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Tree size distribution 
as the stationary limit 
of an evolutionary master equation
Szabolcs Kelemen 1, Máté Józsa 1, Tibor Hartel 2, György Csóka 3 & Zoltán Néda 1*

The diameter distribution of a given species of deciduous trees is well approximated by a Gamma 
distribution. Here we give new experimental evidence for this conjecture by analyzing deciduous tree 
size data in mature semi-natural forest and ancient, traditionally managed wood-pasture from Central 
Europe. These distribution functions collapse on a universal shape if the tree sizes are normalized 
to the mean value in the considered sample. A new evolutionary master equation is used to model 
the observed distribution. The model incorporates four ecological processes: tree growth, mortality, 
recruitment, and diversification. Utilizing simple and realistic kernel functions describing the first 
three, along with an assumed multiplicative dilution due to diversification, the stationary solution 
of the master equation yields the experimentally observed Gamma distribution. The model as it is 
formulated allows an analytically compact solution and has only two fitting parameters whose values 
are consistent with the experimental data related to these processes. We found that the equilibrium 
size distribution of tree species with different ecology, originating from two contrastingly different 
semi-natural ecosystem types can be accurately described by a single dynamical mean-field model.

The concept of universality in biological and social systems is highly debated1–7. Although many areas of science 
are keen to uncover universal statistical features of their studied systems, biology, and sociology are usually focus-
ing on quite the opposite, i.e. the contextual specificities of the investigated problem. Besides this dominating 
trend, in ecology, there are many attempts for a unified statistical description of large plant or animal ensembles. 
Examples are population abundance studies8–12, scaling laws for size13, life expectancy or motion trajectories4,6, 
topological features of food and metabolic networks, and emerging patterns. In such a line of studies tree size 
evolution and the resulting statistics have been intensively studied in the past decades14,15. Most of the models 
used in the literature are motivated by applications in sustainable forest management plans16 , or by tree demo-
graphic studies17.

Tree growth and mortality play a fundamental role in the ecosystem identity as well as the dynamics of forests 
and woodlands18. Exploring the potential universality of the dynamical mechanisms of tree ensembles (compact 
tree stocks) with different management and natural histories, but belonging to the same bioclimatic region, 
through simple variables such as the tree size remains an important statistical and modeling challenge19. Besides 
this, there is a general trend in focusing on forest ecosystems, while it is known that trees can take important 
role in the identity of the open landscapes (see e.g. wood-pasture systems of Europe20). With this study we aim 
to address tree size distribution in two ecologically contrasting ecosystem types from Eastern Europe: semi-
natural forests with mature trees and ancient wood-pastures. We selected tree species with different ecological 
recruitments but that occurs in both ecosystem types. By validating the models and their assumptions on such 
statistical data one can then step further with the models and study the response of the system to environmental 
changes and human influence. Assuming argumentable growth, mortality and recruitment rates, here we con-
sider an analytically solvable evolutionary equation to model tree-size statistics in temperate zone woodlands.

Earlier statistical studies revealed that a Gamma distribution describes well tree diameter distribution in 
deciduous forests, although many other fitting functions were proposed15,21,22. A particular example of an alter-
native result is the Weibull distribution applied to DBH distribution of deciduous forests in North America23. 
Building on this finding, we employ a newly developed Local Growth and Global Reset (LGGR)24 model which is 
a simple evolutionary master equation with realistic dynamical assumptions24,25 to test the region-specific gener-
ality of tree diameter distribution originating from closed canopy mature semi-natural forests and ancient wood-
pastures from the continental biogeographic region of Central Europe. Our data on individual tree diameters 
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originates from temperate deciduous forests and wood-pastures covering a complete gradient of management 
history, from plantation forests (full human control), through semi-natural forests (reduced human interven-
tions, multi-century continuity) to ancient wood-pastures with large old trees (Fig. 1). In the following, first, we 
provide a description of the study sites, the particularities of the systems, and the origin of the tree size data and 
then we will apply our model to analytically approximate the observed distributions and the real-life processes 
that are incorporated in the model.

Materials and methods
Tree‑size distribution revealed by the experiments
Three different temperate zone woodland ecosystem types were selected for the tree-size measurements, with 
the aim of mapping various contributions to tree growth, mortality and recruitment processes. We determined 
the mean Diameter at Breast Height (DBH) for all trees in compact, well-delimited regions for all the studied 
ecosystems.

Below we describe the three studied systems while the descriptive statistics of the trees are presented in 
Table 1. The first sample of trees originates from semi-natural, mature, deciduous forest plots (hereafter ,,forest”) 
from Central Romania (cca 400–600 m asl, Fig. 1a). The dominant native tree taxa that provides identity for these 
forests are the Oak (Quercus sp., hereafter Quercus), the Hornbeam (Carpinus sp., hereafter Carpinus), and the 
Beech (Fagus sp., hereafter Fagus). From the perspective of the management history of these forests, only Quercus 
was planted by the Transylvanian Saxons, the other two species were naturally regenerated (intentionally in the 
case of Fagus and unintentionally in the case of Carpinus). The natural values of these forests are exceptionally 

Figure 1.   Aerial (upper row) and ground level (bottom row) perspective image of the three ecosystems: semi-
natural forest (a), semi-natural wood-pasture (b), plantation (c). Source: Authors.

Table 1.   Statistical overview of the processed semi-natural woodland and plantation data.

Woodland type Species/stand age Nr. of trees Lowest DBH [cm] Greatest DBH [cm] 〈 DBH 〉 [cm]

Semi-natural forest

Quercus 883 3.2 122.5 38.1

Fagus 1782 3.2 115.2 31.5

Carpinus 1994 1.6 76.4 20.1

Wood-pasture

Quercus 1013 4.1 248.3 87.0

Fagus 100 10.2 136.9 74.1

Carpinus 255 4.8 202.1 54.0

Poplar plantation
≃ 10years 1076 5.7 36.0 18.3

≃ 15years 1613 5.1 54.7 27.5
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high due to the low human interventions in the past century which allowed the accumulation of dead wood 
and also the presence of large old trees26. Forests from this region are covered by Natura 2000 protected area 
regulations. Grazing has been prohibited in these forests since cca one century while the main economic use 
of the trees is the timber27. The density of trees is typically higher than 600 trees/hectare26. The circumference 
of trees having at least 3 m height was measured at 130 cm from the ground28. Trees from 15 forest plots were 
measured. Only the measurements from the dominant tree taxa (see above) were used in this study in order to 
ensure an adequate sample size.

In order to avoid the forest edge effects on tree size the tree measurement plots were situated at a distance of 
270–850 m from the forest edge28. Based on the in situ age estimation on ring counts, the trees in our sample had 
between 15 and 250 years. Other, naturally established tree species that could present competition for the mod-
eled trees are: Acer pseudoplatanus, Acer platanoides, Tilia cordata and in lesser extent Prunus avium, Fraxinus 
excelsior and Acer campestre.

The second sample of trees originates from an ancient, traditionally managed wood-pasture (hereafter wood-
pasture) from Central Romania (cca 400–600 m asl, Fig. 1b). The dominant native tree taxa in the wood-pasture 
systems contains the three taxa mentioned above (Quercus, Fagus, Carpinus), and measurements of trees belong-
ing to these taxa were used in this analysis. The origin of these wood-pastures is the centuries-long silvopastoral 
use, when trees regenerated naturally, facilitated by thorny shrubs and periodical reduction of grazing pressure. 
Similarly to forests, the wood-pastures from this region are covered by Natura 2000 regulations. Unlike in the case 
of the forests (see above), the main use of trees historically and now is the shade for livestock, fruits, and erosion 
control for the soil27. The density of trees is much below that of forests, being around 7-25 trees/hectare28. The 
circumference of trees having at least 3 m height was measured at 130 cm from the ground28 in 40 plots. The age 
of the trees based on ring counts ranges between cca 10 years to up to 300 years. Other, naturally established tree 
species that are commonly accompanying the above trees are Acer campestre, Pyrus pyraster, P. communis, Malus 
sylvestris, Prunus avium28. For simplicity, whenever we refer to the forest and wood-pasture systems together, we 
use the term woodland in the following.

Finally, in order to have a sharply contrasting system for comparison, we considered monocultures of hybrid 
Poplar tree (hereafter Populus) plantations with a density of approx. 400 trees/hectare, where all trees were 
planted in the same year and where no human intervention was considered since. The latter measurements aimed 
to illustrate disparities in tree size distribution within controlled ecosystems that had not achieved statistical 
stationarity, as opposed to mature natural forest environments characterized by uncontrolled tree diversity and 
growth, where it is presumed that the tree-size distribution is in a stationary state. Another reason for studying 
such systems was to have information on the growth dynamics of genetically identical trees in controlled environ-
ments. The trees were planted in a regular square grid with an approximate distance of 5 m between each other 
as it is illustrated in an aerial perspective in Fig. 1c. We made measurements for two plantations of different ages 
(approximately 10 and 15 years). Since virtually no other tree species were present in the plantations, we assume 
no interspecific competition in this system.

All three databases constructed by us contain exhaustive measurements in a compact tree ensemble for DBH 
values29. From the collected data we constructed the normalized probability density function for the tree size 
distribution. Tree sizes, x, are quantified with their DBH values, and in our statistics, these were normalized to 
the mean for the specific tree ensemble: x → y =

x
<x> . The ρ(y) probability densities computed from the data 

are shown in Fig. 2. The tree size distributions for semi-natural forests and wood-pastures collapse on a master 
trend which can be well approximated with a Gamma distribution. Our finding on the goodness of the Gamma 
distribution is in agreement with earlier studies on tree-size distribution in forest environment15,22. As expected, 
the statistics for the plantation is strikingly different, resembling a Gaussian trend (Fig. 2b–d), and the distribu-
tions in y for two different aged poplar plantations collapse again (Fig. 2b). The Gaussian nature of the distribu-
tion in the plantation seems consistent with what one would expect from simple analogies with similar statistics 
in other controlled biological systems30. The Gamma-type tree-size distribution in the forest is however a more 
complex problem, and in understanding it one should follow the dynamical evolution of the tree ensemble, the 
interplay of growth and mortality processes. Due to the mature nature of the forest and wood-pasture, one can 
then assume that the observed distributions are stationary ones, so the stationary limit of such an evolutionary 
equation should describe the observed distributions, which is a helpful assumption for modeling purposes. In 
the following we will look deeper into the available statistical data on such systems and try to understand them 
through mean-field-like evolutionary models.

The LGGR modeling framework
For modeling purposes we used the Local Growth and Global Reset (LGGR) master-equation framework. This 
evolutionary type equation is a mean-field-like description of an ensemble where individuals are subject to the 
same probabilistic local growth and global reset processes24,31. Reset is a process where an individual with a 
given state leaves the considered ensemble (either by mortality or some equivalent process) and it is replaced 
by a different individual in the ground state. For a unidirectional growth process, this reset is needed in order, 
to achieve a stationary state. It has been proven to be appropriate for explaining various distributions that are 
characteristic of different complex systems24,32,33. For illustrating such a dynamics let us consider that the states 
of the elements are characterized by a quantity x, in our case this quantity can be the size quantified by DBH.

In a first approach let us discretize the trees’ diameter in well-distinguishable states, described by an integer 
number of corresponding DBH quanta, n ( x → n ). In this discrete scenario we denote by Nn(t) the number of 
elements in state n at time t. Assuming local probabilistic changes for the states of the elements and a probabilistic 
resetting process to the n = 0 state, an evolutionary master equation can be considered:
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Here µn is the state-dependent local growth rate (probability per unit time) of going from state n to state n+ 1 , 
�n is the local decrease rate of going from state n to state n− 1 , and γn is the reset rate for going from state n to 
state 0. The system preserves the Ntotal =

∑

i Ni elements in the system by the last term, which is nonzero for 
n = 0 ( δn,0 being the Kronecker delta symbol). We have thus:

For many real-world processes, like the case of trees, the local dynamics is unidirectional. The living tree’s diam-
eter can only increase, with state-dependent growth rates. This means that in Eq. (1) �n = 0 for all n states and 
the process becomes the one we named Local Growth and Global Reset (LGGR) dynamics:

We can switch now the description from the Nn occupancy numbers to the Pn = Nn/Ntotal probabilities that a 
tree’s DBH is n quanta at time moment t. Naturally, normalization of Pn(t) satisfies: 

∑

{n} Pn(t) = 1 . The evolu-
tionary master equation describing the local unidirectional transitions and a random resetting process is also a 
system of coupled first-order differential equations:

(1)
dNn(t)

dt
= µn−1Nn−1 + �n+1Nn+1 − (µn + �n + γn)Nn(t)+ Ntotalδn,0�γ �(t).

(2)�γ �(t) =
∑

j

γj
Nj(t)

Ntotal
.

(3)
dNn(t)

dt
= µn−1Nn−1 − (µn + γn)Nn(t)+ Ntotalδn,0�γ �(t).
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Figure 2.   DBH distributions, represented as probability density functions, derived from experimental data. In 
the first column (a, c), the distributions for natural forests (in red) and wood-pastures (in green) are depicted 
alongside the Gamma fit obtained from the LGGR model (Equation 25). The second column (b, d) shows the 
DBH distribution within a 10- (in yellow) and a 15-year-old (in blue) Populus tree plantation, both with very 
similar ecological backgrounds, fitted with Gaussian distributions. The lower panels (c, d) provide an additional 
visual representation highlighting differences in mean DBH values and illustrating the presence of empty bins.



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1168  | https://doi.org/10.1038/s41598-024-51553-2

www.nature.com/scientificreports/

The last term in Eq. (4) maintaining the normalization of Pn(t) is :

Based on the mathematical form of the reset rate, γn , two different dynamical scenarios can be distinguished. 
The simplest case is when for all n values the state-dependent reset rate, γn , is positive. Reset means that the 
element disappears from state n and reapers in state 0. For trees this simple reset describes tree mortality, and 
consequently the replacement of a tree with a new individual with 0 size. This dynamics is represented in Fig. 3a. 
A more complicated dynamical scenario is when the reset rate, γn , can be both positive and negative as a function 
of the n value. A scenario of this type is represented in Fig. 3b. One should keep in mind that a negative reset is an 
inverse process to the ordinary reset, it means that an element is appearing in state n and disappears from another 
state, preserving the total balance. In the case of tree ecosystems this would mean that a new tree that appears 
in our statistics is characterized not by a 0 size, but it appears in the n > 0 bin, usually n smaller than a critical 
nr value. Simultaneously, large trees are dying out or get harvested so they disappear from states with n > nr . 
This second scenario considering a state-dependent smart reset rate offers much more flexibility and it is more 
appropriate for modeling the tree growth dynamics in the ecosystems where our data was collected from. Such 
an attempt was considered recently for modeling the distribution of wealth and income in human societies33,34.

Another possibility to include additional terms in the evolutionary equation is by considering the case when 
the number of elements is also changing in the system. For example, in the case when the number of elements 
(trees) is increasing (or decreasing) multiplicatively

one gets

leading to an extra reset-type term in the master equation for Pn(t):

Such kind of process was recently considered for explaining the universal statistics of citations and Facebook 
shares35.

Handling mathematically the coupled differential equations from Eq. (8) in the discrete dynamical picture 
is quite tedious. The discrete process described by Eq. (8) can be generalized to continuous states ( n → x ) in 
the limit dt → 025. In such a picture, instead of the discrete state probabilities Pn(t) we will have the continuous 
probability densities ρ(x, t) with the normalization condition 

∫

{x} ρ(x, t)dx = 1 . The growth and reset rates are 
written as functions of the state variable x:

(4)
dPn(t)

dt
= µn−1Pn−1(t)− µnPn(t)− γnPn(t)+ δn,0�γ �(t).

(5)�γ �(t) =
∑

j

γjPj(t).

(6)
dNtotal

dt
= κ0Ntotal(t),

(7)

dNn(t)

dt
=

d (Ntotal(t)Pn(t))

dt
= Ntotal(t)

dPn(t)

dt
+ Pn(t)

dNtotal(t)

dt
= Ntotal(t)

dPn(t)

dt
+ κ0Ntotal(t)Pn(t),

(8)
dPn(t)

dt
= µn−1Pn−1(t)− µnPn(t)− (γn + κ0)Pn(t)+ δn,0�γ �(t).
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Figure 3.   Schematic illustration of the growth and reset process for two scenarios based on the form of the 
reset rate: (a) simple mechanism with only positive reset rate, (b) the reset rate can be both negative and positive 
( γn < 0 if n < nr , and γn > 0 for n > nr).



6

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1168  | https://doi.org/10.1038/s41598-024-51553-2

www.nature.com/scientificreports/

By taking this continuous state generalization, the master equation written in Eq. (4) transforms into a partial 
differential equation:

In this continuous limit, the last term is again the feeding at x = 0 imposed by the Dirac delta function δ(x) . This 
term allows to preserve the normalization of ρ(x, t) . The mean value of the reset rate ( 〈γ 〉 ) is given as:

In the stationary limit

the evolution equation for the probability density of having a tree size x > 0 described by Eq. (10) simplifies into:

Equation (13) has a compact analytical solution that depends only on the form of the chosen growth and reset 
rates24,25,31:

with C being a normalization constant. This closely resembles the formulation proposed by Van Sickle et al.36 
widely used in demographic modeling for biological systems37,38.

Based on the form of the µ(x) growth- and γ (x) reset rates, the LGGR model is able to reproduce station-
ary probability distributions, ρs(x) , that are frequently encountered in complex systems24,25,32,33. The LGGR’s 
mathematical apparatus has been comprehensively studied in recent years24,25,31,39,40, encompassing aspects of 
convergence and applicability to various fields of science24,32–35,41.

Compliance statement
Our research, involving non-invasive measurements, fully adheres to the regulations of the International Union 
for Conservation of Nature (IUCN) Policy on Species at Risk of Extinction and the Convention on the Trade in 
Endangered Species of Wild Fauna and Flora (CITES) to ensure the ethical treatment and protection of endan-
gered plant species.

Results
We apply now the LGGR modeling framework to describe the dynamics of tree-size distribution. There are 
three main processes that drive this dynamics: a monotonic growth, the possibility of a reset (natural mortality 
or exploitation followed by the recruitment of new trees), and a multiplicative change in the number of trees 
belonging to one species. These stochastic processes are mathematically quantified by the µ(x) growth rate, the 
γ (x) reset rate and κ dilution rate. Once the needed kernel functions are realistically defined, the dynamics given 
by the LGGR model should yield the time evolution of the tree-size distribution function. In a general study of 
the LGGR dynamics it was previously shown40, that apart from some pathologic cases, such systems are indeed 
converging to the stationary distribution. Depending on the starting condition, the mean of the distribution 
might converge slowly to a stationary value, however, the distribution of x/〈x〉 converges quickly to a stationary 
distribution. Given that the considered ecosystems (forest and wood-pasture) are determined largely by mature 
trees, we can assume that the DBH distributions that we see in the forest and wood-pasture correspond to the 
stationary distribution. This is different for even-aged plantations, which are still in continuous development. 
Interestingly however, even in this clearly non-stationary case, their size distribution during the growth process 
can be rescaled if we normalize the sizes to the mean value. This is what we see in Fig. 2b for the plantations: 
although the diameters are continuously increasing, the statistics in x/〈x〉 is only slightly different for a plantation 
that is 10 or 15 years old. This scaling, suggests that the growth speed of the trees has to increase as a function 
of the tree diameter, i.e. larger trees have to grow faster.

For choosing the right functional form for the growth and reset rates we take into account empirical knowl-
edge of the tree life cycle, diversity dynamics in natural forest environments, previous experimental observations 
on such processes, and aim for a mathematical simplicity that allows compact analytical results. We follow here 
a physicist approach for such complex systems, using a small number of model parameters, and by simple, yet 
realistic, assumptions we aim to describe the main elements and universal features in the observed statistics. The 
confirmation of our model will not focus thus on the statistical goodness of the fit as it was done in the work of 

(9)
µn → µ(x)

γn → γ (x)

κ0 → κ .

(10)
∂ρ(x, t)

∂t
= −

∂

∂x
[µ(x)ρ(x, t)]− (γ (x)+ κ)ρ(x, t)+ �γ (x)�(t)δ(x).

(11)�γ (x)�(t) =

∫

{x}
(γ (x)+ κ)ρ(x, t)dx

(12)
∂ρ(x, t)

∂t
= 0,

(13)
∂

∂x
[µ(x)ρ(x, t)] = −(γ (x)+ κ)ρ(x, t)).

(14)ρs(x) =

C

µ(x)
e
−

∫

{x}
(γ (u)+κ)

µ(u) du
,



7

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1168  | https://doi.org/10.1038/s41598-024-51553-2

www.nature.com/scientificreports/

Lima21 for example, but rather on the desire to understand by a simple analytical model the dynamical mechanism 
leading to the universal form of the tree-size distribution in the studied forest and wood-pasture ecosystems.

Growth rate
Both our measurement data on the Populus plantations (demonstrating an increasing standard deviation with 
mean size increment; see Fig. 2d) and the data available in the literature11,13,42–49 supports the assumption that 
the growth rate ( µ(x) ) of deciduous trees monotonically increases with the tree diameter. Even without a reset 
process, this increase cannot go on indefinitely, therefore for large trees, it has to saturate. A mathematical form 
that can accommodate such a growth rate is:

The specific functional form, Eq. (15, for the growth rate was taken by aiming to mathematical simplicity. 
However, its form and the involved b parameter value are consistent with all experimental data (supporting 
information also for a similar sub-linear growth rate from Moore et al.11). The growth rate given in Eq. (15) is 
supported by the data provided by the United States National Park Service (NPS)50,51, where we have identified 
the annual growth rate from the diameter of the tree rings. For three tree genera (Quercus sp., Liriodendron sp., 
and Acer sp.) in Fig. 4a we plot the averaged annual growth rate as a function of DBH/〈DBH〉 (DBH measured 
here approximately 1 m above the ground). The numbers of trees by genera that were considered for computing 
these growth rates were: for Quercus genus 545 trees ((Quercus alba, Quercus rubra, Quercus montana species); 
for Liriodendron genus 210 trees (Liriodendron tulipifera species); for Acer genus 64 trees (Acer negundo, Acer 
rubrum, Acer saccharinum species). In Fig. 4a, we also indicate the trend that is given by the kernel function for 
the growth rate, Eq. (15), with a parameter set that gives a reasonable description of the data.

Reset rate
Unlike the growth rate, the reset rate is much more difficult to measure experimentally. In the LGGR framework 
the reset rate, characterizing the transitions from large to small DBH categories, incorporates the combination 
of the mortality (caused either by natural mortality or forest exploitation) and the recruitment (appearance of 
young and small trees) processes. This corresponds to the replacement of dead trees with new ones. To realisti-
cally choose the form of the reset kernel function ( γ (x) ), one should consider both, the form of the mortality 
rate and the recruitment rate in the function of tree size. The recruitment rate acts as a negative reset rate in this 
context. Similarly with the increasing growth rate as a function of tree sizes, assuming an increasing reset rate 
would be natural. One would expect that the reset rate is also converging to a constant value for very large trees. 
Deriving a reasonable kernel function for the reset rate can adhere to the following logic:

First, in all tree census data there is an xmin minimal diameter under which trees do not enter in the statistics 
both for the dead and living trees. This means that from the viewpoint of the detected dynamics the reset should 
be negative (trees are just entering in the statistics) for x < xmin . The recruitment of new trees happens in this 
experimentally less tracked DBH region. Thus, the available data does not reflect the reset rate ( γ (x) ) itself, it 
yields instead the probability that a dead tree with a given diameter exists in an ecosystem. Therefore, this prob-
ability is rather related to the mortality component of the reset rate52–55. In the framework of our modeling, this 
quantity is proportional to the product of the reset rate and probability density function, γ ′(x) · ρ(x) . As the 
recruitment rate presents a substantial negative reset for small tree sizes ( x < xmin ) and the mortality rate exhibits 

(15)µ(x) = d1
x

x + b
, b ≥ 0
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Figure 4.   Supporting data and illustrations for the modeling assumptions: (a) Growth rate determined from 
the width of tree rings. The panel illustrates on log-log scale the width of tree rings as a function of stem 
diameter at one meter above the ground for three tree genera as indicated in the legend. The trend illustrated 
by the dashed line is given by Eq. (15) with parameters indicated in the figure. The error bars around the data 
points illustrate the standard error. (b) Consistency between the dead trees size distribution, the considered 
reset rate, and fitted tree-size distribution. Histogram of the size distribution (sizes normalized to the mean) 
of dead Quercus trees from censused forests plotted together with the fit given by H · ρs(y)γ

′(y) with r = 0.22 
and parameters estimated from the probability density function. H is a proportionality constant needed to fit 
the experimental histogram. The data used for figures in panels (a) and (b) was provided by50,51. (c) Reset over 
growth rates probability for the genus Quercus as a function of the trees y = x/�x� relative size. The trend of 
q(y) = γ ′(y)/µ(y) = d(y − r)/y for r = 0.22 and d = 4.8.
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a declining pattern52,53 for x > xmin , the cumulative impact of these functions can indeed be approximated as 
an increasing but converging function. These facts are all in agreement with an increasing reset rate in the form:

Here r, g and f1 , are positive constants. In further calculations we will assume g = b , reducing the number of 
model parameters and making the mathematics simpler.

Second, it is known that tree diversity increases with time in both forests and wood-pastures. In closed canopy 
mature forests key drivers for the establishment of new tree species are the intermediate-level disturbances (typi-
cally affecting both the tree stands and the individual mature trees, creating gaps of various sizes), which results 
in a diversification of the biotic (e.g. herbaceous plants) and abiotic (light, microclimate) conditions at local 
and plot levels56, in the benefit of both shade tolerant and light-demanding trees57. In wood-pasture systems, 
light is rarely a limiting factor for tree establishment. Here the species diversification in time depends on the 
herbivore density and dynamics as well as the existence of protecting structures for individual trees across the 
grazed land (e.g. associational resistance assured by unpalatable plants)58. Besides the local factors, the natural 
establishment of new tree species in the two ecosystem types depends on the regional species pool (referred 
to as ‘external memory’ in59). The existing diversification means, that whenever a tree is dying, its place can be 
overtaken by an individual from another species. In the case of Quercus trees, for example, the establishment of 
young individuals to replace the mature Quercus trees in forests is hampered by improper light conditions. In 
such systems the likelihood for other, shade-tolerant trees to replace the Quercus is high. In the case of Fagus and 
Carpinus, both species tolerate and regenerate in shade - in these cases, the replacement of old individuals can 
happen by the same or different species. Additionally, the removal of mature trees represents a diversification of 
the forest stand for the semi-natural forest. Since the diversity is increasing, this effect will lead to a multiplica-
tive decrease in the number of individuals for a species, which is equivalent (as we have shown in the previous 
section) with a κ < 0 state independent reset term. Taking all these effects into account, we propose that the 
reset rate should be taken in the form,

with:

Using data for the size distribution of dead trees in several mature deciduous forests we can also verify whether 
the form of the proposed reset rate is a reasonable hypothesis. If we denote by ρs(x) the stationary limit of the 
probability density for the DBH of the trees, the size distribution of the dead trees should follow the ρs(x) · γ ′(x) 
distribution with γ ′(x) given by Eq. (16). For testing this reset rate we can use again the data from NPS50,51 for 
dead trees diameter, which should be fitted as ρs(y) · γ ′(y) . The data provided by the United States National Park 
Service contains the diameter of dead trees within a number of 320 plots from 10 national parks in the USA. For 
consistency, and for putting together several data from different forests, the trees’ diameter is normalized to the 
mean value of tree diameters in the forest (taking now only the living trees). Considering the Quercus genus, 
the data for the histogram of the dead trees is plotted in Fig. 4b. The dashed line indicates a fit based on Eq. (25) 
with the parameters c = 0.8 , b = 0.033 , and d = 4.8 for the experimentally observed probability density and 
r = 0.22 in the γ ′(y) reset rate.

Concerning the three investigated ecosystems with the applied cultivation approaches, the main triggering 
conditions for the tree mortality (reset) are summarized in Table 2.

Stationary size distribution
Once we accept the form given by Eqs. (15) and (17) for the growth and reset rates, respectively, it is straight-
forward to compute the stationary probability density, ρs(x) . Since the κ value has been now incorporated in the 
γ (x) reset rate (Eq. 17), according to Eq. (14) we get

where d = d2/d1 and C is a normalization constant. If the distribution is defined on the x ∈ [0,∞) interval, the 
normalization constant becomes:

The first moment of the distribution (average) is also analytical:

(16)γ ′(x) = f1
x − r

x + g
r ≥ 0; g > 0

(17)γ (x) = γ ′(x)+ κ ≡ d2
x − c

x + b
,

(18)c =
f1r − bκ

f1 + κ
> r > 0,

(19)d2 =(f1 + κ) < f1; and d2 > 0.

(20)ρs(x) =

µ(0)ρs(0)

µ(x)
e
−

∫

{x}
γ (u)
µ(u) du = Cxd c−1(x + b) e−d x,

(21)C =

dc d

(b+ c)Ŵ[c d]
.

(22)�x� = c

(

1+
1

(b+ c)d

)

.
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We write now the distribution function for the y = x/�x� tree-sizes normalized relative to the mean value:

Assuming that �x� = 1 , it results

therefore the probability density function will have only two parameters to fit the experimental results for 
y = x/�x�:

As Fig. 2a shows, the probability density for the distribution of x/〈x〉 on forests and wood-pastures collapse, 
and it can be well approximated by the form given in Eq. (25), with parameters c = 0.8 and d = 4.8 , leading to 
b = 0.033.

Consistency in the model parameters. To ensure consistency in the model parameters, we simultaneously 
considered the goodness of fit for both the experimentally observed probability density functions and the data 
related to growth and reset processes. The optimal fit parameters were established by minimizing the Root Mean 
Squared Logarithmic Error through iteration across a fine grid within the parameter space. When selecting the 
parameters, equal weight was given to the fitting of the growth data in Fig. 4a, the data concerning the reset 
rate in Fig. 4b, and the DBH distribution data in Fig. 2a. We concurrently minimized the Root Mean Squared 
Logarithmic Error for all three quantities. Doing so, the fit parameters for the experimentally observed prob-
ability density function are in agreement with the data that we have on growth and reset processes. The values 
of the coefficients of determination ( R2 ) for the obtained fittings are listed in Table 3. Also in agreement with 
our prediction and imposed restrictions, we find that the best r parameter value for fitting the reset data satisfies 
the r < c condition. Because we have no information on when these trees dried out, no direct values of the rates 
can be estimated and as a consequence, one cannot determine the f1 parameter that would allow estimation of 
the κ parameter as well.

(23)ρs(y) =
dc d

(b+ c)Ŵ[c d]
�x�dce−d�x�yydc−1(y�x� + b).

(24)b =

c

(1− c)d
− c,

(25)ρs(y) =
dc d

( c
(1−c)d )Ŵ[c d]

e−dyydc−1

(

y +
c

(1− c)d
− c

)

.

Table 2.   Type of management control and main causes of tree mortality in the considered woodland areas.

System Management control
Main drivers of tree mortality (interpretable as a contribution to 
reset in our modeling)

Mature forest with high natural values

Weak, reduced to an initial Quercus plantation in the first part of the 
1900s. The subsequent increase in the abundance of Carpinus, Fagus, 
and other tree species happened naturally. Natural regeneration and 
the accumulation of dead trees in the forest are accentuated. While 
timber exploitation happens (the Quercus and Fagus being valued), 
this is never at large scale, only at parcels of cca 1-3 hectares and 
when the trees have cca 90-120 years. Grazing is prohibited by law28.

Mostly inter- and intraspecific competition for light. To a lesser 
extent extreme meteorological conditions, pest outbreaks, fire, and 
illegal cutting28.

Ancient wood-pasture

Weak, represented by traditional grazing with sheep, cattle, buf-
falo, and other livestock as well as scrub clearance in the central 
parts of the pasture. Tree regeneration happens in pulses through 
associative resistance and in pulses after temporary grazing pressure 
reductions28. The oldest trees in such a system have over 300 years.

Mostly extreme weather conditions (strong winds, lightning, and 
recently increasing drought)
weakening or damaging individual mature trees
which will be subsequently removed with formal
permit. Illegal fires set by shepherds can be also
a cause of mortality for old trees. Grazing prohibits tree regeneration 
in areas without shrubs. In a lesser extent competition and pests or 
diseases28.

Plantation under strong management In the case of our two plantations no direct human intervention has 
happened since the establishment.

The intraspecific (or even intraclonal) competition can be signifi-
cant. As clone origin, the trees are almost identical genetically. Abi-
otic factors (wind/storms/snow) caused some level of disturbances.

Table 3.   Coefficient of determination ( R2 ) calculated for the Gamma fit (Eq. 25) of the tree-size distribution 
in natural woodlands represented in Fig. 2a; the fitting of the experimentally obtained growth rates by Eq. (15) 
in Fig. 4a; and the fitting of the size distribution of dead trees by γ ′(y) · ρs(y) in Fig. 4b.

Species

DBH distributions

Growth kernel Reset kernelForest Wood-pasture

Fagus 0.80 0.47 – –

Carpinus 0.97 0.85 – –

Quercus 0.91 0.80 0.78 0.60

Liriodendron – – 0.81 –

Acer – – 0.72 –
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Accepting the r = 0.22 parameter from the fit in Fig. 4b, we can also predict the reset rate over growth rate 
ratio ( q = γ ′(y)/µ(y) ) as a function of tree diameters (all sizes taken relative to the mean value). We get:

Using the d value obtained through fitting the experimental data, d = 4.8 , and the r = 0.22 value the q(y) trend 
is plotted in Fig. 4c. From this figure we learn, that the ratio q is monotonically increasing as a function of tree 
sizes and for trees over y > 0.28 the reset process is more probable than growth. This intuitively explains why 
despite the monotonically increasing growth rate the forest does not get filled up by very large trees.

In the preceding section, we highlighted the necessity of integrating diversification into the model. Equa-
tion 25 defines a stationary probability density function that exhibits its peaks around the value represented by the 
parameter c. When c = 0.8 , as established, the density function shows its highest concentration around this value, 
closely resembling the experimental data (refer to Fig. 2a). Considering the relationship between the parameter 
r (fixed at 0.22) and κ , if κ were 0, indicating the absence of diversification, Eq. (25) would exhibit a peak around 
0.22. However, this projection does not align well with the experimental size distributions presented in Fig. 2a. 
This reasoning underscores the indispensability of incorporating the diversification process into the model.

Discussion
Tree size diversity patterns in natural deciduous forest and wood-pasture environments is a complex problem, 
where new data and simple realistic mathematical models are needed for its better understanding. It has been 
conjectured that the diameter distribution of trees belonging to given deciduous species follows a Gamma dis-
tribution in a mature natural forest15,21,22. Here we brought new evidence supporting this hypothesis, considering 
new exhaustive measurement data for three tree taxa in two different environments: mature semi-natural forests 
and wood-pastures located in central Romania.

Apart from the generality for the Gamma distribution, our data suggests an intriguing statistical universality: 
rescaling the tree diameters with the average tree diameter for that species in the given ecosystem type, all the 
data collapsed on the very same distribution. This intriguing universality across these sites is captured by our 
model if we assume the same c and d parameters (Eq. 25) for all taxa and for the different environments (forest 
and wood-pastures). This means that in the tree census one has to consider the same lower limits for recording 
a tree, the same dilution rate, κ , due to diversification, and the ratio of the reset and growth rates should be simi-
lar for the same y = x/�x� relative diameter values. These are all in agreement with the fact that the considered 
three deciduous genera dominate quite equally these treed environments and they are ecologically equally fit. 
Seemingly we deal thus with some interesting stylized facts in tree-size diversity patterns for deciduous temper-
ate climate woodlands (forests and wood-pastures), allowing also a useful rescaling among different species and 
different semi-natural ecosystems. Data collected on relatively young (up to 15 years) tree plantations reveal 
different size diversity patterns (i.e. Normal distribution). These plantations clearly did not reach maturity and 
a stationary state, therefore the difference relative to what is observed in the other two environments should 
not be a surprise at all. These findings suggest that the Gamma type fit for the tree-size distribution can be used 
as a simple proxy to infer natural or close-to-natural dynamics of tree establishment and growth. Asymmetric 
competition (characteristic of natural ecosystems) can result in higher tree size inequality (as found by us for 
the forest and wood-pasture compared to plantations) where the tree regeneration and growth patterns are 
determined by largely natural interactions between the trees60.

In order to understand theoretically the tree-size distribution in semi-natural woodland environments the 
main processes that govern the evolution of the tree ensemble have to be considered. The first process is a 
monotonic growth, which was assumed to increase with tree size and saturate in the limit of large diameters. 
For analytical simplicity and in agreement with supporting information from literature11,42,43,45,46,49, we chose a 
simple sub-linear function for the above (Eq. 15). The second and third processes that complement this growth 
and allow for developing a stationary distribution are tree mortality and recruitment, captured by our reset rate. 
In order to derive a mathematical form for this rate, we considered a process where there is a lower r limit for 
detecting a new or dead tree in the census (trees below this size are not measured). According to this methodol-
ogy below the r size, trees appear in the statistics, known as the phenomenon of recruitment, a process that can 
be taken into account with a negative reset rate. It is assumed that the tree mortality rate should decrease in a 
woodland environment with tree sizes due to both endogenous and exogenous effects52–55. As a combination of 
these two ecological processes, we assumed that, similarly to the growth rate, the reset rate should increasingly 
saturate to a constant value for large trees. A mathematically simple reset rate that could reproduce these fea-
tures was proposed in the form given by Eq. (16). As we have emphasized in the previous section, this reset rate 
together with the proposed form of the probability density function (Eq. 25) leads to results that are in agreement 
with observations (Fig. 4b). Finally, in order to explain the large c = 0.8 value in the final form of the reset rate 
(Eq. 17), which is necessary for a reasonably good fit of the diameter distributions, we had to assume another 
reset-like process, due to the diversification process implying competitive exclusion of certain species by other 
species. As it was shown in the general discussion (The LGGR modeling framework), a multiplicative growth or 
dilution in the total tree number belonging to a species is equivalent to a reset term in the master equation for 
the probability density function.

The easiest way to elaborate a model that is able to predict a stationary tree-size distribution is to incorporate 
these probabilistic processes in an evolutionary master equation. This has been done here, in the framework of 
the previously introduced LGGR model24. We considered mathematically simple yet realistic forms for growth 
( µ(x) ) and reset ( γ (x) ) rates, as convenient first-order approximations supported also by experimental data. 
The stationary distribution provided by the LGGR model reproduced successfully the experimental results. Our 

(26)q = d
y − r

y
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main interest focused on unveiling some interesting universality and showing the visually acceptable collapse 
of the renormalized data. In fitting the experimental data and analyzing the goodness of the fit our aims were 
quite modest and we followed basically a physicist modeling methodology. Instead of a rigorous quantitative 
modeling with many unknown parameters, we opted for an analytically solvable model with basically two free 
parameters. Based on the literature, similar elegant approaches have been favored by others as well11,23. By doing 
this we concentrated less on the statistical goodness of the provided fit and insisted more on modeling consist-
ency and the usefulness of analytical results in a compact mathematical form. Definitely, one can come up with 
other, more accurate forms for these kernel functions, describing better the experimental data. The drawback 
of such an attempt will be the more complicated form for the stationary probability density and the inevitable 
increase in the number of model parameters. The available DBH data itself was barely enough to construct the 
qualitative form of the probability density functions, and as it is visible in Fig. 2a it has large deviations from a 
smooth trend. Taking into account also that the experimental data used for testing the growth and reset rate is 
quite poor and their sources are diverse, we consider that this consistent theoretical description is more fruit-
ful for understanding the experimentally observed universal shape of tree-size distributions across these sites.

Naturally, in order to get further confidence in the proposed model, new and good-quality data should still be 
gathered. It would be interesting to test in the very same forest and wood-pasture environment the growth and 
reset dynamics of the considered tree species. Within the same woodland ecosystem, it would be also interesting 
to gather quantitative data on the diversification process for the tree species. To do this, however, controlled tree 
census measurements have to be planned and continuously repeated.

Data availability
The data collected by the authors (summarized in Table 1) are freely available for download from 29. The data 
used for plotting Figs. 4 and 4b are from the mentioned sources, and can be obtained by request.
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