised learning approaches, specifically SVM, were mainly utilized for classification purposes. 
However, contemporary research has also demonstrated successful adaptations of these techniques for regres-
sion problems50. Furthermore, kernel functions are employed in SVM to transform the training data, thereby 
mapping it to a space with higher dimensions where the data can be effectively segregated51. SVM models were 
built using consistent input descriptors and training/testing datasets. Equation (8) within the SVM model is the 
prediction or approximation function52.

SVM helps minimize systemic risk, diminishing overfitting, lowering prediction errors, and enhancing gen-
eralization. SVM does not rely on a predefined structure since it assesses the significance of training samples to 
determine their contributions. "Support vectors" are only established for models based on specific data samples53. 
In this research, SVM regression was conducted using the support vector regression (SVR) class available in 
the scikit-learn API’s SVM module. As illustrated in Fig. 8, a model is crafted, and the data is transformed into 
a chosen dimension.

Error metric
The models are evaluated based on several metrics, including mean absolute error (MAE), mean squared error 
(MSE), root mean squared error (RMSE), and regression coefficient (R2), to choose the optimal model. The MAE 
is calculated as the average of the absolute values of the errors. The metric is defined as the arithmetic mean of 
the absolute differences between the actual values and the corresponding predicted values. The term "MAE" is 
commonly used to denote a loss function. The primary objective in utilizing this loss function is to minimize it. 
The definition of MAE is as follows54:

where Ypredicted indicates the predicted value, and Yactual represents the actual value of the model.
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1
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Figure 8.   The main structure of the SVR.
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The MSE denotes the average value of the squared error, as illustrated in Eq. (10). MSE is seen as a loss func-
tion that requires minimization. One of the primary rationales for the extensive utilization of MSE in practical 
ML applications stems from its inherent characteristic of assigning more penalties to more significant errors 
compared to MAE when employed as the objective function54.

The RMSE is mathematically defined as the square root of the MSE, as demonstrated in the equation below. 
The RMSE is widely utilized as a loss function due to its interpretative capacity54.

The coefficient of determination (R2) is a way to measure how well the model fits the scientifically reliable 
results. The better the estimates are based on the experimental data, the closer the R2 is to 1. The calculation for 
R2 is as follows55:

where Ymean refers to the average value.

Results and discussion
In this study, Kaggle’s CPU session was employed, offering an environment equipped with 4 CPUs. The specifica-
tions of these CPUs include an Intel(R) Xeon(R) CPU @ 2.20 GHz with a total of 4 CPU cores, supporting both 
32-bit and 64-bit operations. Dedicating 1 CPU to each trial facilitated the concurrent execution of 4 processes, 
streamlining the exploration of hyperparameter space for each model. The duration of hyperparameter tuning 
for individual models spanned from 2 to 3 h, reflecting variations influenced by the intricacies of different models 
and the extent of the hyperparameter search space. During the hyperparameter tuning and model training phases, 
approximately 3-4 GB of RAM was employed. This allocation proved sufficient to manage the computational 
load throughout these processes.

Hyperparameters optimization
In the ML domain, the crucial role of hyperparameter optimization in developing efficient and precise models is 
undeniable. The main objective is to fine-tune each model, ensuring optimal performance across diverse datasets. 
A cohesive strategy for hyperparameter tuning was adopted, utilizing Ray Tune and various schedulers. The pri-
mary focus was to strike a balance between a model’s complexity and its predictive accuracy, achieved through 
meticulous exploration and validation processes. This approach aimed to prevent overfitting and maintain the 
model’s generalization ability. In the tuning process, practices like K-fold cross validation, early stopping, and 
L2 regularization played a pivotal role, especially for models such as ANN, MLP, and RBFNN. These prac-
tices effectively validated the model’s performance and mitigated overfitting risks. Ray Tune’s ASHAScheduler 
dynamically adjusted hyperparameters during training across various models, including ANN, RBFNN, RF, 
ETR, and SVR. The HyperBandScheduler was particularly effective for the MLP model, accelerating the tuning 
process and ensuring swift convergence to the best hyperparameter configuration. It is worth noting that other 
methodologies such as multi-objective optimization in neural architecture search (NAS) with algorithms like 
NSGA-II and the utilization of surrogate models for SVR are recognized as valuable tools that complement and 
enhance optimization strategies56–58.

ANN
After considering various factors such as the number of layers, neurons per layer, batch_size, learning_rate, 
weight_decay, activation_function, optimizer, and epochs, a thorough analysis was conducted to determine the 
best configuration for the ANN network architecture. The main goal of this analysis was to achieve the most 
favorable results on the test data. The optimal hyperparameters for the ANN network can be summarized as 
follows: units_layer1 = 128, units_layer2 = 128, units_layer3 = 32, batch_size = 16, learning_rate = 0.0005, weight_
decay = 0.00002, activation_function = Relu, optimizer = Adam, and epochs = 216.

MLP
The optimal configuration of the MLP network architecture was determined by considering several factors, 
including the number of layers, the number of neurons for each layer, dropout, weight_decay, learning_rate, 
batch_size, test_size, activation_function, optimizer, and the number of epochs. This comprehensive analy-
sis aimed to produce the most favorable outcomes on the test data. The ideal hyperparameters for the MLP 
network are summed up as follows: units_input = 256, units_hidden = 32, num_layers = 5, dropout = 0.0491, 
weight_decay = 0.00008, learning_rate = 0.0003, batch_size = 32, test_size = 0.2, activation_function = Relu, opti-
mizer = Adam, and epochs = 100.
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RBFNN
The training of the RBFNN involves optimizing many network characteristics, including the number of epochs, 
hidden_features, weight_decay, learning_rate, activation_function, and optimizer to attain optimal performance 
on the test data. The optimized hyperparameters include the following values: the number of epochs = 1500, 
the hidden_features = 50, the weight_decay = 0.00000001, learning_rate = 0.1, activation_function = Relu, and 
optimizer = Adam. Figure 9 illustrates the learning curve according to the most influential architecture of the 
MLP, ANN, and RBFNN.

RF
To enhance the performance of the RF algorithm, it is necessary to select appropriate hyperparameters care-
fully. The hyperparameters typically considered for optimization include n_estimators, max_depth, bootstrap, 
max_features, min_samples_leaf, criterion, and min_samples_split. For the specific case at hand, the ideal values 
for these hyperparameters are determined to be 74, 41, false, sqrt, 1, absolute_error, and 3 respectively, for n_esti-
mators, max_depth, bootstrap, max_features, min_samples_leaf, criterion, and min_samples_split.

ETR
To optimize ETR, these hyperparameters are assessed: (n_estimators, max_depth, min_samples_leaf, boot-
strap, max_features, min_samples_leaf, criterion, and min_samples_split), the ideal values are n_estima-
tors = 70, max_depth = 12, bootstrap = false, max_features = log 2, min_samples_leaf = 1, criterion = poisson, 
and min_samples_split = 5.

SVR
The hyperparameters typically considered during the optimization of SVR include kernel, C, degree, gamma, 
coef0, epsilon, shrinking, and tol. In this case, the ideal values for these hyperparameters are as follows: ker-
nel = RBF, C = 99.5403, degree = 3, gamma = scale, coef0 = 0.8938, epsilon = 0.0589, shrinking = true, and 
tol = 0.0014.

Comparison predictions
The models were retrained using the specified hyperparameters on training (70%), validation (20%), and testing 
(10%) datasets for each case. Following guidelines like those described in59, we constructed the testing dataset 
to ensure uniform coverage across the entire operational domain. This was achieved by systematically sampling 
points across the full range of each variable, including relative humidity, absorbent weight, temperature, time, and 
SO2 concentration. The graph in Fig. 10 compares the estimated SO2 concentration with the experimental values 
of the test groups. The performance of the models was evaluated using analytical criteria, namely the MAE, MSE, 
RMSE, and R2, as indicated in the previous equations. The outcomes are presented in Table 3. The high R2 value 
of 0.9902 and low MSE value of 0.0008 indicate that the RF model is suitable for estimating SO2 absorption by 
calcium silicate based on operational and absorption conditions. The model’s performance over the uniformly 
sampled testing dataset, which encapsulates the entire domain of FGD conditions, yielded a consistent accuracy, 

Figure 9.   The learning curve of MLP, ANN, and RBFNN models.
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Figure 10.   SO2 output concentration experimental versus predicted data using the models: (a) ANN, (b) MLP, 
(c) RBFNN, (d) RF, (e) ETR, and (f) SVR.

Table 3.   Analytical criteria for comparing different models.

Model

R2 MAE MSE RMSE

Train Validation Test Train Validation Test Train Validation Test Train Validation Test

ANN 0.9884 0.9896 0.9878 0.0157 0.0166 0.0183 0.0008 0.0007 0.0010 0.0279 0.0270 0.0322

MLP 0.9704 0.9646 0.9594 0.0359 0.0410 0.0422 0.0020 0.0028 0.0028 0.0449 0.0530 0.0527

RBFNN 0.9878 0.9781 0.9674 0.0151 0.0215 0.0229 0.0008 0.0017 0.0019 0.0289 0.0415 0.0434

RF 0.9989 0.9869 0.9902 0.0032 0.0149 0.0145 0.00007 0.0009 0.0008 0.0083 0.0299 0.0279

ETR 0.9975 0.9835 0.9852 0.0057 0.0145 0.0146 0.0002 0.0011 0.0012 0.0130 0.0337 0.0342

SVR 0.9678 0.9555 0.9751 0.0392 0.0450 0.0381 0.0022 0.0030 0.0020 0.0469 0.0553 0.0445
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demonstrating its robustness and reliability in various operational scenarios. This precise ML model can predict 
the SO2 concentration under different operational conditions for new absorbents. The ML models developed in 
this study can reduce the time and cost associated with experimental screening tests for various absorbents used 
in different scenarios, thereby promoting cost-effective and environmentally friendly generation for sustainability. 
Figure 10 demonstrates a high level of accuracy in the relationship between the RF model outputs and the SO2 
concentration data. The RF model achieves the most accurate results, accurately estimating the experimental data.

A random selection of five test data points was made from the set of considered data to assess the validity 
of the acquired models. The data shown in Table 4 provides information on the experimental concentration of 
SO2. The calculated value is determined based on the specific operating conditions for each model. Furthermore, 
the RF model had the highest level of accuracy in predicting SO2 concentration across most cases, surpassing 
all other models. Figure 11 shows a radar chart to compare the R2 value of the models. Based on the data given, 
it can be concluded that the RF algorithm has superior performance in predicting experimental data about SO2 
concentration. The training algorithm of the network aims to minimize the average error. Therefore, the RF model 
was employed to generate three-dimensional graphs that illustrate the correlation between input parameters or 
operational circumstances and the concentration of SO2. Figure 12 depicts the three-dimensional curves of the 
RF forecasting model. The collection of data on the curves was conducted to enhance comprehension of the 
impact of relative humidity, absorbent weight, temperature, and time on the concentration of SO2. The values of 
the constant parameters are determined by averaging the remaining inputs. A generalized optimal RF model to 
provide SO2 concentration performance for analyzing the influence of (a) relative humidity and absorbent weight; 
(b) relative humidity and temperature; (c) relative humidity and time; (d) absorbent weight and temperature; 
(e) absorbent weight and time; and (f) temperature and time, while other parameters are kept constant at 44% 
relative humidity, 0.0625 g absorbent weight, 43.25°C temperature, and 30.5 min time. Depending on the data 
presented in Fig. 12, maintaining the process at a higher relative humidity leads to a decrease in SO2 concentra-
tion. While humidity typically promotes the dissolution of SO2, it can also influence its concentration in the gas 
phase. High relative humidity can lead to increased water content in the flue gas, which, in turn, enhances SO2 
absorption and decreases its concentration in the gas phase60,61. With the increase in the weight of the absorbent 

Table 4.   Calculation of FGD parameters by models by fitting the experimental data. Significant values are in 
bold.

Run Relative humidity Absorbent weight Time Actual value ANN MLP RBFNN RF ETR SVR

1 29 0.100 16.0 1007.3 1003.8 1013 1017.5 1004.2 1012.9 1027.4

2 58 0.100 8.5 526.5 564.7 556.5 545.3 534.1 566.3 601.8

3 0 0.100 30.0 1012.2 1019.5 1018.3 1002.9 1008.2 1007 1037.7

4 88 0.100 18.5 813.3 763.1 825.9 831.1 808.6 770.3 768.9

5 58 0.025 8.0 454.0 431.1 463.8 481.5 466.2 430.4 437.8

Figure 11.   Radar chart showing the performance of models based on R2 value.
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and with the increase of time, the concentration of SO2 increases significantly. This depends on various factors. 
Initially, increasing absorbent weight enhances SO2 absorption by providing more surface area for interaction. 
However, when saturation is reached, excess absorbent can hinder absorption, potentially leading to increased 
SO2 concentration. also, SO2 absorption can reach a chemical equilibrium. Adding absorbent weight might shift 
this equilibrium towards desorption, resulting in higher SO2 concentrations, especially when excess absorbent 
prevents an absorption-favorable equilibrium. On the other hand, the rate of SO2 absorption depends on surface 
area and chemical reaction kinetics. Increased absorbent weight can alter reaction kinetics, potentially slowing 

Figure 12.   3D surface plots generated by the RF model to provide SO2 concentration performance for 
analyzing the influence of (a) relative humidity and absorbent weight, (b) relative humidity and temperature, 
(c) relative humidity and time, (d) absorbent weight and temperature, (e) absorbent weight and time, and (f) 
temperature and time.
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absorption and causing higher SO2 concentrations. Over time, absorbed SO2 can desorb back into the gas phase, 
increasing SO2 concentration, particularly with prolonged exposure62–64. The optimal range of absorbent weight 
to keep the SO2 concentration low is 0.025–0.06 g. As the desulfurization process begins, SO2 concentration 
increases. After the initial rise, around the 5-min mark, SO2 concentration reaches a minimum. This phase rep-
resents efficient SO2 removal from the gas phase as the absorbent starts absorbing SO2. Following the minimum 
concentration, SO2 concentration starts to rise again. This is due to factors like absorbent saturation or changes 
in the equilibrium between gas and absorbent. Towards the end of the time interval, SO2 concentration stabilizes 
and reaches an equilibrium. This equilibrium reflects a balance between continued SO2 release and absorption 
by the absorbent65–67. The performance of SO2 concentration was insensitive to temperature changes.

Global sensitivity analysis (GSA)
To identify the primary factors influencing the SO2 concentration, we conduct global sensitivity analysis (GSA) 
utilizing the ML models we developed. In this process, we apply the sensitivity equations provided in reference68. 
The GSA outcomes, specifically the first-order and total-order indices, are presented in Fig. 13 for the ANN, 
MLP, RBFNN, RF, ETR, and SVR models, respectively. The first-order index gauges the impact of individual 
environmental parameters on the output in isolation. Conversely, total order indices measure the influence of an 
environmental parameter, considering its interactions with other environmental factors69. Due to the computa-
tional complexity associated with determining higher-order indices individually, the calculation of total-order 
indices is commonly carried out. In all GSA simulations, we utilized 256 samples to assess the impact of each 
input parameter on the output. As depicted in Fig. 13, the output of all six models is most significantly influenced 
by the quantities of absorbent weight and time. Specifically, in the RBFNN and ETR models, time and absorbent 

Figure 13.   First order and total sensitivity indices in GSA using the models: (a) RBFNN, (b) ETR, (c) RF, (d) 
SVR, (e) MLP, and (f) ANN.
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weight respectively exhibit the foremost impact on the SO2 concentration. Conversely, in the RF, SVR, MLP, and 
ANN models, the absorbent weight and time respectively exert the greatest influence on the SO2 concentration. 
It is noteworthy that the impact of relative humidity and temperature on the SO2 concentration in all six models 
is deemed insignificant.

Conclusion
This research studied calcium silicate absorbent to establish an ML prediction for SO2 concentration in an FGD 
process. The experimental data, which included 323 data sets, was defined with four inputs: relative humidity, 
absorbent weight, temperature, and time, and one output, including SO2 concentration. Six models were created 
to estimate the output parameters, including ANN, MLP, RBFNN, RF, ETR, and SVR. For the models mentioned 
earlier, statistical values such as the R2 and MSE were determined to determine the optimal model and evaluate 
the fitting effectiveness. The highest performance was provided by the RF model that demonstrated the best esti-
mation with R2 of 0.9902 and MSE of 0.0008, and the optimal hyperparameter values were established as follows: 
n_estimators = 74, max_depth = 41, bootstrap = false, max_features = sqrt, min_samples_leaf = 2, criterion = abso-
lute_error, and min_samples_split = 3. The predicted SO2 concentration closely matched the experimental results, 
demonstrating the accuracy of the modeling. Three-dimensional surface plots were reported to investigate the 
effect of relative humidity, absorbent weight, temperature, and time on SO2 concentration. The findings revealed 
that absorbent weight and time were the most influential factors in SO2 concentration among the four parameters 
investigated. The results of this investigation indicate that ML methods can significantly improve the prediction 
of SO2 concentration within the range of the experiment. Continued research and development in this field and 
advances in ML techniques hold great potential for achieving cleaner air quality, reduced environmental impact, 
and more efficient energy production through enhanced FGD processes. We hope this study contributes to the 
ongoing efforts to address environmental challenges and promote cleaner, more sustainable industrial practices.

Data availability
The datasets used and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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