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Twitter social mobility data 
reveal demographic variations 
in social distancing practices 
during the COVID‑19 pandemic
Paiheng Xu 1, David A. Broniatowski 2 & Mark Dredze 3*

The COVID‑19 pandemic demonstrated the importance of social distancing practices to stem the 
spread of the virus. However, compliance with public health guidelines was mixed. Understanding 
what factors are associated with differences in compliance can improve public health messaging since 
messages could be targeted and tailored to different population segments. We utilize Twitter data 
on social mobility during COVID‑19 to reveal which populations practiced social distancing and what 
factors correlated with this practice. We analyze correlations between demographic and political 
affiliation with reductions in physical mobility measured by public geolocation tweets. We find 
significant differences in mobility reduction between these groups in the United States. We observe 
that males, Asian and Latinx individuals, older individuals, Democrats, and people from higher 
population density states exhibited larger reductions in movement. Furthermore, our study also 
unveils meaningful insights into the interactions between different groups. We hope these findings 
will provide evidence to support public health policy‑making.

Social distancing and isolation are among the most effective methods to mitigate the spread of viral outbreaks. 
Especially early in a pandemic when little is known and other interventions are unavailable, preventing physical 
proximity between susceptible individuals can reduce virus transmissions and protect vulnerable  populations1–3. 
At the start of the COVID-19 pandemic in the United States, public health officials requested that the public 
avoid large gatherings and limit contact with others as part of a social distancing  initiative4. Subsequent research 
demonstrated the effectiveness of these social distancing  guidelines5–7. However, mixed compliance with these 
recommendations limited their effectiveness. A number of factors may negatively affect social distancing, includ-
ing financial factors, the housing environment, and distrust of public  officials8–11. Furthermore, experiences dur-
ing the pandemic have motivated calls for research into models that include the likelihood of compliance related 
to social factors in pandemic forecasting  models12–15. Understanding who adheres to social distancing and what 
factors influence these practices may be critical to ensuring the effectiveness of these practices.

One way we can measure compliance is through online mobility data, a quantitative measure of travel 
 patterns16. Near real-time measures of mobility from, for example, GPS-enabled mobile phones, offer a mas-
sive, detailed indicator of mobility patterns, and have thus been used during the COVID-19  pandemic17–19. In 
contrast, traditional survey data can be time-consuming to collect and suffers from response  bias20. However, a 
drawback of these data compared to surveys is that they are only available in aggregated form, and thus cannot 
associate mobility with other factors. Critically, we cannot answer who has reduced their mobility, and what 
factors are related to this decision.

Following research that uses social media data for public  health21–25, work during the COVID-19 pandemic 
(and in previous  epidemics26) has turned to Twitter as an alternative source of mobility  data27,28. At the time the 
study was conducted, public tweets could be collected on an ongoing basis in real-time through Twitter’s publicly 
available Application Programming Interface (API) for free. Twitter changed such access to paid service in 2023. 
Important for our purposes, Twitter allows for geotagging tweets, which then includes location information in 
the tweet metadata. Additionally, numerous studies have explored automatic Twitter  geolocation29–32, including 
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work on patterns and trends in Twitter geotagged  data33. In this study, we rely on public Twitter posts that contain 
user-provided location data.

Social distancing and demographics
 An advantage to Twitter data is that we can observe other information about the user who posted the tweet, 
which allows us to study how mobility changes correlate with individual characteristics related to health behav-
iors, such as  age34–36,  income37,38,  race39, and political  affiliation9,10,40. For example, partisanship is more strongly 
associated with physical distancing than other factors in the United  States10. Prior work has demonstrated how to 
infer relevant characteristics from Twitter  data41–44, including  gender45–47, race/ethnicity48,49,  age50, and political 
 affiliation51,52. Demographic factors (gender, age, race/ethnicity, political party) help predict intent to adhere to 
social distancing but are relatively poor predictors compared with individual attitudes and media  diets15. Simi-
larly, cellular mobility data at the county level can be used to reveal patterns in social distancing correlated with 
partisanship, media consumption, and racial and ethnic composition, as well as to measure the effectiveness of 
interventions that promote social  distancing53. Twitter data provides a complement to these data sources, allow-
ing for confirmation of population-level trends as well as more fine-grained analysis.

Mask usage
 Face masks have been another critical intervention adopted during the pandemic. The adoption of mask require-
ments and compliance have varied dramatically by location and  jurisdiction54. Chernozhukov et al. causally 
evaluate the impact of various policies of U.S. states and social distancing behavior measured by Google Mobility 
Reports on the spread of COVID-19 cases, demonstrating that nationally mandating face masks for employees 
early in the pandemic could have largely reduced the growth rate of cases and  deaths55. Similarly, Eikenberry et al. 
studied mask effectiveness in New York State and Washington  State56. Others have concluded that mandatory 
mask policies increase mask usage as compared to voluntary  policies57.

Contribution
 We use data from the Twitter Social Mobility  Index27 (Fig. 1) to study how demographic characteristics and 
political affiliation correlate with changes in mobility patterns, revealing insights into social distancing practices. 
We use demographic inference techniques, combined with user-level mobility data, to examine how different 
groups responded to the COVID-19 pandemic in the United States. We describe in detail the Twitter Social 
Mobility Index data and demographic characteristics in the Methods. Our findings can inform public health 
messaging and identify communities at higher risk from the virus.

Figure 1.  Visualization of Twitter Social Mobility Index. A Twitter user’s trajectories for Week 1 (blue) and 
Week 2 (red) are shown on the map of Chicago while the detailed location information is shown on the left. 
Each point on the map represents a coordinate derived from the user’s check-in Tweet. The number by the 
point is the order in which the tweet occurred. Each circle is centered at the centroid location for that week, and 
the radius of the gyration shows the distance traveled. The Twitter Social Mobility index is computed by the 
standard deviation of distance traveled across locations within each week.
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Results
Overall we found the following groups in the United States exhibited larger reductions in mobility as compared 
to counterpart groups based on analysis of variance (ANOVA) tests: males, Asian and Latinx individuals, older 
individuals, Democrats, and people from higher population density states. The conclusions on characteristics 
with multiple groups, i.e. race/ethnicity and political affiliation, are supported by Tukey’s test (see Supplementary 
Tables S6 and S7 online). In the following section, we explain each of these findings in detail and ground them 
in the literature.

Political affiliation
Hypothesis
 (1) Democrats reduced mobility more than Republicans, and (2) political affiliation acts as the main effect in 
interactions with other variables such as population density, race/ethnicity, and age.

Background
 In the United States, political affiliation has been identified as a significant factor in determining COVID-19 
behaviors. After a government order, residents in Democratic counties are more likely to stay home relative to 
those in Republican counties, based on geolocation data from  SafeGraph9. Similar results were found using 
smartphone location  data10,40. Additionally, population density confounds political affiliation as Democrats are 
more likely to live in dense, urban areas and thus be subject to stricter  policies40. Nevertheless, Allcott et al. and 
Gollwitzer et al. controlled for population density and still found that people from areas with more Democrats 
reduced mobility  more10,40. Gollwitzer et al also found partisanship is more strongly associated with physical dis-
tancing than numerous other factors, including counties’ COVID-19 cases, population density, median income, 
and racial and age  demographics10.

Another breakdown can examine support for US President Donald Trump, who was president during the 
start of the COVID-19 pandemic. Recent work suggests Trump supporters are less likely to accept COVID-19 
 vaccines58. Painter et al. studied the effect of Trump’s initial message which downplayed the severity of the 
coronavirus  pandemic9 as the press suggested that Republicans may not take social distancing seriously. They 
found Democratic counties with Republican governors have lower responses relative to the aligned Democratic 
counties and there were no significant differences among Republican counties.

Result
 From Table 1 and Supplementary Table S7, we observe that Democrats have a significantly larger mobility reduc-
tion than Republicans. Regarding the interactions between political affiliation and other variables, we follow the 
interaction analysis from our major ANOVA test in Supplementary Table S9 and the post-hoc analysis in Sup-
plementary Table S8. We find that Democrats have a larger mobility reduction than Republicans, regardless of 
whether they are in high or low-population-density states. Furthermore, political affiliation has a larger impact 
than gender. All Democrats have larger mobility reductions regardless of gender. We also observe a significant 
interaction with three variables, i.e. gender, age, and political affiliation. After ignoring groups with unknown 
political affiliations, we find 12/28 significant comparisons. 9/12 out of these comparisons are between Democrat 
groups and Republican groups. For each of these comparisons, the Democrat group has a significantly larger 
mobility reduction compared to the Republican group, demonstrating the strong impact of political affiliation. 
Finally, Supplementary Table S12 implies that users who follow Trump on Twitter have a larger mobility reduc-
tion, although the difference is small.

Table 1.  Summary statistics of ANOVA tests and mean mobility differences. F statistic, DF (degrees of 
freedom), and p value are shown for each variable.

Variable F statistic DF P-value Group Mean mobility difference Sample size

Gender 6.80 1.0 9.13× 10
−03

Female 32.48 194414

Male 36.40 258625

Race/ethnicity 24.50 3.0 7.60× 10
−16

White people 35.65 184654

Asians 47.11 40193

Latinxs 42.70 81509

Black people 25.72 146683

Age 22.85 1.0 1.75× 10
−06

< 30 28.40 245202

≥ 30 42.18 207837

Political affiliation 8.05 2.0 3.18× 10
−04

Unknown 32.70 363927

Democrats 45.53 63955

Republicans 36.44 25157

State population density category 10.50 1.0 1.19× 10
−03

High 35.69 295719

Low 32.90 157320
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Race/ethnicity
Hypothesis
 we believe that (1) Black and Latinx groups show smaller mobility reduction while Asian group shows the 
opposite. As many studies control for population  density10,40, we expect (2) there are significant differences in 
the interaction of race/ethnicity and population density.

Background
 Gollwitzer et al. found counties with higher Black or Latinx populations were less likely to reduce general mobil-
ity and non-essential visits, while Asian populations were in favor of these  reductions10. Census data combined 
with COVID-19 tests show that individuals from poor and immigrant neighborhoods and areas with predomi-
nantly Black populations in New York City are more likely to test  positive39.

Result
 The results partly support our hypothesis. From Supplementary Tables S6 and S8, we find that Asian and Latinx 
groups have a larger mobility reduction compared to Black and White groups. Furthermore, state population 
density has little impact when interacting with race/ethnicity as shown in Supplementary Table S8. The signifi-
cant differences between the groups mostly follow the trends for race. For all race/ethnicity groups, there is no 
significant difference between people from high and low-population-density states in this interaction.

Age
Hypothesis
 (1) Older individuals have a larger mobility reduction. (2) However, we expect significant interactions between 
multiple demographics, namely between age and race/ethnicity.

Background
 Previous studies found people born before 1965 are more likely to practice social distancing than people born 
between 1981 and 1996 using an online  survey36. Counties with higher median ages showed larger reductions 
in  movement10.

Result
 Table 1 confirms our hypothesis on older individuals. The results are more mixed for the age and race interac-
tion in Supplementary Table S8. Older people reduce their mobility more when compared with other younger 
groups regardless of race/ethnicity except for the comparisons involving Black people over 30. Black individuals 
have the smallest mobility reduction among all combinations for people over 30 in this interaction. They have 
a significantly smaller reduction when compared to Asian people below 30, and have no significant differences 
when compared to Latinx and White people below 30. For each of the four race/ethnicity groups included in our 
study, older people have significantly larger mobility reductions, showing age is the main effect when interacted 
with race/ethnicity.

Gender
Background
 Allcott et al. found that there were no statistically significant differences in social distancing behaviors by 
 gender40. Similarly, we do not expect to detect any significant difference between males and females.

Result
 Looking at the interaction between gender and age from Supplementary Table S8, we find that age has a larger 
impact on mobility; younger people have a smaller reduction when compared with other older groups regardless 
of gender. The differences between gender and other variables only exist for certain groups. For males and females 
in the same age range, we observe that males have a significantly larger mobility reduction ( 11.3% , p < 0.001 ) 
than females do when over 30. Male Republicans have 18.5% ( p < 0.05 ) larger mobility reduction than female 
Republicans, but we cannot conclude a significant difference between Democrat males and females.

Content analysis
We also include Twitter content characteristics, i.e. mentioning of COVID-19 and social-distancing hashtags, 
in separate analyses to validate our method, shown in Supplementary Tables S10 and S11. People who tweeted 
COVID-19 related hashtags have a larger reduction in mobility. We cannot conclude the same for people tweeting 
about social-distancing hashtags due to the relatively small sample size for the five-way ANOVA analysis. How-
ever, for the one-way ANOVA that includes all the above-mentioned characteristics, Supplementary Table S13 
confirms the intuitions that people tweeted COVID-19 and social distancing related hashtags reduce more 
mobility, and it also supports our previous conclusions on the other characteristics.

Mobility index distribution
Figure 2 shows changes in mobility from before and after the start of social distancing for each characteristic in 
our dataset. Each sub-group displays a reduction in mobility, consistent with the ANOVA tests. We can also see 
differences by attributes: we observe larger reductions for older individuals, people from high-density states, and 
Democrats. We note that high-density areas may have seen a larger drop because individuals can find services 
in a smaller geographic area.
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Regression analysis
Beyond reductions correlated with different demographic groups, we hypothesize that trust in government and 
perceived risk are associated with social distancing behavior. Our regression analysis, described in the "Methods" 
Section with results in Supplementary Tables S15, S16 and S17, shows that trust in the government predicts social 
distancing behavior even after controlling for perceived risk and population density at the state level.

Discussion
Our analysis concludes that male users, Asian and Latinx users, older users, Democrats, and people from higher 
population density states showed larger reductions in mobility. For race/ethnicity, the observations of Asian and 
Black populations confirm previous  work10. However, in our analysis, Latinx people are more likely to reduce 
movement. This might be due to the relatively poor performance of the race/ethnicity inference model on Latinxs 
(See Supplementary Tables S3 and S4 online). We are surprised to observe a significant gender difference which 
might be caused by the imbalanced age distribution in our dataset, i.e. the sample sizes between males and 
females are close when under 30 while there are many more male users relative to females over 30. In general, 
a consistent picture emerges across multiple data sources and analyses that indicates that some groups practice 
less social distancing, and thus may be at a higher risk of infection.

Moreover, our study provides meaningful insights into the interactions between different groups. For exam-
ple, political affiliation shows a stronger impact when interacting with gender and age, which is similar to the 
findings from smartphone  data10. Age is another strong factor since older people have a larger mobility reduc-
tion regardless of gender, as we expected. However, when it interacts with race/ethnicity, we find an exception 
for Black people as older Black people show smaller mobility reduction than some of the younger people from 
other race/ethnicity groups.

We emphasize that our results do not indicate willingness or attitudes towards social distancing or mobility 
reduction of certain groups. We are measuring actual behaviors, which may not align with attitudes for a variety 
of reasons. For example, individuals may agree with the importance of social distancing but may still need to 
travel for economic reasons. Weill et al. showed wealthy areas reduced mobility more during the  pandemic37. 
Population density has less impact when interacting with other demographics, which contradicts our hypothesis, 

Figure 2.  Mobility index distributions of each characteristic before (blue) and after (red) the start of the 
COVID-19 pandemic.
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which may be due to the fact that our population density labels are at the state, and not individual, level. There 
are dense, urban areas in states with low population density and vice versa.

A major advantage of Twitter data over other mobility data sources is the ability to link to comments and other 
behaviors of the users. We utilize this ability to show that increased trust in government correlates with greater 
mobility reductions across age and race/ethnicity. Public health communication strategies should consider how 
to best reach this at-risk group.

Our results demonstrate the utility of data from the Twitter Social Mobility Index. Future work on social 
distancing and health behaviors during epidemics can utilize similar public Twitter data to measure the effec-
tiveness of public health policies. Still, future analyses must recognize the limitations of this data source, which 
we discuss in the "Methods" section. Critically, our analysis considers individual characteristics rather than a 
holistic analysis that may illuminate other issues. For example, Democrats may be more likely to reduce their 
mobility because they live in dense urban areas. Additional unavailable variables may form critical parts of the 
story, but we lack this information. For example, we do not have access to socioeconomic information, but these 
factors may be confounding variables that explain why some groups have smaller reductions in mobility. Addi-
tionally, following other studies, we measure social distancing as reflected through social mobility. While there 
is significant evidence to support this association, the correlation is not perfect. Individuals may have increased 
mobility but stayed away from others (e.g. travel to rural areas), decreased mobility but increased social inter-
actions (in-person gatherings in their neighborhood), or increased mobility but adopted other precautions (6 
feet distancing, masking.) We cannot measure the difference between mobility and other precautions using our 
data. Furthermore, the dramatic social changes from the pandemic may have influenced how users geotagged 
their data, perhaps leading to changes in the social mobility measure. While the large drop in social mobility 
at the start of the pandemic strongly suggests a causal link between the pandemic and mobility, we cannot rule 
out other unobserved factors.

Overall, our analysis illustrates the value of geolocated Twitter data in understanding public health behaviors 
during a pandemic.

Methods
Data collection
We use data collected as part of the Twitter Social Mobility Index  Project59 This data includes public geotagged 
tweets from the United States from January 1, 2019 to June 21, 2020. The index is computed by aggregating 
geotagged data for a user and measuring the standard deviation across locations within each week. A high stand-
ard deviation in a week means high mobility. Changes in mobility behavior are measured over time by comparing 
mean mobility week to week. See Xu et al. for more details on data and computing  mobility27.

We select March 16, 2020 as the start of social distancing in the United States, since the national “Slow the 
Spread” guidelines announced on that date had the largest effect on  mobility27. Furthermore, Badr et al. showed 
mobility changes in many US counties following this announcement, even before individual state-level policies 
were  implemented19. We compare the time period before (January 1, 2019 - March 15, 2020) and after (March 16, 
2020 - June 21, 2020) this date as “before” and “after” the start of the pandemic. Our analysis relies on inferring 
demographics and analyzing the content of tweets. Therefore, we download the 3,200 most recent tweets for each 
of the 505,589 Twitter users in the collection who are present both before and after the start of the pandemic. We 
exclude 51,447 users identified as organizations by either of the existing individual vs. organizational account 
 systems50,60, leading to a total of 454,142 Twitter users. Our user-level dataset contains one entry for each user, 
including the mobility index, number of weekly geotagged tweets, and mean mobility index before and after the 
start of the pandemic. On average, the users in the dataset have 14.25 geotagged tweets weekly.

We augment each user in the dataset with demographic information as follows.

Location
 The user’s home city and state are computed from the centroid of all of their geotagged tweets. In our analysis, 
we use the home location to categorize a user as living in a high or low population density state, with a threshold 
set as the median US state population  density61.

Age and gender
 Age and gender are inferred using  M350, which uses both image (profile image) and text (name, username, 
user self-description) features. We use the text-based model when the profile image is unavailable. For gender, 
the full model achieves 0.918 macro-F1 and the text-only model 0.907 when evaluated on heuristically-labeled 
self-report data. For age, the full model achieves a 0.522 macro-F1 score. M3 produces age categories of 18 and 
under, 19-29, 30-39, and over 39. In our ANOVA analysis, we simplify this to be over/under 30. The macro-F1 
score for simplified categories is 0.700.

Race/ethnicity
 We include categorical race/ethnicity based on the model using  DistilBERT62 to embed the latest 200 tweets 
of each user into a fixed-length representation, which is then passed through a logistic regression with l2 
 regularization49. The model achieves 0.513 macro-F1 and 52.6% accuracy on a balanced dataset of self-reported 
race/ethnicity  labels48. Both the model and evaluation dataset provide the following race/ethnicity labels: White 
people, Black people, Asians, and Latinxs. We note that there are other racial groups in the US. The current cat-
egorizations are limited by the inference tool and evaluation data available. We provide the confusion matrices 
for age, gender, and race/ethnicity inference models in Supplementary Tables S1, S2, S3 and S4.
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Political affiliation
 We identify political affiliation in the United States (Democrat or Republican) using a strategy similar to Pre-
otiuc-Pietro et al51. We use three methods and include each in the dataset. (1) A user is assigned a label if they 
follow a member of congressional leadership from either the Democrats – Nancy Pelosi (@SpeakerPelosi) or 
Chuck Schumer (@SenSchumer) – or the Republicans – Kevin McCarthy (@GOPLeader) or Mitch McConnell 
(@senatemajldr). Otherwise, they are assigned the label unknown. (2) We apply the same approach but consider 
all members of Congress in  202063. We use the labels produced by this approach in our ANOVA analysis. (3) 
We also assign political affiliation labels based on the home state’s vote in the 2016 US presidential  election64. 
We excluded former President Trump’s account from this method since it is very popular and widely followed. 
Instead, we indicate if a user follows the former US President as a separate field, which may be useful as some 
studies have found that Trump supporters are less likely to accept a future COVID-19  vaccine58.

We include two characteristics that reflect tweeted content.

COVID‑19 hashtags
 We indicate if this user tweeted or retweeted a COVID-19 hashtag in their most recent 3200 tweets. We col-
lected hashtag usage from 81.1% of all the active users since 2020 March  in27, which is 1,103,749 users. We then 
manually identified COVID-19 hashtags by examining the 427 most popular hashtags whose total usage is above 
30,000 tweets.

Social‑distancing hashtags
 We repeat the same process to identify social distancing hashtags. The hashtags for COVID-19 and social dis-
tancing are listed in Supplementary Table S5.

ANOVA tests
We run ANOVA tests to determine whether the differences in mobility reduction among the demographic 
groups are significant. For all ANOVA tests in this study, we use the difference in mobility (reduction) as the 
dependent variable. We select age, gender, race/ethnicity, and political affiliation considering all current members 
of Congress, and state population density as independent variables for our major ANOVA test. We show the 
summary statistics of these five variables in Table 1, and significant interactions and mean mobility difference 
in Supplementary Table S9. We run three other separate ANOVA tests where we replace political affiliation with 
indicators of whether a user mentions COVID-19, or social distancing-related hashtags, and whether a user 
follows former U.S. president Trump. The summary statistics are shown in Supplementary Tables S10, S11 and 
S12 respectively. For the major ANOVA test, we also conduct post-hoc analysis by running a pairwise t-test to 
compare the groups in each significant interaction cell. We use Bonferroni correction to reduce the likelihood of 
committing Type I Error. The mean mobility difference and corrected p-values for post-hoc analysis are shown 
in Supplementary Table S8.

Regression analysis
We run a linear regression to test our hypothesis that social distancing behavior is associated with trust in gov-
ernment and perceived risk. We further augment each user in our dataset with trust-in-government measures 
based on age and race/ethnicity, and perceived risk based on state. We obtain trust measures for race/ethnicity 
and age from the Pew Research Center. We used the datapoint on 8/2/2020 which covers 4 race/ethnicity groups 
considered in our analysis. Original age trust measure data covers 5 generations. We used a weighted average by 
population from the US Census Bureau to generate trust measures for those below (born after 1981) and above 
30 (born before 1980). The generated trust measures are 19.0 and 20.3 accordingly. We measure perceived risk 
using the cumulative confirmed cases for each state on 6/21/2020 which is the end of our mobility dataset. We 
note that the trust-in-government measures are aggregated numbers and we do not include them in the proposed 
user-level dataset. We use these aggregated numbers that link to users’ race and age groups to test the related 
hypothesis. We leave building a reliable trust-in-government inference model on Twitter for future works.

We first include perceived risk and categorical demographics predictors, i.e. age, gender, political affiliation, 
and race/ethnicity, as independent variables. We then replace age and race with trust in government measures, 
controlling for perceived risk. To tease apart rural from trust-related variables, we also control for the state 
population density. We use the exact density values in this analysis. Considering that the dependent variable, 
users’ mobility reduction, is not normally distributed as shown in Supplementary Fig. S1, we split the users into 
two groups based on whether their mobility reduction is over or below 0. Users with 0 mobility both before 
and after March 16, 2020 are removed from the analysis. The log-transformed mobility reduction distribution 
plots for these two groups are shown in Supplementary Fig. S2. We run a linear regression on users who have 
mobility reduction over 0 with the above-mentioned experiments. We then log-transform the reduction with 
log(x + 1) and repeat the linear regression analysis. Finally, we run a logistic regression comparing users who 
have a mobility reduction over 0 to those who have a reduction of 0 or less in the same settings. When using 
dummy encoding for categorical variables, the reference group is the largest one except for political affiliation’s 
reference group is Democrats where the largest group is unknown. Min-max normalization is applied for each 
numerical dependent variable. The results are in Supplementary Tables S15, S16 and S17.

Data limitation
A responsible analysis must contextualize our results with the known, and potentially unknown, limitations of 
our data and methods. We enumerate some of these issues.
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Twitter is a biased source of data on a population. It reflects a non-random sample of the underlying popu-
lation, and users choose to share different types of information and use the platform in different  ways65. For 
example, different demographic groups do not use geotagging with the same  prevalence66. Demographics like age 
and gender introduce bias that interacts with geographic inference and how geotagging may be used on  Twitter32. 
Similar demographic bias is also found in mobility data from cell phones, i.e. older and non-White users are less 
likely to be  captured67. While Twitter has yielded numerous insights into population  health21, we must remain 
cautious about this source of bias as we explore each new issue. We note that at the time of data collection for 
this study, Twitter provided free access to its data for academic purposes. However, the recent policy change 
regarding access to Twitter data has introduced greater challenges in utilizing it as a data source for research.

Furthermore, our methods for inferring demographic information, including gender, age, and race/ethnic-
ity are far from perfect. We report the accuracies of our selected systems in the body of the paper. Beyond raw 
accuracy, these systems all have biases in how they make demographic inference decisions. They mostly capture 
perceived demographics, which may not be consistent with an individual’s self-identified demographics. Fur-
thermore, prior work has shown that different demographic groups may use Twitter differently, a factor that is 
not captured by demographic inference systems or our own  analysis66. The demographic inference models we use 
are limited in that they do not cover all groups within a demographic characteristic. For example, we combine 
race and ethnicity into 4 groups supported by the data and models but exclude other groups in the United States. 
Similarly, our gender models reflect only cisgender labels and exclude gender minorities. These limitations in 
data and available systems must be considered when drawing conclusions from our analysis.

Despite the massive size of our dataset, there are many gaps. We have only a few geotagged tweets from each 
user each week, and we do not have enough data to produce county-level analyses for most locations in the 
United States. Therefore, these results should be compared to those from other data sources, and further work 
should more fully explore specific conclusions of the analysis.

Ethics
We must consider issues of ethics and privacy when mining social media data, even when it is data publicly posted 
online. There are different ethics and privacy issues to be considered when using Twitter data versus other mobil-
ity data, such as from mobile phone use. While mobile phone data are private and potentially very sensitive, they 
are not widely available, nor do they contain message content. In contrast, our Twitter data is (potentially) less 
sensitive and publicly available, but contains the text of messages. We must be sensitive to unintentional privacy 
violations that occur when analyzing aggregated data from a single user. More generally, when addressing issues 
related to health, attention to privacy is  critical68.

In our work, we aggregated all mobility metrics to produce population-level analyses. None of our work con-
siders the identity of individual users, and we removed identifiable user information from the distributed data 
aggregations. Furthermore, we caution others who pursue work similar to ours to consider privacy ramifications 
for users when collecting new data and conducting similar analyses. Finally, this research is conducted under an 
IRB-approved exemption under 45 CFR 46 category 4.

Data availability
Our data are public tweets containing user-provided geolocation information. To protect user privacy we remove 
all content and only use the information described in our analysis. The data that support the findings of this 
study are available from the corresponding author upon reasonable request.
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