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Noval soliton solution, 
sensitivity and stability analysis 
to the fractional gKdV‑ZK equation
Muhammad Shakeel 1*, Asim Zafar 2, Abdu Alameri 3*, Muhammad Junaid U Rehman 4, 
Jan Awrejcewicz 4, Muhammad Umer 4, Muhammad Zahid 5 & Kottakkaran Sooppy Nisar 6

This work examines the fractional generalized Korteweg‑de‑Vries‑Zakharov‑Kuznetsov equation 

(gKdV‑ZKe) by utilizing three well‑known analytical methods, the modified 
(

G

′

G
2

)

‑expansion method, 
(

1

G

′

)

‑expansion method and the Kudryashov method. The gKdV‑ZK equation is a nonlinear model 
describing the influence of magnetic field on weak ion‑acoustic waves in plasma made up of cool and 
hot electrons. The kink, singular, anti‑kink, periodic, and bright soliton solutions are observed. The 
effect of the fractional parameter on wave shapes have been analyzed by displaying various graphs for 
fractional‑order values of β . In addition, we utilize the Hamiltonian property to observe the stability of 
the attained solution and Galilean transformation for sensitivity analysis. The suggested methods can 
also be utilized to evaluate the nonlinear models that are being developed in a variety of scientific and 
technological fields, such as plasma physics. Findings show the effectiveness simplicity, and 
generalizability of the chosen computational approach, even when applied to complex models.

Fractional Partial differential equations (FPDEs) can be considered as the generalized type of partial differential 
equations (PDEs). The FDEs have attracted the researchers’ attention over the past two decades because the 
results of PDEs are neglected. The search for the exact solutions of FPDEs plays a vital role in understanding the 
qualitative and quantitative features of many physical phenomena, which are expressed by these  equations1–6. 
For instance, the nonlinear oscillation of an earthquake can be modeled by derivatives of fractional order. The 
physical phenomena may not depend only on the time moment but also on the former time history, which can 
be successfully modeled utilizing the theory of fractional integrals and derivatives.

Nonlinear fractional partial differential equations (NFPDEs) have a significant role in various fields like 
applied mathematics, optical fiber, engineering, fluid, wave motion, mechanics, and plasma physics; they produce 
an essential part of the modelling of real-world issues. Nowadays, analytical solutions are becoming more impor-
tant in various engineering and mathematics fields. The prominent investigators of this era are more interested 
in producing novel solutions for different.

Recently many powerful techniques for attaining the exact solution of NPDEs have been presented, such as 
Jacobi-elliptic  approach7, Sine-Gordon expansion  scheme8–10, modified simple equation  scheme11, the 
Kudryashov  approach12, auxiliary equation  technique13,14, Exp-function  method15, the extended direct algebraic 
 method16–19, 

(

G
′

G2

)

-expansion  method17,20, extended tanh expansion  scheme21, (m+ G
′

G )-expansion  method22, 
Hirota bilinear  method23,24, modified rational expansion  method25, modified Sardar sub-equation  method26, the 
Riccati equation mapping  method27, F-expansion  method28 and many  more29–33.

In this paper, an effective method like modified 
(

G
′

G2

)

-expansion method, modified 
(

1

G
′

)

 - expansion method, 
and the Kudryashov method is utilized for investigating a variety of soliton solutions for gKdV-ZK fractional 
equation. This equation is used in plasma physics for analyzing the ion-acoustic wave  structures34,35.
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where a,b, and d are the constants. The gKdV-ZK fractional equation is a special type of nonlinear evolution 
equation that can be used to describe different complex nonlinear phenomena in the various fields of nonlinear 
science such as , plasma physics, fluid dynamics, and electromagnetism. The analytical solutions of (1) were 
attained by utilizing Kudryashov’s technique, and Jacobi elliptic function  scheme36. The hot isothermal and warm 
adiabatic fluid mixtures were derived  in37. The electron acoustic solitons for a small amplitude region were 
investigated  in38. The exact solutions of Eq. (1) were attained by utilizing Kudryashov’s technique, and Jacobi 
elliptic function  scheme36. The kink, quasi-periodic and lump-type soliton of Eq. (1) were acquired by utilizing 
the Lie symmetry  approuch39. In the past modified 

(

G
′

G2

)

-expansion technique, 
(

1

G
′

)

-expansion approach and 
the Kudryashov scheme were used on different equation such as:  In40 the variety of traveling solution was 
obtained.  In41, the analytical solutions for Gardner equations were achieved by utilizing 

(

1

G
′

)

-expansion tech-

nique. By utilizing the modified 
(

G
′

G2

)

-expansion approach, the traveling wave solutions were obtained for the 
nonlinear Schrodinger equation  in42. The soliton solutions of the Fokas-Lenells model also have been attained 
by utilizing 

(

G
′

G2

)

-expansion  approach43. The topological, periodic, and singular soliton solutions were attained 
 in44 by utilizing the Kudryashov method. The soliton solutions of the Maccari equation were investigated with 
the aid of the Kudryashov  scheme45. Different definitions for fractional derivatives have been utilized in the last 
many years. Such as, Beta time-fractional46, Reimann-Liouville47, Caputo  fractional48, Conformable  fractional49, 
truncated M-fractional  derivative50.

This research work is divided into sections: In section(2) we described the Beta derivative. In section(3) 

modified 
(

G
′

G2

)

-expansion method is utilized on Eq. (2) to attained the periodic and singular type soliton . The 
kink and dark type soliton are retrieved by using 

(

1

G
′

)

-expansion method in section(4). Section (5) discussed 
the Kudryashov scheme. The sensitivity and stability analysis of the soliton solution is discussed in section(6). 
In section(7) graphically representation. In the end, the conclusion is presented in section(8).

Beta derivative

Definition:  Let P(t) be a function defined ∀ non-negative t. Then, the β derivative of P(t) of order β is given  by51

Remark: 
where t > 0 and β ∈ (0, 1].

The modified 
(

G

′

G
2

)

‑expansion method
Consider the NPDE is

where operator D represents the partial derivative and u is an unknown function.
Consider the travelling wave is

utilizing (3) into (2),then

The travelling wave solutions are

(1)
∂βu

∂tβ
+ au2

∂u

∂x
+ b

∂3u

∂x3
+ d

∂

∂x

(

∂2u

∂y2
+

∂2u

∂z2

)

= 0,

Tβp(t) =
dβp(t)

dtβ
= limǫ→0

p(t + ǫ(t + 1
Ŵ(β)

)1−β)− p(t)

ǫ
, 0 < β ≤ 1

Tβ(p(t)) =
(

t +
1

Ŵ(β)

)1−β dp(t)

dt
,

(2)�(u,Dtu,Dxu,D
2
t u, ...) = 0,

(3)u(x, t) = U(η), η = x + y + z −
c

β

(

t +
1

Ŵ(β)

)β

,

(4)̥(U ,U
′
,U

′′
,U

′′′
, ...) = 0.

(5)U(η) =
N
∑

n=0

bn

(

G
′

G2

)n

, where n = 1, 2, 3, ...,N
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where τ1, σ1 and bn are unknown parameters which find latter.
The (6) has three cases:

Case‑1  If σ1τ1 > 0,

where A1 and B1 are arbitrary nonzero constants.

Case‑2  If σ1τ1 < 0,

Case‑3  If σ1 = 0, τ1 �= 0,

To obtain the three types of solution by putting the value of unknown bn and Eqs. (7),(8),(9) into (5).

Application of modified 
(

G

′

G
2

)

‑expansion method
The gKdV-ZKe equation is,

Suppose the transformation,

on (10), we get

Integrate (12) one time with respect to η , we get

Utilizing the homogenous balance approach on (10), then we have N = 1,

Utilizing (14) into (13), then we get,

(

G
′

G2

)0

: b1b
3
0

3
− b0c = 0

(

G
′

G2

)1

: ab1b
2
0 + 2b1bτ1σ1 − b1c + 4b1τ1σ1d = 0

(

G
′

G2

)2

: ab0b
2
1 = 0

(

G
′

G2

)3

: ab31
3

+ 2b1bτ
2
1 + 4b1τ

2
1 d = 0

The solution of the above system is given below,

Set‑1 

(6)

(

G
′

G2

)′

= σ1 + τ1

(

G
′

G2

)2

,

(7)

(

G
′

G2

)

=
√

σ1

τ1

(

A1 cos
√
σ1τ1η + B1 sin

√
σ1τ1η

A1 sin
√
σ1τ1η − B1 cos

√
σ1τ1η

)

,

(8)

(

G
′

G2

)

= −
√
| σ1τ1 |
τ1

+
√
| σ1τ1 |
2

(

A1 sinh(2
√
| σ1τ1 |η)+ B1 cosh(2

√
| σ1τ1 |η)

A1 cosh(2
√
| σ1τ1 |η)+ B1 sinh(2

√
| σ1τ1 |η)

)

.

(9)

(

G
′

G2

)

= −
A1

τ1(A1η + B1)
.

(10)
∂βu

∂tβ
+ au2

∂u

∂x
+ b

∂3u

∂x3
+ d

∂

∂x

(

∂2u

∂y2
+

∂2u

∂z2

)

= 0,

(11)u(x, y, z, t) = U(η), η = x + y + z −
c

β
(t +

1

Ŵ(β)
)β ,

(12)−cU
′
+ aU2U

′
+ bU

′′′
+ 2dU

′′
= 0.

(13)−cU + a
U3

3
+ (b+ 2d)U

′′
= 0.

(14)U(η) = b0 + b1

(

G
′

G2

)

.
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(14) become,

Three different solutions are given below,

Case‑1  If σ1τ1 > 0,

Where η = x + y + z − c
β
(t + 1

Ŵ(β)
)β,

Case‑2  If σ1τ1 < 0,

Case‑3 If σ1 = 0, τ1 �= 0,

Set‑2 

Equation (14) become,

Three different solutions are given below,

Case‑1  If σ1τ1 > 0,

Case‑2  If σ1τ1 < 0,

Case‑3 If σ1 = 0, τ1 �= 0,

The 
(

1

G

′

)

‑expansion method
Consider the Eqs. (2), (3), (4). The solution of (4) is,

The second order ODE is,

(15)b0 = 0, b1 =
i
√
3
√
c
√
τ1√

a
√
σ1

, d =
c − 2bτ1σ1

4τ1σ1
.

(16)U(η) =

(

i
√
3
√
c
√
τ1√

a
√
σ1

)(

G
′

G2

)

.

(17)U(η) =

(

i
√
3
√
c
√
τ1√

a
√
σ1

)

(√

σ1

τ1
(
A1 cos

√
σ1τ1η + B1 sin

√
σ1τ1η

A1 sin
√
σ1τ1η − B1 cos

√
σ1τ1η

)

)

.

(18)

U(η) =

(

i
√
3
√
c
√
τ1√

a
√
σ1

)

(

−
√
| σ1τ1 |
τ1

+
√
| σ1τ1 |
2

(
A1 sinh(2

√
| σ1τ1 |η)+ B1 cosh(2

√
| σ1τ1 |η)

A1 cosh(2
√
| σ1τ1 |η)+ B1 sinh(2

√
| σ1τ1 |η)

)

.

(19)U(η) =

(

i
√
3
√
c
√
τ1√

a
√
σ1

)

(

−
A1

τ1(A1η + B1)

)

.

(20)b0 = 0, b1 = −
i
√
3
√
c
√
τ1√

a
√
σ1

, d =
c − 2bτ1σ1

4τ1σ1
.

(21)U(η) =

(

−
i
√
3
√
c
√
τ1√

a
√
σ1

)(

G
′

G2

)

.

(22)U(η) =

(

−
i
√
3
√
c
√
τ1√

a
√
σ1

)

(√

σ1

τ1
(
A1 cos

√
σ1τ1η + B1 sin

√
σ1τ1η

A1 sin
√
σ1τ1η − B1 cos

√
σ1τ1η

)

)

.

(23)

U(η) =

(

−
i
√
3
√
c
√
τ1√

a
√
σ1

)

(

−
√
| σ1τ1 |
τ1

+
√
| σ1τ1 |
2

(
A1 sinh(2

√
| σ1τ1 |η)+ B1 cosh(2

√
| σ1τ1 |η)

A1 cosh(2
√
| σ1τ1 |η)+ B1 sinh(2

√
| σ1τ1 |η)

)

.

(24)U(η) =

(

−
i
√
3
√
c
√
τ1√

a
√
σ1

)

(

−
A1

τ1(A1η + B1)

)

.

(25)U(η) =
N
∑

n=0

bn

(

1

G
′

)n

.
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where an , σ1 and τ1 are unknown parameters to be determined later and N is homogenous balance number. The 
(26) become,

Then,

Here, A1 and A2 are unknown parameters. Putting (25) into (4) and utilizing (26), then (4) can be changed into a 
polynomials of ( 1

G
′ ) . After this, we are setting the polynomial equal to zero, and then we get a system of algebraic 

equations. Solving the obtained system with the aid of Mathematica to attain the values of parameters.

Application of 
(

1

G

′

)

‑expansion method
Utilizing N = 1 into (25), then we have

utilizing Eq. (29) into the Eq. (13) then we get set of algebraic equations

(

1

G
′

)0

: ab30
3

− b0c = 0
(

1

G
′

)1

: ab31
3

+ 4b1dτ
2
1 + 2bb1τ

2
1 = 0

(

1

G
′

)2

: ab0b
2
1 + 6b1dσ1τ1 + 3bb1σ1τ1 = 0

(

1

G
′

)3

: ab20b1 − b1c + 2b1dσ
2
1 + bb1σ

2
1 = 0

Solving the overhead system of the equation we acquire the solutions,

Set‑1 

Putting (30) into (29), then solution of (1) is,

Set‑2 

Putting (34) into (29), then solution of (1) is,

Kudryashov method
Solution of Eq. (4) is,

where bi is unknown, N is homogenous balance number, and Q(η) is the solution,
Q(η)2 = γ 2R(η)2(1− ρQ(η)2) , Q(η) = 4κ

4κ2eγ η+ρe−γ η ,
Now putting (34) into (12) and obtaining the algebraic system by solving the system we lead soliton solution 

of the NPDE Eq. (1).

Application of Kudryashov method
Substituting N = 1 into (34) then,

(26)G
′′
(η)+ σ1G

′
(η)+ τ1 = 0,

(27)G(η) = A1e
−σ1η −

τ1

σ1
+ A2.

(28)
(

1

G
′

)

=
σ1

−τ1 + σ1A1(cosh(σ1η)− sinh(σ1η))
.

(29)U(η) = b0 + b1

(

G
′

G2

)

,

(30)b0 =
√
3
√
c

√
a

, b1 =
2
√
3
√
cτ1√

aσ1
, d =

−bσ 2
1 − 2c

2σ 2
1

.

(31)U(η) =
√
3
√
c

√
a

+
2
√
3
√
cτ1√

aσ1

(

σ1

−τ1 + σ1A1(cosh(σ1η)− sinh(σ1η))

)

,

(32)b0 = −
√
3
√
c

√
a

, b1 = −
2
√
3
√
cτ1√

aσ1
, d =

−bσ 2
1 − 2c

2σ 2
1

.

(33)U(η) = −
√
3
√
c

√
a

−
2
√
3
√
cτ1√

aσ1

(

σ1

−τ1 + σ1A1(cosh(σ1η)− sinh(σ1η))

)

.

(34)U(η) = b0 + b1Q(η)+ ...+ bNQ(η)
N , bN �= 0,
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Putting (29) into (13) then we get set of algebraic equations

Q(η)0 : ab30
3

− b0c = 0

Q(η)1 : ab20b1 + bb1γ
2 − b1c + 2b1γ

2d = 0

Q(η)2 : ab0b
2
1 = 0

Q(η)3 : ab31
3

− 2bb1γ
2ρ − 4b1γ

2dρ = 0

Resolving the above system of equations we get the following solutions,

Set‑1 

Putting (36) into (35), then solution of equation (1) is,

Set‑2 

Sensitivity analysis
From (11), we can write as

Let c
b+2d = A and a

b+2d = B then we get,

Using the Galilean transformation on (41) then we get dynamical system as:

We will now investigate the sensitive phenomena of the perturbed system shown below. Subsequently, we will 
decompose the schemes given in Eq. (42) into an autonomous conservative dynamical system (ACDS), as illus-
trated below:

(35)U(η) = b0 + b1Q(η).

(36)b0 = 0, b1 = −
√
6
√
c
√
ρ

√
a

, d =
c − bγ 2

2γ 2
.

(37)U(η) =

(

−
√
6
√
c
√
ρ

√
a

)

(

4κ

4κ2eγ η + ρe−γ η

)

.

(38)b0 =0, b1 =
√
6
√
c
√
ρ

√
a

, d =
c − bγ 2

2γ 2
.

(39)U(η) =

(√
6
√
c
√
ρ

√
a

)

(

4κ

4κ2eγ η + ρe−γ η

)

.

(40)U
′′
=

c

b+ 2d
U −

a

b+ 2d
U3.

(41)U
′′
= AU − BU3.

(42)
{

U
′ = H ,

H
′ = AU − BU3.

Figure 1.  Sensitivity behaviour of the perturbed system (43) letting the initial condition (a) (0, 0.25) for blue 
solid line and (0.01, 0.30) for red dotted curve, (b) (0.05,0.8) for blue solid line and (0.08,1).
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In which f represents to be the frequency and m0 is the strength of the perturbed  component52. In the current 
part of the investigation, we will explore whether the frequency term has any effect on the model which will be 
examined. To do this, we will evaluate the model under examination’s particular appearance and address the 
impact of the perturbation’s force and frequency. By using four different beginning conditions in the component, 
we aim to evaluate the sensitivity of such a solution to the perturbed dynamical structural Eq. (43) at the value 
of parameters c = 0.05, a = 0.5, b = d = f = 0.2,m0 = 4.5. From Fig. 1 we have seen that In Fig(a), the system 
is not sensitive because there is overlapping in the cure but with a small change in the initial condition system 
becomes sensitive.

Stability analysis
The stability of the solitary wave solution is discussed in this section with the help of the Hamiltonian system. 
The HSM condition is given  by53,

Here, U represent the dependent variable, a1 , a2 are arbitrary constants and satisfies a1 < a2 . The following 
criteria determine how dependent the stability of the obtained solutions is on the HSM:

where  c  i s  the  speed of  waves .  The  se lec ted  va lues  for  parameter  i s  g iven by 
(g1 = 0.1, ν = −0.8, g3 = 0.3, τ = 0.05, y = 0.5, g2 = 0.08, z = 0.5, ς = 0.1) make the (33) and (37) stable solu-
tion as shown in Fig.(2,3) when t ∈ [0, 2] , and x ∈ [1, 10] . We utilized the same steps for the other soliton solu-
tions to check their stability property.

(43)
{

U
′ = H ,

H
′ = AU − BU3 +m0 cos(f η).

(44)M1 =
1

2

∫ a2

a1

U(η)dη,

(45)
∂M1

∂c
> 0,

Figure 2.  3− D, 2− D, and contour type solitary graph of (33).

Figure 3.  3− D, 2− D, and contour type solitary representation of (37).
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Results and discussion
This section discusses the graphical presentation of the gKdV-ZK equation. The physical phenom-
ena of the nonlinear model are determined by giving suitable values to the arbitrary constants with the 
help of Mathematica. We illustrate 2 and 3-dimensional Figs. 4, 5, 6, 7 and 8 of some obtained solutions 
to best analyze the nature of solitary wave solution. 3D and 2D shape of the solution (17) are presented in 
Fig. 4. Figure 4 (a)− (c) show the periodic type wave profile of (17) for choosing the parameteric values 
c = 0.8, b = 2, a = −0.05, σ1 = 2, τ1 = 0.08, k = −0.05, y = 5, z = −0.5,A1 = 0.05,B1 = 0.05 within the range 
−10 ≤ x ≤ 10 and 0 ≤ t ≤ 2 . Different wave structure for diverse values of β is present in Fig.(4)(a)− (c) . 2D 
graph with respect to time t is presented in Fig. 4d. We have also observed that the solitary waves tiny shifts when 
the change fractional order beta is without changing the shape of the curve. Furthermore, we have compared 
our solutions with Romana et al.54 that have attained bright and single soliton forms with the aid of an improved 
modified extended tanh expansion method (METEM). But in this article, we have achieved different forms 

Figure 4.  Effect of parameter β on (17).

Figure 5.  Effect of parameter β on (18).

Figure 6.  Effect of parameter β on (30).

Figure 7.  Effect of parameter β on (33).
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such as bright, dark, singular, kink and anti-kink of soliton solutions that have applications in plasma physics. 
Comparison with the solution of the METE method is shown in Table 1.

Figure 5 shows the cupson-singular type wave profile depicted from the solution of (18) choosing the various 
values of parameter c = 0.8, b = 2, a = 0.05, σ1 = −0.2, τ1 = 0.8, k = 0.5, y = 0.5, z = 0.5,A1 = 0.01,B1 = 0.05.

The solution of (30) shows the kink soliton solution for the distinct values of parameter 
c = 0.8, b = 2, a = −0.05, σ = 2, τ = 0.08, k = −0.05, y = 5, z = −0.5 which is shown in Fig. 6.

3 D  a n d  2 D  s h a p e  o f  t h e  s o l u t i o n  ( 3 3 )  a r e  p r e s e n t e d  i n  F i g .   7 .  F i g -
ure  7 (a)− (c) show the dark type solution of (33) at  dist inct values of  parameter 
c = 0.8, b = 2, a = −0.05, σ1 = 2, τ1 = 0.08, k = −0.05, y = 5, z = −0.5,A1 = 0.05,B1 = 0.05.

The solution of (37) represents the bright soliton for the distinct values of parameter 
c = 0.8, a = 0.5, ρ = 0.2, b = 0.1, κ = 0.5, γ = 0.5, y = 1, z = 0.5 which is shown in Fig. 8.

Conclusion
We have successfully analyzed the fractional effect on the gKdV-ZK equation. We have been applying the modi-
fied 

(

G
′

G2

)

-expansion method, 
(

1

G
′

)

-expansion method and kudryashov method on the resultant ODE to attain 
the different type of soliton solution.We have observed that the solitary waves tiny shifts when the change frac-
tional order beta is without changing the shape of the curve. These methods retrieved the bright, dark, kink, 
anti-kink, cupson-singular, and periodic soliton solution Figs. 4, 5, 6, 7 and 8. The soliton solution of (33) and 
(37) are stable without brakes or discontinuity in plotted figures because these solutions fulfil the requirements 
of (45). These techniques perform consistently and successfully. The results investigated in this paper are verified 
and described with the help of graphs. The finding is very helpful in the investigation of shallow-water waves, 
ionic acoustic waves in plasma, long internal waves in density-stratified oceans, and sound waves on the crystal 
network. Furthermore, these solutions are very fruitful for the study of dynamic systems.
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